Relationship of MMP–2 or TGF–β2 levels in human vitreous with axial length

Ting–Ting Zhao, Meng–Zhu Wu, JING Jin, Shu–Nong Xie, Ying Fan

Abstract

• Aim: To investigate the relationship of matrix metalloproteinase–2 (MMP–2) and transforming growth factor–beta 2 (TGF–β2) levels in human vitreous with axial length (AL) of patients with high myopia.

• METHODS: The concentrations of MMP–2 and TGF–β2 levels were tested by Enzyme–Linked Immunosorbent Assay (ELISA). Fifty–five human vitreous samples of 55 patients were collected during vitrectomy surgery, and were divided into two groups according to their spherical equivalent (SE) and axial length (AL). High myopia group (25 cases); SE > −6.00D, AL ≥ 26.00mm, and control group or non–high myopia group (30 cases); SE ≤ −6.00D, AL ≤ 26.00mm.

• RESULTS: The MMP–2 levels in vitreous of high myopia group (96.87±55.95ng/mL) was significantly higher than that of control group (77.24±41.81ng/mL, P<0.05), but not correlated with AL (r = 0.088, P = 0.544). While the TGF–β2 vitreous concentration was negatively correlated with AL (r = −0.344, P = 0.014), and there was significant difference of TGF–β2 vitreous levels between high myopia group (372.90 ± 1890.88pg/mL) and control group (3926.00 ± 1333.88pg/mL, P<0.05).

• CONCLUSION: MMP–2 and TGF–β2 in human vitreous may play a critical role in human high myopia development, and the TGF–β2 appears to be associated with axial length.

• KEYWORDS: matrix metalloproteinase–2; transforming growth factor–beta 2; vitreous body; high myopia; axial length

DOI: 10.3980/j.issn.1672–5123.2017.4.01

Citation: Zhao TT, Wu MZ, Jin J, Xie SN, Fan Y. Relationship of MMP–2 or TGF–β2 levels in human vitreous with axial length. Guoji Yanke Zazhi (Int Eye Sci) 2017;17(4):587–591

INTRODUCTION

Myopia is the most common visual disorder in the worldwide, especially in the Asia countries[1–3]. High myopia is often defined as refractive error ≥−6.00D and axial length (AL) ≥ 26.00mm, with complications including posterior staphyloma (PS) [4–8], choroidal neovascularization (CNV) [9–13], macular hole (MH) [14–16], retinal detachment (RD) [17–18], macular hole retinal detachment (MHRD) or macular retinoschisis (MRS) [19–21] and so on. These may result from its pathology characteristics: sclera thinning, remodeling and axial elongation [22–24]. In myopic eyes, sclera remodeling and axial elongation are...
associated with changes of its extracellular matrix (ECM)\(^{(25)}\), and controlled by a number of little chemical molecules, in which, the major two are matrix metalloproteinase-2 (MMP-2) and transforming growth factor-beta 2 (TGF-β2). MMPs are a group of zinc-dependent proteinases that can degrade collagens, gelatins, ECM molecules, which composed by collagenases, stromelysins, gelatines and membrane type-1 MMPs\(^{(26-37)}\). Among above, Gelatinases, including MMP-2, also called Gelatinase A, can be found in various ocular tissues of human and animals\(^{(29)}\). Although numbers of human and animal experiments have suggested that the expression of MMP-2 (mRNA or protein) increases during myopia developing and decreases when recovery\(^{(25,27,38-39)}\). However, there are also studies suggested no association between myopia and MMP-2\(^{(28,33,40)}\), this comes out controversy.

TGF-β plays a critically important role in regulating extracellular matrix turnover\(^{(41-46)}\). There are five isoforms, that are, TGF-β1, TGF-β2, TGF-β3, TGF-β4 and TGF-β5 in total, among them, the first three have been demonstrated expression in few tissues in mammal animals, include sclera, retina and choroid, in addition, TGF-β2 is the main subtype and a normal composition in human vitreous\(^{(38-49)}\). Nevertheless, the previous researches primarily instructed the two molecules; MMP-2 and TGF-β2 (mRNA or protein) in aqueous humor, sclera, retina, choroid etc. of human or animals, maybe, just investigating the changes of MMP-2 and TGF-β2 levels in patients with high myopia. The purpose of our study was to explore the relationship between MMP-2 and TGF-β2 levels in human vitreous and axial length of high myopic patients, furthermore, to explicit the action of MMP-2 on myopia.

SUBJECTS AND METHODS

Patients and Samples This study was an observational and case-control study. Fifty-five samples of 55 individuals received vitrectomy for retinal detachment or macular hole, which were all collected from Mar. 2015 to Nov. 2015. There were 24 males and 31 females in total with ages ranging from 18 to 80y, their average age is 58.53y. Informed consent was obtained from all individual participants included in the study, the study followed the principle of the Declaration of Helsinki (2008) and was approved by the Ethics Committee of Shanghai General Hospital of Shanghai Jiao Tong University. Comprehensive ocular examinations were received, which including detailed ophthalmoscopic examinations, B-scan ultrasonography and optical coherence tomography (OCT), AL was measured with an IOL-Master (Optical Biometry, Master 500, Carl Zeiss Meditec AG, Germany). According to AL etc., the subjects were divided into two groups (high myopia group, 25 cases and control group or non-high myopia group, 30 case). The exclusion criteria were ocular traumas, choroidal neovascularization, proliferative vitreoretinopathy, endophthalmitis and any other history of ocular surgery. The samples were collected into marked sterile tubes during vitrectomy prior to intraocular infusion and immediately stored at ~80°C until analysis.

