Diagnostic performance of macular ganglion cell – inner plexiform layer thickness measured by Cirrus HD–OCT in POAG patients

Xiao–Lan Xu, Jing–Min Guo, Duo–Duo Lu, Mu Li, Hong Zhang, Jun–Ming Wang

Foundation item; National Natural Science Foundation of China (No. 81470632)
Department of Ophthalmology, Tongji Hospital, Huazhong Science and Technology, Wuhan 430030, Hubei Province, China
Correspondence to: Jun–Ming Wang. Department of Ophthalmology, Tongji Hospital, Huazhong Science and Technology, Wuhan 430030, Hubei Province, China. 18571570696@163.com
Received; 2014–10–18 Accepted; 2015–03–25

Abstract

• AIM: To evaluate the diagnostic accuracy of macular ganglion cell – inner plexiform layer (GC IPL) measurements using high–definition optical coherence tomography (Cirrus HD–OCT) ganglion cell analysis algorithm for detecting early and moderate to severe glaucoma.
• METHODS: Twenty normal control persons, 26 patients with early glaucoma and 29 patients with moderate to severe glaucoma were enrolled in this study. Macular GC IPL, optic nerve head (ONH) parameters and peripapillary retinal nerve fiber layer (RNFL) thickness were measured in each subject. Then all measured results of each parameter were calculated using SPSS17.0. Areas under the receiver operating characteristic curves (AUC) of each parameter were calculated to compare the diagnostic accuracy for detecting early and moderate to severe glaucoma.
• RESULTS: For detecting early glaucoma, AUC of average RNFL and seven clock value of RNFL were the biggest (0.871 and 0.896 respectively), the AUC of parameters in GC IPL were also significant, among them, the average GC IPL showed bigger AUC (0.847) than the minimum GC IPL (0.812). For diagnosing moderate to severe glaucoma, the AUC of rim area was 0.992, which was bigger than that of average RNFL (0.991). The minimum GC IPL showed bigger AUC (0.983) than the average GC IPL (0.967). For early glaucoma diagnosis, the sensitivity of average RNFL was the highest (76.9%), while the average GC IPL has the highest specificity (93.5%).

• CONCLUSION: AS a new diagnostic parameter for detecting glaucoma, GC IPL shows similar diagnostic potential compared with RNFL. For early glaucoma diagnosis, average RNFL is the most important parameter, while screening early glaucoma, average GC IPL should be paid more attention.
• KEYWORDS: macular ganglion cell – inner plexiform layer thickness; high–definition optical coherence tomography; glaucoma diagnosis

摘要
目的: 评估利用高分辨率相干光断层扫描(Cirrus HD–OCT)测量黄斑区神经节细胞层–内丛状层(GC IPL)厚度参数对早期和中晚期青光眼的诊断意义。
方法: 本研究共纳入20例健康个体,26例早期青光眼患者,29例中晚期青光眼患者。对所有纳入个体均测量黄斑区GC IPL厚度参数,视盘(ONH)区参数以及视盘周围神经纤维层(RNFL)厚度参数。最后将所有数据利用SPSS 17.0统计学软件进行分析,分别计算各参数诊断早期和中晚期青光眼的AUC值,以比较和评价各参数的诊断意义。
结果: 对于早期青光眼组,AUC值最高的为RNFL平均值(0.871)和7:00位值(0.896),GC IPL各参数也表现出较高的AUC值,其中GC IPL平均值和最小值相应的AUC值分别为0.847和0.812。对于中晚期青光眼组,AUC值最高为盘沿面积(0.992),其次为RNFL平均值(0.991),而GC IPL各参数中平均值与最小值的AUC值分别为0.967和0.983。对于早期青光眼诊断,灵敏度最高的指标为RNFL平均值(76.9%),而特异度最高的指标为GC IPL平均值(93.5%)。
结论:GC IPL作为诊断青光眼的新指标在诊断早期和中晚期青光眼前,具有与RNFL相似的诊断意义。对于早期青
表 1 基本信息

