Corneal biomechanical properties after femtosecond laser assisted LASIK with the corneal visualization Scheimpflug technology and ocular response analyzer

Jing Li, Sheng-Sheng Wei, Ya-Qun Wan, Yong Li, Juan Li, Jing Du, Jian-Guo Liu

Foundation items: Supported by Xi'an Social Development Research Project Grant [No. SF1513 (2)]; Shaanxi Social Development Research Project Grant (No. 2016SF – 274); Shaanxi Provincial Health Research Project (No. 2016E002)

Co-first authors: Jing Li and Sheng-Sheng Wei
Refractive surgery Center, Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an 710004, Shaanxi Province, China.

Correspondence to: Jian – Guo Liu. Refractive surgery Center, Department of Ophthalmology, Xi'an No. 4 Hospital, No. 21, Jiefang Rd, Xi'an 710004, Shaanxi Province, China. drljg@163.com

Received: 2015–11–17  Accepted: 2016–12–08

飞秒激光制瓣 LASIK 手术后角膜生物力学变化研究
李晶，魏升升，万雅群，李勇，李娟，杜婧，刘建国
基金项目：西安市社会发展引导项目 [No. SF1513 (2)]; 陕西省社会发展项目 (No. 2016SF – 274); 陕西省卫计委项目 (No. 2016E002)
（作者单位：710004 陕西省西安市第四医院眼科激光视力矫正中心）

Abstract

AIM: To investigate the changes of corneal biomechanical properties before and after femtosecond laser assisted LASIK (FS – LASIK) using Corneal Visualisation Scheimpflug Technology (Corvis ST) and Ocular Response Analyzer (ORA), and the correlation with other myopic parameters.

METHODS: Sixty three patients (63 eyes) who had myopic femtosecond laser assisted LASIK (FS – LASIK) were enrolled in the study. The right eye of each patient was analyzed in this study. The corneal biomechanical parameters pre-operative and 1mo post-operative was measured with the Corvis ST (Oculus, Wetzlar, Germany) and ORA (Reichert, Buffalo, New York, USA). Comparison of the biomechanical property values before and after surgery was performed using Paired t-test or Mann – Whitney U. Pearson or Spearman correlations were used to evaluate the relationship between parameters.

RESULTS: The postoperative 1st A – time, Vin, 2nd A length, Vout and Radius, P<0.00. 1st A – time, DA and PD significantly increased; 2nd A length, Vout and Radius decreased. 2nd A length, Vout and Radius were significantly different after surgery. The CH and CRF were significantly lower after FS – LASIK (P<0.00). A statistically significant correlation
coefficients were found between preoperative central corneal thickness (CCT) with postoperative – preoperative changes of 1st A – time, 2nd A – time, DA and Radius respectively (P=0.01, P=0.04, P=0.03, P=0.01).

**CONCLUSION:** There were significantly changes of corneal biomechanical properties after FS-LASIK surgery. The changes of corneal biomechanical properties after FS-LASIK can be reflected by some parameters of Corvis ST and ORA. The mainly influence of corneal biomechanical alteration was possibly correlation with corneal thickness.

**KEYWORDS:** myopia; corneal biomechanical property; femtosecond laser; laser in situ keratomileusis; corneal visualization Scheimpflug technology

DOI:10.3980/j.issn.1672-5123.2017.2.01

**Citation:** Li J, Wei SS, Wan YQ, Li Y, Li J, Du J, Liu JG. Corneal biomechanical properties after femtosecond laser assisted LASIK with the corneal visualization Scheimpflug technology and ocular response analyzer. *Guoj Yanke Zazhi (Int Eye Sci)* 2017;17 (2):195–199

