Interleukin-8 and tumor necrosis factor–α levels in vitreous samples from patients with diabetic retinopathy

Rifat Rasier¹, Ozgur Artunay², Uzay Gormus³, Erdal Yuzbasioglu¹, Alper Sengul¹, Amber Senel Kukner¹, Murat Oncel³, Halil Bahcecioglu¹

¹Department of Ophthalmology, School of Medicine, Istanbul Bilim University, Istanbul 34381, Turkey
²Department of Ophthalmology, School of Medicine, Bismalem Vakif University, Istanbul 34381, Turkey
³Department of Biochemistry, School of Medicine, Istanbul Bilim University, Istanbul 34381, Turkey

Correspondence to: Amber Senel Kukner. Sisli Florence Nightingale Hospital, Sisli, Istanbul 34381, Turkey. ambersenel@gmail.com

Received: 2013-07-23 Accepted: 2013-11-18

糖尿病视网膜病变患者玻璃体样本中白细胞介素-8 和肿瘤坏死因子-α 水平

Rifat Rasier¹, Ozgur Artunay², Uzay Gormus³, Erdal Yuzbasioglu¹, Alper Sengul¹, Amber Senel Kukner¹, Murat Oncel³, Halil Bahcecioglu¹

(作者单位：土耳其伊斯坦布尔大学医学眼科学院；土耳其，伊斯坦布尔 Bilem 大学医学院眼科系；土耳其，伊斯坦布尔 Bilem 大学医学院眼科学系；土耳其，伊斯坦布尔 Bilem 大学医学院生物化学系)

通讯作者：Amber Senel Kukner. ambersenel@gmail.com

摘要

目的：测量糖尿病性视网膜病变患者玻璃体样本中白细胞介素-8 (IL-8) 和肿瘤坏死因子-α (TNF-α) 的水平，与对照组比较结果并探讨其对 DR 的影响。

方法：将伊斯坦布尔大学眼科学系的 57 例 (57 眼) DR 患者和 22 例周围结膜未伴有增生性玻璃体视网膜病变患者分为研究组和对照组。对所有 79 例患者行 3 切口,20G PPV。PPV 手术眼内注药前，用 Vitrector 抽取 0.5mL 玻璃体样本并稀释。样品转至冷藏室，存放于 -70°C。IL-8 和 TNF-α 的测量结果用酶联免疫吸附法以 pg/mL 为单位计算。

结果：DR 患者玻璃体样本中 IL-8 水平 [82.789 ± 74.08700 (0.08–307.09) pg/mL] 明显高于对照组患者 [2.9805 ± 3.77546 (0.08–18.53) pg/mL] (P<0.001)。同样，DR 患者 TNF-α 水平 [18.0007 ± 13.90015 (2.32–51.11) pg/mL] 也显著高于对照组 [1.7005 ± 1.26949 (0.1–5.17) pg/mL] (P<0.001)。

结论：在视网膜新生血管形成中起重要作用的 TNF-α 和 IL-8 水平在 DR 患者玻璃体样本中明显高。
INTRODUCTION

Diabetes mellitus (DM), characterized by lack of insulin or peripheral insulin insensitivity is a multisystem disease that also impacts humoral responses and tissues, and also entails carbohydrate, protein and lipid metabolism impairments. The metabolic processes that cause diabetic retinopathy (DR) are not completely defined yet. There are several theories that relate aldose reductase, vasoproliferative factors, growth hormone, and platelet and blood viscosity to retinopathy. Interleukin–8 (IL–8), is a member of the family formed by many structurally homologous cytokines, which are produced in T cells, fibroblasts, endothelial cells, keratinocytes, neutrophils, epithelial cells, and mononuclear phagocytes that are activated by antigens. Its synthesis can be started rapidly by cytokines such as interleukin–1 (IL–1) and tumor necrosis factor (TNF). Polymorphonuclear leukocytes, monocytes and macrophages are shown to be secreted after endotoxemia.