<table>
<thead>
<tr>
<th>项目</th>
<th>正常规组</th>
<th>中晚期组</th>
</tr>
</thead>
<tbody>
<tr>
<td>基例数/例数</td>
<td>20/40</td>
<td>26/40</td>
</tr>
<tr>
<td>年龄（I x岁）</td>
<td>36.92±8.16</td>
<td>38.63±11.29</td>
</tr>
<tr>
<td>眼压基线值（mmHg）</td>
<td>15.82±2.06</td>
<td>17.55±3.2</td>
</tr>
<tr>
<td>角膜厚度（μm）</td>
<td>545.69±28.66</td>
<td>540.3±32.68</td>
</tr>
<tr>
<td>轴长（mm）</td>
<td>24.37±1.04</td>
<td>24.65±1.51</td>
</tr>
<tr>
<td>性别</td>
<td>男:女(%)</td>
<td>8(40)</td>
</tr>
<tr>
<td>视网膜</td>
<td>12(60)</td>
<td>10(38.5)</td>
</tr>
<tr>
<td>视网膜厚度（I x, MD）</td>
<td>-1.63±0.84</td>
<td>-2.87±1.5</td>
</tr>
<tr>
<td>P 3（±s）</td>
<td>1.55±0.47</td>
<td>2.58±1.21</td>
</tr>
</tbody>
</table>

1.2 方法

HD-OCT 测量：利用 HD-OCT 获得两方面扫描资料，包括黄斑模块（200×200 像素即 200 个水平 B 扫描，每个 B 扫描由 200 个 A 扫描构成）和视网膜模块（200×200 像素）扫描。扫描由同一检查者在同一天进行，扫描方法按照 Mwanza 所提及的标准方法进行，强调强度大于 0 的且被采纳。利用该仪器的节细胞、神经营养纤维和视盘分析算法分别自动得到黄斑区 GCIP 和视盘周围神经纤维 RNFL 厚度以及视盘参数的数据。根据指标：GCIP 分析内容；平均值（average），最小值（minimum）及各区域域值（superior，上部区域）；下区域（supranasal）；下区域（inferior，下区域）；区域间域（intermediate）；和区域范围（superotemporal）。视盘周围神经纤维层厚度分析内容，平均值（average thickness），下区域（superior），下区域（inferior），鼻侧区域（temporal），颞侧区域（nasal），12 个区域点。视盘分析内容：盘沿面积、视盘面积、平均杯盘比，垂直杯盘比，杯容积。