**INTRODUCTION**

More and more studies of corneal biomechanical properties are investigated because of the influence of these properties on the predictability and stability of refractive surgery procedures outcomes.[1-3] Previous studies demonstrated that corneal refractive surgery significantly alters the biomechanical properties of the cornea.[4-8], which plays an important role in the development of some serious post – operation complications. In some cases, the reduce of corneal biomechanical may contribute to refractive instability and loss of visual acuity, especially keratectasia.[9] Rad et al.[4] reported that corneal ectasia represents one of the rarest but also one of the most feared complications with an incidence of 0.2% to 0.66% in the literature. Therefore, an effective method of quantifying the biomechanical state of a cornea before and after refractive surgery would be helpful to reduce the incidence of keratectasia by improving refractive surgery screening. Generally, corneal biomechanics studied by in vitro techniques that assess factors such as viscoelasticity, hydration[9] etc. Until to 2005, the Ocular Response Analyzer (ORA; Reichert Ophthalmic Instruments, Depew, New York, USA), which is based on a dynamic bidirectional application process, has enabled us to measure the biomechanical properties of the cornea in clinical[10], such as the corneal hysteresis (CH) and corneal resistance factor (CRF). This device provides metrics of corneal and/or ocular biomechanics. However, outputs of ORA do not give direct description about the mechanical behavior of cornea. Recently, The Corvis ST (Corneal Visualisation Scheimpflug Technology, Oculus, Wetzlar, Germany) is a new clinical instrument that allows investigation of the dynamic reaction of the cornea to an air impulse. This novel instrument operates with a Scheimpflug camera taking more than 4 330 images per second along an 8 – mm horizontal corneal coverage during corneal deformation under an air puff indentation. The complete visualization of the deformation process can be shown in a video output. Numerous parameters to describe the corneal viscoelastic properties and stiffness are displayed after internal calculation from the captured video image.

It is common knowledge that there have been some studies on the alteration of corneal biomechanical properties after refractive surgery measured by the ORA[11-13], as well as the repeatability and accuracy in measurement of intraocular pressure (IOP) and central corneal thickness (CCT) by the Corvis ST in healthy subjects, patients with ocular hypertension and glaucoma.[14-15]. However, as far as we known, there are few published articles on the alteration of corneal biomechanical properties before and after refractive surgery measured concurrently by the Corvis ST and ORA. Therefore, the purpose of this prospective study was to investigate the biomechanical properties of cornea measured with Corvis ST and ORA before and after laser in situ keratomileusis using femtosecond laser flap creation, and examines the relationship between the corneal biomechanical parameters after femtosecond laser assisted LASIK measured using the Corvis ST and ORA device.

**SUBJECTS AND METHODS**

**Patients** Sixty three patients (63 eyes) who had myopic femtosecond laser assisted LASIK (FS–LASIK) were enrolled in the study. Only their right eyes were analyzed. All enrolled patients were confirmed to be having a stable refraction and free of ocular and systemic disease. Contact lens wear was discontinued 2 wk before the LASIK operation for soft lenses or 4 wk before the LASIK operation for hard lenses. Exclusion criteria were corneal disease, glaucoma, retinal disease, previous intraocular surgery, and any other ocular disease, systemic disease could influence the eye. This study was performed in accordance with the tenets of the Declaration of Helsinki and approved by an Institutional Review Board. The written informed consent was obtained from each patient after receiving an explanation of the benefits and the known risks of the procedure.