IL–8 molecule is accepted as a proinflammatory mediator that has a chemotactic effect on neutrophils. IL–8 is a powerful activator of neutrophils and eosinophils, and is recognized to reduce IgE production in B lymphocytes by increasing interleukin–4 (IL–4) production. Neutrophil activation initiated by TNF and IL–1 is associated with production of mainly IL–8 stimulated by TNF and IL–1, and the associated proteins. IL–8 and cytokines of this family act as secondary regulators in inflammation. IL–8 accelerates the adhesion of neutrophils to endothelial cells and the matrix proteins under the endothelial cells. IL–8 enables neutrophils after stimulation to bond to endothelial cells and to pass into the parenchyma afterwards. IL–8 is shown to be produced from glial and endothelial cells in the retina as a result of angiogenesis occurring in ischemic conditions.

Mononuclear phagocytes are the source of TNF. T cells, activated Natural Killer (NK) cells and activated mast cells secrete this protein. TNF is a local paracrine and autocrine regulator for leukocytes and endothelial cells in low concentrations. Plasma TNF levels in healthy individuals range between 0 and 35 pg/mL. There are two types of TNF; 1) TNF–α (also called cachectin) secreted from active macrophages; 2) TNF–β (lymphotoxin) secreted from active T cells. TNF–α is an important cytokine that causes immune, metabolic, and inflammatory events and plays a role in neovascular formations. TNF–α has a mediating and regulating role in development of diabetic nephropathy and all of the diabetes related complications.

DR is a pathology characterized by microangiopathy and ischemic retinal angiogenesis induced by the activation of proinflammatory cytokines IL–8 and TNF–α. The goal of this study is to measure the IL–8 and TNF–α levels in vitreous samples from patients undergoing pars plana vitrectomy (PPV) due to DR, to compare these measurements with those of the control group, and to demonstrate their impact on DR pathogenesis.

SUBJECTS AND METHODS

Fifty–seven patients with diabetic retinopathy diagnosis at T.C. Istanbul Bilim University Medical School Department of Ophthalmology, who were to undergo the operation formed the study group and the control group consisted of 22 macular hole cases that did not have proliferative vitreoretinopathy. All of the patients diagnosed with PDR were high risk proliferative PDR patients. Vitrectomy indications for PDR patients were tractional retinal detachment associated with vitreous hemorrhage, tractional retinal detachment not associated with vitreous hemorrhage, and macular edema presenting with tractional and proliferative membrane. All of the diabetes patients were selected from type–II diabetics. All cases in the study group underwent a 3–port 20 gauge pars plana vitrectomy (PPV) operation. The mean age for the patients included in the study group and the control group were 65. 92 ± 6. 18 and 64. 32 ± 5. 22, respectively (P < 0.05). The goal was to eliminate the impact of age on the parameters and to have both groups evaluated under identical conditions.

While enrolling patients in the study and the control group, presence of any additional macular pathologies like age related macular degeneration that could impact vitreous IL–8 and TNF–α levels, history of ocular inflammation, and history of laser photocoagulation application within the past three months were checked. If any of these conditions existed, the patients were excluded from the study.

A detailed preoperative ophthalmological examination was performed on all participants and the comprehensive history of each patient was examined. Presence of ocular trauma history, glaucoma, uveitis sequelae or other ocular pathologies were used as exclusion criteria. The goal was to compare the IL–8 and TNF–α levels in diabetic retinopathy pathology with those of the control group.
Vitreous sample collection and storage Vitreous samples of 0.5 mL were aspirated with vitrector at the beginning of the PPV operation before the intraocular infusion and being diluted. The aspirated samples were immediately placed in sterile Eppendorf tubes. Samples were protected from sunlight and transferred to the freezer at −70°C, as soon as possible. All samples were taken by the same surgeon. No complications developed due to extracting vitreous in any of the operations. The results of IL−8, and TNF−α were calculated in pg/mL.