统计分析：所有数据均采用 SPSS 17.0 进行分析，三组间的基线数据如年龄、轴长，基线眼压值等之间的差异用独立样本 T 检验，性别的差异用卡方检验，三组间用 HD-
<table>
<thead>
<tr>
<th>测量参数</th>
<th>正常组均值</th>
<th>早期组</th>
<th>中晚期组</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>均值 (μm)</td>
<td>均值</td>
<td>P1</td>
</tr>
<tr>
<td>RNFL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>均值 (μm)</td>
<td>105.44±9.58</td>
<td>85.35±15.18</td>
<td><0.01</td>
</tr>
<tr>
<td>上方 (μm)</td>
<td>128.5±22.77</td>
<td>105.2±21.40</td>
<td>0.01</td>
</tr>
<tr>
<td>下方 (μm)</td>
<td>136.26±17.00</td>
<td>103.5±21.39</td>
<td><0.01</td>
</tr>
<tr>
<td>鼻侧 (μm)</td>
<td>66.69±8.00</td>
<td>65.55±10.95</td>
<td>0.6</td>
</tr>
<tr>
<td>颞侧 (μm)</td>
<td>90.00±19.88</td>
<td>67.53±13.62</td>
<td><0.01</td>
</tr>
<tr>
<td>GCIPL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上方</td>
<td>87.64±5.87</td>
<td>79.22±9.7</td>
<td><0.01</td>
</tr>
<tr>
<td>下方</td>
<td>84.46±5.28</td>
<td>74.28±10.7</td>
<td><0.01</td>
</tr>
<tr>
<td>鼻上方</td>
<td>90.23±7.14</td>
<td>82.08±9.81</td>
<td><0.01</td>
</tr>
<tr>
<td>鼻下方</td>
<td>88.05±6.47</td>
<td>78.32±9.81</td>
<td><0.01</td>
</tr>
<tr>
<td>颞上方</td>
<td>86.20±5.32</td>
<td>77.8±9.47</td>
<td><0.01</td>
</tr>
<tr>
<td>颞下方</td>
<td>86.48±4.84</td>
<td>76.38±11.29</td>
<td><0.01</td>
</tr>
<tr>
<td>平均值</td>
<td>87.18±5.19</td>
<td>78.00±9.21</td>
<td><0.01</td>
</tr>
<tr>
<td>最小值</td>
<td>84.44±5.37</td>
<td>73.05±12.29</td>
<td><0.01</td>
</tr>
<tr>
<td>盘沿面积 (mm²)</td>
<td>1.35±0.21</td>
<td>1.06±0.26</td>
<td><0.01</td>
</tr>
<tr>
<td>视盘面积 (mm²)</td>
<td>1.72±0.38</td>
<td>2.17±0.44</td>
<td><0.01</td>
</tr>
<tr>
<td>均周边长比</td>
<td>0.39±0.19</td>
<td>0.69±0.13</td>
<td><0.01</td>
</tr>
<tr>
<td>垂直基长比</td>
<td>0.34±0.17</td>
<td>0.65±0.13</td>
<td><0.01</td>
</tr>
<tr>
<td>杯容积 (mm³)</td>
<td>0.10±0.13</td>
<td>0.43±0.27</td>
<td><0.01</td>
</tr>
<tr>
<td>黄斑中心厚度 (μm)</td>
<td>242.87±15.5</td>
<td>248.8±23.44</td>
<td>0.188</td>
</tr>
<tr>
<td>容积 (mm³)</td>
<td>10.4±0.44</td>
<td>9.76±0.56</td>
<td><0.01</td>
</tr>
<tr>
<td>平均容积厚度 (μm)</td>
<td>289.10±12.18</td>
<td>271.33±15.54</td>
<td><0.01</td>
</tr>
<tr>
<td>3mm上方 (μm)</td>
<td>329.90±15.49</td>
<td>319.3±21.72</td>
<td>0.015</td>
</tr>
<tr>
<td>3mm下方 (μm)</td>
<td>322.10±14.10</td>
<td>309.45±20.68</td>
<td>0.002</td>
</tr>
<tr>
<td>3mm鼻侧 (μm)</td>
<td>328.08±14.43</td>
<td>320.72±23.69</td>
<td>0.099</td>
</tr>
<tr>
<td>3mm颞侧 (μm)</td>
<td>312.13±13.51</td>
<td>302.65±17.84</td>
<td>0.009</td>
</tr>
<tr>
<td>6mm上方 (μm)</td>
<td>292.33±14.56</td>
<td>273.9±15.13</td>
<td><0.01</td>
</tr>
<tr>
<td>6mm下方 (μm)</td>
<td>274.85±14.42</td>
<td>253.25±17.65</td>
<td><0.01</td>
</tr>
<tr>
<td>6mm鼻侧 (μm)</td>
<td>311.54±16.32</td>
<td>291.65±18.65</td>
<td><0.01</td>
</tr>
<tr>
<td>6mm颞侧 (μm)</td>
<td>270.69±12.36</td>
<td>256.73±12.48</td>
<td><0.01</td>
</tr>
</tbody>
</table>