**Measurements** Before the surgical procedure, patients had a complete ophthalmologic examination, including manifest and cycloplegic refraction, uncorrected visual acuity (UCVA) and best spectacle–corrected visual acuity (BSCVA), and slit–lamp biomicroscopy, ophthalmoscopy through dilated pupils. Best spectacle–corrected visual acuity was 20/20 or better in all preoperative eyes. The preoperative central corneal thickness (CCT) measured by ultrasound and the corneal biomechanical properties measured by Corvis ST and ORA before and 1 mo after surgery were recorded. Corvis ST[16] used a rapid air impulse to deform the cornea, and the corneal deformation was recorded by Scheimpflug technology. The air puff induced 2 corneal applications (flattening), Appl 1 and Appl 2, of the cornea. The first application occurs when an air puff is delivered to the eye, causing the cornea to flatten, whereas the second application is the flattened status of the cornea when it rebounds from its
### Table 1 Preoperative and postoperative findings in corneal biomechanical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preoperative</th>
<th>Postoperative</th>
<th>( t (Z) ), ( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>Range</td>
<td>Mean±SD</td>
</tr>
<tr>
<td>1(^{st}) A–time</td>
<td>7.37±0.26</td>
<td>6.87 to 8.14</td>
<td>7.03±0.29</td>
</tr>
<tr>
<td>1(^{st}) A length</td>
<td>1.79±0.08</td>
<td>1.38 to 1.89</td>
<td>1.75±0.15</td>
</tr>
<tr>
<td>Vin</td>
<td>0.15±0.02</td>
<td>0.07 to 0.18</td>
<td>0.14±0.03</td>
</tr>
<tr>
<td>2(^{nd}) A–time</td>
<td>21.72±0.30</td>
<td>20.98 to 22.30</td>
<td>21.90±0.44</td>
</tr>
<tr>
<td>2(^{nd}) A length</td>
<td>1.56±0.36</td>
<td>0.78 to 2.19</td>
<td>1.36±0.47</td>
</tr>
<tr>
<td>Vout</td>
<td>-0.42±0.07</td>
<td>-0.66 to -0.30</td>
<td>-0.49±0.09</td>
</tr>
<tr>
<td>HC time</td>
<td>16.72±0.45</td>
<td>15.48 to 17.79</td>
<td>16.59±0.38</td>
</tr>
<tr>
<td>DA</td>
<td>1.06±0.09</td>
<td>0.89 to 1.28</td>
<td>1.13±0.13</td>
</tr>
<tr>
<td>PD</td>
<td>4.56±1.04</td>
<td>2.37 to 5.45</td>
<td>4.69±1.18</td>
</tr>
<tr>
<td>Radius</td>
<td>7.11±0.83</td>
<td>5.62 to 10.37</td>
<td>5.89±0.71</td>
</tr>
</tbody>
</table>

1\(^{st}\) A–time; Time from start until the first application; 1\(^{st}\) A length; Length of the flattened cornea in the first application; Vin; Corneal velocity during the first application moment; 2\(^{nd}\) A–time; Time from start until the second application; 2\(^{nd}\) A length; Length of the flattened cornea in the second application; Vout; Corneal velocity during the second application moment; DA; Maximum deformation amplitude at the corneal apex; PD; Peak distance. \(^*\)\(P<0.05\), corneal biomechanical values post–op were significantly different from pre–op values.

**RESULTS**

The mean age of the 63 patients in this study was 23.63±4.62 years \((\text{range}, 18 \text{ to } 36 \text{ y})\). Thirty patients \((30 \text{ eyes})\) were male and 33 \((33 \text{ eyes})\) were female. The mean preoperative spherical equivalent \((\text{SE})\) of refraction was \(-6.17±1.75 \text{ diopters} \text{ (range, } -10.88 \text{ to } -2.50 \text{ diopters})\), with mean astigmatism of \(-0.66±0.50 \text{ diopters} \text{ (range, } -2.00 \text{ to } 0 \text{ diopters})\). The preoperative central corneal thickness \((\text{CCT})\) was 531.05±29.03 \(\mu m\) \text{(range, } 492 to 608 \mu m)\). The mean ablation depth \((\text{AD})\) was 91.06±12.95 \(\mu m\) \text{(range, } 52.20 \text{ to } 109.10 \mu m)\). The CH was decreased significantly, from 9.67±1.34 to 7.29±1.28 \((t=23.42, P=0.00)\). The CRF was also decreased significantly, from 9.91±1.52 to 6.46±1.32 \((t=20.18, P=0.00)\). Table 1 shows the mean values of all measured preoperative and postoperative corneal biomechanical parameters of Corvis ST. Comparing with preoperative values, the postoperative 1\(^{st}\) A–time, Vin, 2\(^{nd}\) A length and Vout demonstrate significant decreases after treatment respectively \((P=0.00, P=0.00, P=0.00, P=0.00)\). The postoperative 2\(^{nd}\) A–time significantly increase, however, the 1\(^{st}\) A length had no significant difference after surgery. The HC time and Radius had a significant decrease postoperatively \((P=0.00, P=0.00)\), at the same time, the DA and PD increased significantly \((P=0.00, P=0.00)\).