Vitreous IL−8 and TNF−α quantitative analysis methods The quantitative analysis of IL−8 and TNF−α in the vitreous samples taken were performed using the ELISA (Enzyme–linked immunosorbent assay) method, via human TNF−α measurement kit (AviBion, Helsinki, Finland) and human IL−8 measurement kit (AviBion, Helsinki, Finland) following the manufacturer’s application guidelines.

Statistical Analysis Data from the study and the control group are reported as mean, median, standard deviation, minimum and maximum values, numbers and percentages where appropriate. The alpha level of significance was set at 0.01. SPSS version 12 (SPSS Inc., Chicago, IL) was used for statistical analysis. Variance analysis was conducted for multivariate comparisons. T−test was used to compare the TNF−α and IL−8 levels between the control group and the diabetic retinopathy group.

RESULTS A total of 79 patients were included in the study; 57 of which with diabetic retinopathy and a decision for operation were assigned to the study group and 22 with a macular hole were assigned to the control group. The gender distribution among the cases with diabetes was 23 (40.35%) females and 34 (59.65%) males, and 12 (55%) females and 10 (45%) males among the control group cases.

IL−8 and TNF−α parameters in the vitreous samples of all cases were investigated using the ELISA method. In the vitreous samples obtained during vitrectomy, IL−8 level [82.789 ± 74.08700 (0.08−307.09) pg/mL] and the TNF−α level [18.0007 ± 13.90015 (2.32−51.11) pg/mL] in the DR group were significantly higher than the IL−8 level [2.9805 ± 3.77546 (0.08−18.53) pg/mL] and the TNF−α level [1.7005 ± 1.26949 (0.1−5.17) pg/mL] obtained in the control group (P < 0.001). These findings are presented in Table 1.

No correlation was found between the TNF−α and IL−8 levels of all patients and the DR patients. The scatter diagrams of TNF−α and IL−8 levels in vitreous are displayed in Figure 1A and B.

Table 1 TNF−α vs IL−8 mean, standart deviation and mean standard error values in diabetic retinopathy and control group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>n</th>
<th>Mean</th>
<th>Std. deviation</th>
<th>Std. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF−α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>57</td>
<td>18.0007</td>
<td>13.90015</td>
<td>1.84112</td>
</tr>
<tr>
<td>Control</td>
<td>22</td>
<td>1.7005</td>
<td>1.26949</td>
<td>0.27066</td>
</tr>
<tr>
<td>IL−8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>57</td>
<td>82.789</td>
<td>74.08700</td>
<td>9.81306</td>
</tr>
<tr>
<td>Control</td>
<td>22</td>
<td>2.9805</td>
<td>3.77546</td>
<td>0.80493</td>
</tr>
</tbody>
</table>

Figure 1 Scatter diagram of TNF−α (A) and IL−8 (B) amounts in patient’s vitreous samples.

DISCUSSION This study investigated the association between vitreous IL−8 and TNF−α levels and diabetic retinopathy. The results indicate that the vitreous IL−8 and TNF−α levels are significantly higher among the diabetic retinopathy patients, compared to the control group.

Some of the serum components that enter the vitreous as a result of deterioration of the blood retinal barrier are shown to contribute to fibrovascular membrane formation[11-13]. Mediators released from the ischemic retinal regions are shown to be responsible for proliferative effect and neovascularization[11,14,15]. IL−8, which is an inflammatory and angiogenic mediator, is shown to be produced from glial and endothelial cells in the retina as a result of angiogenesis occurring in ischemic conditions[4,5]. A relationship between the gliotic occlusion of major vessels in the retina and vitreous IL−8 levels was determined[16]. Previous studies have shown...
that human recombinant IL-8 leads to development of neovascularization in rabbit cornea\(^\text{[17]}\). Aksinger \textit{et al}\(^\text{[18]}\)'s study demonstrated that IL-8 levels were high in vitreous samples of patients with PDR.