P1: 正常组与早期组比较; P2 正常组与中晚期组比较; P3 早期组与晚期组比较。

OCT 所获得的 GCIPL 和 RNFL 以及视盘分析相应模块数据间的变化采用独立样本 t 检验进行分析, P<0.05 被认为有统计学意义。应用 Pearson 相关性分析算法分析了视野 MD 值和 PSD 值与 GCIPL 和 RNFL 相关参数的相关性,计算出 r 值, r 值≥0.8 时,可以根据两变量间高度相关; r 值≥0.5 且<0.8 时,可以根据为两变量中度相关; r 值≥0.3 且<0.5 时,可以认为两变量低度相关。r 值<0.3 说明相关程度弱,基本不相关。用受试者工作特征曲线 ROC 曲线评价 HD-OCT 测量结果,各组间 RNFL 均值、鼻侧值、视盘值、GCIPL 各象限值、平均值、最小值、视盘分析各参数,黄斑区视网膜总厚度及各象限值之间的差异见表 2。正常对照组的 RNFL 均值最高,黄斑区视网膜总厚度各象限值之间的差异明显。各参数检测结果的增加的相关性明显,正常组为 105.44μm, 早期组为 85.33μm, 中晚期组为 59.75 μm, P<0.05)。而 GCIPL 最小值(正常组为 84.44μm, 早期组为 73.05μm, 中晚期组为 52.75 μm, P<0.05)。
表 3 各参数与视野 MD 值和 PSD 值相关性计算

<table>
<thead>
<tr>
<th>参数</th>
<th>MD</th>
<th>PSD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>RNFL 平均厚度</td>
<td>0.742 < 0.01</td>
<td>-0.747 < 0.01</td>
</tr>
<tr>
<td>上方</td>
<td>0.721 < 0.01</td>
<td>-0.719 < 0.01</td>
</tr>
<tr>
<td>下方</td>
<td>0.684 < 0.01</td>
<td>-0.698 0.009</td>
</tr>
<tr>
<td>鼻侧</td>
<td>0.373 < 0.01</td>
<td>-0.322 < 0.01</td>
</tr>
<tr>
<td>颞侧</td>
<td>0.593 < 0.01</td>
<td>-0.603 0.001</td>
</tr>
<tr>
<td>GCIP 平均值</td>
<td>0.744 < 0.01</td>
<td>-0.714 < 0.01</td>
</tr>
<tr>
<td>最小值</td>
<td>0.742 < 0.01</td>
<td>-0.735 < 0.01</td>
</tr>
<tr>
<td>上方</td>
<td>0.704 < 0.01</td>
<td>-0.696 < 0.01</td>
</tr>
<tr>
<td>下方</td>
<td>0.695 < 0.01</td>
<td>-0.684 0.001</td>
</tr>
<tr>
<td>鼻上方</td>
<td>0.695 < 0.01</td>
<td>-0.623 < 0.01</td>
</tr>
<tr>
<td>鼻下方</td>
<td>0.710 < 0.01</td>
<td>-0.663 < 0.01</td>
</tr>
<tr>
<td>额上方</td>
<td>0.751 < 0.01</td>
<td>-0.733 < 0.01</td>
</tr>
<tr>
<td>额下方</td>
<td>0.723 < 0.01</td>
<td>-0.708 < 0.01</td>
</tr>
<tr>
<td>盘沿面积</td>
<td>0.751 < 0.01</td>
<td>-0.723 < 0.01</td>
</tr>
<tr>
<td>视盘面积</td>
<td>-0.031 0.738</td>
<td>0.03 0.749</td>
</tr>
<tr>
<td>平均杯盘比</td>
<td>-0.572 < 0.01</td>
<td>0.547 0.01</td>
</tr>
<tr>
<td>垂直杯盘比</td>
<td>-0.617 < 0.01</td>
<td>0.618 < 0.01</td>
</tr>
<tr>
<td>杯容积</td>
<td>-0.527 < 0.01</td>
<td>0.437 0.01</td>
</tr>
</tbody>
</table>