After investigating the correlation of postoperative – preoperative corneal biomechanical parameters with ablation depth, diameter of ablation zone, preoperative SE, preoperative CCT respectively, a statistically significant correlation coefficient was found between preoperative CCT with postoperative – preoperative changes of 1\(^{st}\) A–time, 2\(^{nd}\) A–time, DA and Radius respectively \((\text{Table 2})\). The postoperative – preoperative changes of Vin had a significant correlation with preoperative SE and diameter of ablation zone \((\text{Table 2})\). The postoperative – preoperative changes of Radius had a significant correlation with preoperative SE, ablation

**Statistical Analysis**

The statistical software used was SPSS 13.0. All data sets were tested for normality using the Kolmogorov–Smirnov test. Data was expressed as the mean± standard deviation. Comparison of the preoperative and postoperative biomechanical properties values were performed using Paired \(t\) test or Mann – Whitney \(U\). Pearson or Spearman correlations were used to evaluate the relationship between variables. A \(P\) value <0.05 was considered to be statistically significant.

**Surgical Technique**

All flaps were created using a femtosecond laser \((\text{IntraLase Corporation, Irvine, CA})\). All LASIK procedures were performed by wavefront – guided ablation. The attempted flap thickness was 90 \(\mu m\) and the flap diameter was 8.4 mm. After a flap was created, excimer laser ablation was performed with the VISX S4 laser system \((\text{Visx USA, Inc., Santa Clara, CA})\). After ablation, the corneal flap and stroma surface were cleaned with a balanced salt solution, and the flap was repositioned. The remaining procedures were the same as for the laser ablation.
Table 2  The correlation of postoperative – preoperative corneal biomechanical parameters with SE, CCT, ablation depth, diameter of ablation zone

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SE</th>
<th>CCT</th>
<th>Ablation depth</th>
<th>Ablation zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st A-time</td>
<td>0.09,0.51</td>
<td>-0.33,0.01*</td>
<td>-0.26,0.04*</td>
<td>0.09,0.51</td>
</tr>
<tr>
<td>1st A length</td>
<td>-0.10,0.47</td>
<td>0.14,0.29</td>
<td>0.07,0.62</td>
<td>0.07,0.61</td>
</tr>
<tr>
<td>Vin</td>
<td>0.37,0.00*</td>
<td>0.17,0.18</td>
<td>-0.04,0.75</td>
<td>0.31,0.02*</td>
</tr>
<tr>
<td>2nd A-time</td>
<td>0.19,0.17</td>
<td>0.27,0.04*</td>
<td>0.04,0.75</td>
<td>0.09,0.50</td>
</tr>
<tr>
<td>2nd A length</td>
<td>-0.06,0.63</td>
<td>-0.07,0.61</td>
<td>-0.16,0.23</td>
<td>0.07,0.59</td>
</tr>
<tr>
<td>Vout</td>
<td>-0.11,0.38</td>
<td>-0.24,0.07</td>
<td>-0.13,0.33</td>
<td>-0.01,0.93</td>
</tr>
<tr>
<td>HC time</td>
<td>-0.06,0.69</td>
<td>0.19,0.17</td>
<td>0.05,0.73</td>
<td>0.10,0.45</td>
</tr>
<tr>
<td>DA</td>
<td>0.05,0.69</td>
<td>0.28,0.03*</td>
<td>0.21,0.11</td>
<td>0.08,0.55</td>
</tr>
<tr>
<td>PD</td>
<td>0.06,0.67</td>
<td>0.16,0.22</td>
<td>0.15,0.25</td>
<td>0.12,0.35</td>
</tr>
<tr>
<td>Radius</td>
<td>0.37,0.00*</td>
<td>-0.36,0.01*</td>
<td>-0.35,0.01*</td>
<td>0.28,0.03*</td>
</tr>
</tbody>
</table>

1st A-time; Time from start until the first application; 1st A length; Cord length of the cornea in the first application; Vin; Corneal velocity during the first application moment; 2nd A-time; Time from start until the second application; 2nd A length; Cord length of the cornea in the second application; Vout; Corneal velocity during the second application moment; HC time; Time from start until the highest concavity of cornea is reached; DA; Maximum deformation amplitude at the corneal apex; PD; Peak distance. *P<0.05, corneal biomechanical values post-op were significantly different from pre-op values; SE; Spherical equivalent; CCT; Central corneal thickness. ‘P<0.05, changes of corneal biomechanical values post-op were significantly correlated with procedure parameters.