Neutrophils are enabled to bond to endothelial cells via IL-8 stimulation and to enter the parenchyma with increased \(\beta_2\) integrin expression. PDR is characterized by the impairment of the blood retina barrier due to loss of pericytes and endothelial cells of the retinal microvascular structures. In PDR, membranous structures from the retinal tissue to vitreous are observed. In vitreous samplings, IL-8 is observed to be high when CXCL-10 is inactive while PDR is active\(^\text{[19, 20]}\). While IL-8 has angiogenic effects, CXCL-10 has angiostatic effects. Both antagonistic cytokines peak at different phases of the disease. IL-8 expression is observed mainly in vascular endothelial cells and retinal glial cells. In hypoxia, neovascularization is activated with IL-8 and VEGF synthesis from glial cells\(^\text{[21]}\).

In our previous study, we investigated to determine intravitreal IL-8 level in patients with non-complicated acute RD which induces cellular proliferation and inflammation, and, it was reported that intravitreal IL-8 increases may related to inflammation after retinal detachment\(^\text{[22]}\). The high levels of IL-8, which has chemotactic and angiogenic effects and is common in proliferative ocular diseases, in vitreous samples of PDR patients shows that IL-8 may play a role in the pathogenesis of PDR\(^\text{[17, 18]}\). In line with findings of other studies, IL-8 levels of the patients with proliferative diabetic retinopathy, compared to the control group, were found to be significantly higher in our study.

TNF-\(\alpha\) is an important cytokine that causes immune, metabolic, and inflammatory events, and plays a role in neovascular formations. TNF system effects the pathogenesis of some aspects of the insulin resistance syndrome through cellular mechanisms caused by TNFRII, the dominant one of the two TNF-\(\alpha\) receptor types; TNFRI (type 1) and TNFRII (type 2). Recent studies show that mutations in the TNFRII gene play an important role in type 2 DM pathogenesis\(^\text{[23]}\). In type 2 DM and its associated microvascular complications, TNF-\(\alpha\) has important functions such as stimulating growth, cytotoxicity, and angiogenesis.

Mononuclear phagocytes are the source of TNF and TNF is a local paracrine and autocrine regulator for leukocytes and endothelial cells in low concentrations. It has been previously reported that TNF-\(\alpha\) is expressed in human retina during proliferative eye diseases but the mechanism of TNF-\(\alpha\)'s impact on retinal neovascularization is not fully explained yet\(^\text{[24-26]}\). Li \textit{et al}\(^\text{[27]}\) and Elnor \textit{et al}\(^\text{[28]}\) were stated that in face of an ischemic condition, TNF-\(\alpha\) could be one of the factors triggering the cytokine cascade and inducing retinal neovascularization. The observations of TNF-\(\alpha\)-dependent IL-8 induction in retinal cells shows that the increase in the IL-8 levels in the vitreous fluid due to ischemic retina may be associated with TNF-\(\alpha\) upregulation. These two inflammatory cytokines that we examined the vitreous levels of in our study can be considered deterministic risk factors in development of proliferative DR. In our study, we also aimed at examining the vitreous TNF-\(\alpha\) and IL-8 relationship in PDR etiopathogenesis and to guide further studies that can form novel treatment alternatives in PDR treatment via blockade of these cytokines.

Consequently, it is inevitable that the DM related changes in cytokine levels will be reflected in the vitreous due to the adverse effects that diabetes has on the inner blood retina barrier. Our findings show that the inflammatory and angiogenic mediator IL-8 may be associated with the progression of DR into PDR. The observations of TNF-\(\alpha\)-dependent IL-8 induction in retinal cells shows that the increase in the IL-8 levels in the vitreous fluid due to ischemic retina may be associated with TNF-\(\alpha\) upregulation. Further studies are needed to investigate the relationship between DR and cytokines.

REFERENCES

26 Demircan N, Safran BG, Soylu M, Ozcak AA, Sizma S. Determination of vitreous interleukin–1 (IL–1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy cytophine in proliferative diabetic retinopathy. Eye 2006;20:1366–1369