图 1 早期青光眼各参数 ROC 曲线。

图 2 中晚期青光眼各参数 ROC 曲线。

3 讨论

青光眼的共同特征是视神经和视网膜神经节细胞的退行性变化，但是神经节细胞的形态变化不能在活体上直接观察，通过测量黄斑区视网膜厚度或节细胞复合体的厚度间接反映神经节细胞退行性改变程度成为研究主要的焦点。研究表明黄斑区视网膜厚度测量相比视网膜周边神经纤维层厚度有更高的预测价值[23]，原因在于视网膜由多个层构成，神经节细胞只位于其中三层，而测量黄斑区视网膜总厚度难以精确反映节细胞的退行性改变。随着 OCT 技术的提高，单独测量神经节细胞复合体(GCC)厚度成为可能，研究和发现黄斑区 GCC 厚度与视网膜厚度对青光眼的诊断值相当[21]。本文主要利用 HD-OCT 测量黄斑区 GCC 各参数评价其对早期和中晚期青光眼的诊断价值。

从上述数据分析可以看出，GCC 各参数对于早期和中晚期青光眼均有较高的诊断意义，其 AUC 值与目前公认的用于青光眼诊断的 RNFL 各参数值均相近，且与视野的 MD 值和 PSD 值均具有明确的相关性(图 3)。这与在韩国近期较大样本的相关研究所得结论类似，Joong 等[23]在这一总样本量为 425 例的研究中发现；对于早期青光眼的诊断，GCC 最小值和 RNFL 平均值的 AUC 值分别为 0.902 和 0.897, GCC 最小值的诊断意义与 RNFL
表 5 早期青光眼组相对于正常组各参数诊断的灵敏度和特异性

<table>
<thead>
<tr>
<th>参数</th>
<th>灵敏度</th>
<th>特异性</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCIPL</td>
<td>69.2</td>
<td>93.5</td>
</tr>
<tr>
<td>最小值</td>
<td>69.2</td>
<td>93.5</td>
</tr>
<tr>
<td>上方</td>
<td>71.8</td>
<td>89.1</td>
</tr>
<tr>
<td>下方</td>
<td>66.7</td>
<td>95.7</td>
</tr>
<tr>
<td>鼻上方</td>
<td>59.0</td>
<td>93.5</td>
</tr>
<tr>
<td>鼻下方</td>
<td>74.4</td>
<td>89.1</td>
</tr>
<tr>
<td>额上方</td>
<td>61.5</td>
<td>91.3</td>
</tr>
<tr>
<td>额下方</td>
<td>64.1</td>
<td>97.8</td>
</tr>
<tr>
<td>RNFL</td>
<td>76.9</td>
<td>91.3</td>
</tr>
<tr>
<td>上方</td>
<td>84.6</td>
<td>65.2</td>
</tr>
<tr>
<td>下方</td>
<td>61.5</td>
<td>97.8</td>
</tr>
<tr>
<td>鼻上方</td>
<td>20.5</td>
<td>95.7</td>
</tr>
<tr>
<td>额上方</td>
<td>64.1</td>
<td>43.5</td>
</tr>
<tr>
<td>1-00 位</td>
<td>82.1</td>
<td>63.0</td>
</tr>
<tr>
<td>3-00 位</td>
<td>28.2</td>
<td>91.3</td>
</tr>
<tr>
<td>5-00 位</td>
<td>69.2</td>
<td>52.2</td>
</tr>
<tr>
<td>7-00 位</td>
<td>20.5</td>
<td>93.5</td>
</tr>
<tr>
<td>9-00 位</td>
<td>61.5</td>
<td>76.1</td>
</tr>
<tr>
<td>11-00 位</td>
<td>53.8</td>
<td>89.1</td>
</tr>
<tr>
<td>13-00 位</td>
<td>84.6</td>
<td>80.4</td>
</tr>
<tr>
<td>15-00 位</td>
<td>76.9</td>
<td>82.6</td>
</tr>
<tr>
<td>17-00 位</td>
<td>56.4</td>
<td>87.0</td>
</tr>
<tr>
<td>19-00 位</td>
<td>74.4</td>
<td>60.9</td>
</tr>
<tr>
<td>21-00 位</td>
<td>82.1</td>
<td>65.2</td>
</tr>
<tr>
<td>23-00 位</td>
<td>64.1</td>
<td>82.6</td>
</tr>
<tr>
<td>颞侧平均杯盘比</td>
<td>89.7</td>
<td>58.7</td>
</tr>
<tr>
<td>平均杯盘比</td>
<td>92.3</td>
<td>80.4</td>
</tr>
<tr>
<td>杯容积</td>
<td>89.7</td>
<td>78.3</td>
</tr>
</tbody>
</table>