DISCUSSION

The cornea is a viscoelastic material composed of collagen, proteoglycans, water, and other elements, which can be modeled with quantifiable biomechanical properties\(^{17-18}\). Previous studies show that biomechanical properties of the cornea might be changed by myopic femtosecond laser assisted LASIK (FS–LASIK)\(^{19-20}\). Dupps and Roberts\(^{21}\) thought the reason was predominantly due to an immediate near-circumferential severing of corneal lamellae results in a redistribution of stress and unprogrammed biomechanical shape changes during the surgery. In our study, We also found significant reductions in CH and CRF measurement with ORA at 1mo after LASIK using femtosecond laser for flap creation compared with preoperative. These findings are broadly in line with previous findings from Hamilton et al\(^{1}\).

Corvis ST is a noncontact tonometer incorporating Scheimpflug technology to measure corneal deformation from air–puff indentation. During the measurement, the cornea reach the maximum deformation amplitude at the corneal apex under the force of air–puff, and rebound to original stations. 1st A–time, 1st A length, Vin, 2nd A–time, 2nd A length, Vout, HC time, DA, PD and Radius were obtained during this course. In previous study\(^{16}\), the intraxaminer repeatability and intersession reproducibility of Corvis ST were investigated. Only DA and 1st A–time were found repeatable and reproducible, and the DA, as a reliable corneal parameter, could distinguish abnormal corneas from normal corneas. Hon and Lam reported that the CCT, DA, first application time (1st A–time), and IOP were repeatable. In the current study, excepting that the DA was significantly increased after surgical procedures, this was conformed to the result of Hon and Lam\(^{16}\). We also demonstrated here that 2nd A–time, Vout and Peak Distance were increased. In addition, we demonstrated that corneal 1st A–time; Vin; 2nd A length and Radius after the surgery captured by Corvis ST were decreased significantly compared with preoperative. Nevertheless, 1st A length and HC time after the surgery were not significant decrease compared with preoperative. For the large variations of some parameters in the measurement might be explained as follows. During the FS–LASIK surgery, the flap creation with femtosecond laser and surgical tissue removal may produce a biochemical parameter related to reduction of corneal stiffness\(^{22-23}\). For the DA, the thin cornea after flap creation and tissue ablation could result in decreasing of corneal antagonism to air impulse. The time would be faster from start until the first application, at the same time, the deformation amplitude could increase due to the softening of cornea after surgery. Radius could indirectly show the depth of being pressed of cornea. Therefore, the increasing of deformation amplitude could result in reducing of radius. Moreover, the collagen fiber relaxation after a corneal cut may reduce the capacity of the sonic wave to propagate in the corneal surface.

The good correlation was demonstrated between biomechanical parameters and CCT in our study. Correlation analysis showed that 1st A–time and radius was negatively correlated with CCT; 2nd A–time and DA was positively correlated with CCT. Many previous studies have shown that corneal thickness could influence on deformation amplitude\(^{24-25}\). The changes of 1st A–time, radius and 2nd A–time were primarily result from the changing of deformation amplitude (DA). Therefore, the CCT plays an important part in the alteration of corneal biomechanical.

There was a weakness with this study that we have to acknowledge. Our study just recorded and contrasted the corneal biomechanical of preoperative with 1mo postoperative,
and we did not contrasted with 6mo postoperative. We will contrast the forward changing of corneal biomechanical more rigidly in further studies.

In conclusion, there was a significant change in corneal biomechanical following femtosecond laser assisted LASIK (FS–LASIK) procedure. Parameters of Corvis ST and ORA could obviously reflect the changing of corneal biomechanical. CH, CRF, DA and radius had an apparent change in 1mo after surgery. Most of alterations of parameters were correlated with preoperative CCT.

REFERENCES
16 Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci 2013;90(1):e1–e8