图 3 GCIPL 最小值与 RNFL 平均值和 MD 值相关性分析散点图。
青光眼中分别为 0.807 和 0.992，也表现出了很高的诊断意义，在阅读相关报告时也应注意关注这一参数。

对于 GCPII 和 RNFL 各象限的诊断意义，我们可以观察到 RNFL 下方象限的 AUC 值最大，其次为左上方和左下，最后为鼻侧。而在正常组和早期青光眼组的各参数对比中，RNFL 鼻侧值在两者之间无明显统计学差异，而相应的点位值包括 2:00, 4:00, 5:00 位也均没有统计学差异，说明在早期青光眼中鼻侧 RNFL 不受损或最后受损。GCPII 各象限中，下方两个象限的 AUC 值 (0.847, 0.815, 0.823) 均高于上方的 AUC 值 (0.818, 0.826, 0.793)，说明黄斑区下方的节细胞在青光眼更容易受损。我们在观察象限值时应重点注意 RNFL 下方和 GCPII 的下。这与 Takayama 等(21) 的研究结论也一致。

对于早期青光眼诊断，RNFL 平均值的灵敏度 (76.9%) 大于 GCPII 所有参数 (59% ~ 74.4%)，但是 GCPII 平均值的特异度 (93.5%) 大于 RNFL 平均值的特异度 (91.3%)，所以在青光眼的诊断时应重点观察 RNFL 平均值，而在青光眼的筛查时应重点观察 GCPII 的平均值。在 Mwanza 等(24) 的研究中，结合 GCPII 平均值和 RNFL 平均值时计算对于早期青光眼诊断的特异度高达 98%，结合 GCPII 最小值和上方神经纤维层厚度值是计算对于早期青光眼诊断的特异度最高为 100%。而 GCPII 最小值和 RNFL 平均值按或者的逻辑关系计算灵敏度是最高，其值高达 94%。在筛查早期青光眼时，同时参考 GCPII 各参数和 RNFL 各参数可能更有效的筛查出可疑患者，而对于早期青光眼的诊断，单独参考 RNFL 平均值或者 GCPII 最小值更有意义。

本研究观察了早期和中晚期青光眼相应的 GCPII 变化数据，覆盖面比较全面，但也存在样本量相对较少的问题，如果能大样本量收集数据观察 GCPII 各参数的诊断意义可能更具有说服力。另外，如果能随访观察从可疑青光眼到明确出现青光眼相关视野损伤之前的对象的 GCPII 和 RNFL 变化出现的对比情况，更能确定 GCPII 是否对于早期青光眼的诊断更具优势。

总的来说，GCPII 作为新的诊断青光眼的指标，具有与 RNFL 相似的诊断意义。其中 GCPII 最小值的诊断意义最佳，而平均值和其他象限值也有相似的诊断意义，青光眼的诊断时应重点观察 RNFL 平均值，而在青光眼的筛查时应重点观察 GCPII 的平均值。

参考文献
14 Garas A, Varga P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measures made with the RTVue–100 optical coherence tomograph to detect glaucoma. *Eye* 2010;24(1):57–65
18 Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma. 1993