Measurement of MMP-2 and TGF-β2 All the vitreous samples were assayed with Enzyme-Linked Immunosorbent Assay (ELISA) Kit (ELISA Kits, R&D System, USA). According to the manufacturer’s instructions, briefly, diluted human vitreous or rebuilt standard samples incubated for 2h at room temperature, repeated aspirating and washing with wash buffer for a total of three times, conjugate added and washed also, stopped with stop solution and measured by a microplate reader at a wavelength of 450 nm.

Statistical Analysis The results from two groups were analyzed with SPSS 17.0 statistical software. The original data of MMP-2/TGF-β2 levels and ages of two groups were normally distributed by the Kolmogorov-Smirnov test. The relationship between AL and MMP-2/TGF-β2 ages and MMP-2/TGF-β2 was used Spearman correlation analysis. The MMP-2/TGF-β2 levels and ages were expressed as mean±standard deviation (SD) and analyzed with t-test. The χ² test was used to analyzed the comparison of sex distribution. A two-tailed P value of less than 0.05 was considered statistically significant.

RESULTS

The Characteristics of Sex, Ages and AL There was no significant difference of age (F = 0.006, P = 0.94) or gender (χ² = 1.528, P = 0.216) between high myopia group and non-high myopia group, furthermore, no statistically significant correlation between the age and AL was found (r = −0.249, P = 0.081) (Table 1).

Levels of MMP-2 and AL The MMP-2 could be detected in all vitreous samples and MMP-2 (P = 0.037, P < 0.05) concentration of high myopia group was significantly higher than control group, nevertheless, there was no significant correlation between AL concentration and MMP-2 (r = 0.088, P = 0.544) in all subjects (Table 1, Figure 1).

Levels of TGF-β2 and AL The TGF-β2 could be detected in all vitreous samples, there was significant difference of TGF-β2 (P = 0.030, P < 0.05) between the two groups, in addition, there was significant correlation between AL concentration and TGF-β2 (r = −0.344, P = 0.014) (Table 1, Figure 2).

Relationship between Concentrations of MMP-2/TGF-β2 and Age/Gender No significant correlation was found between MMP-2 (r = −0.106, P = 0.451) or TGF-β2 (r = 0.014, P = 0.923) and age, either, there was no significant difference of MMP-2 (F = 0.057, P = 0.812) or TGF-β2 (F = 2.007, P = 0.163) between males and females.

DISCUSSION

In the present study, we found three important contributions to literature on myopia. First, to our best knowledge, this was the first research that clearly illuminate the significant correlation of AL between MMP-2 and TGF-β2 levels of the human vitreous respectively. Second, the relationship of MMP-2 and high myopia was emphasized once again. MMP-2 and TGF-β2 are
MMP−2; Matrix metalloproteinase−2; TGF−β2; Transforming growth factor−β 2; *Independent t−test; †Pearson χ2 test.

Table 1 Main characteristics of 55 patients from two groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>High myopia group (n=25)</th>
<th>Control group (n=30)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (a)</td>
<td>57.72±12.26</td>
<td>60.21±14.23</td>
<td>0.940*</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>12/13</td>
<td>12/18</td>
<td>0.216b</td>
</tr>
<tr>
<td>Axial length (mm)</td>
<td>28.69±1.93</td>
<td>23.57±1.08</td>
<td>0.020*</td>
</tr>
<tr>
<td>MMP−2 concentration (ng/mL)</td>
<td>96.87±55.95</td>
<td>77.24±41.81</td>
<td>0.037†</td>
</tr>
<tr>
<td>TGF−β2 concentration (pg/mL)</td>
<td>3729.08±1890.88</td>
<td>3926.00±1333.88</td>
<td>0.030†</td>
</tr>
</tbody>
</table>

Figure 1 Correlation between axial length and MMP−2.

Figure 2 Correlation between axial length and TGF−β2.

important cytokines for high myopia, we could detected and measured these with ELISE and draw several conclusions. In the first place, MMP−2 concentration of human vitreous in high myopia was statistically significant higher than non−high myopia group, moreover, there was no significant correlation between MMP−2 concentration and AL for all subjects, this was one bone of contention comparing with previous reports. Researches of animal (tree shrew and chicken) model and human have constituted evidence of significant association between MMP−2 (mRNA and protein) and myopia scleral remodeling. Animal experiments have illustrated the MMP−2 mRNA level up−and down−regulation changes during form deprivation, different time course and recovery[38−39,50]. In addition, previous studies have provided strong evidence that MMP−2 expression increased in human vitreous or aqueous humor with high myopia, significantly positive correlation lies between MMP−2 concentration in human aqueous humor and axial length[25,27]. In our study, results showed elevated MMP−2 level in human vitreous of high myopia and no further AL correlation. MMP−2 protein findings were consist with preceding researches (mRNA or protein) generally, we speculated that tissue and race specificities maybe the sources for discrepancy.

Several antecedent studies found that MMP−2 (single−nucleotide polymorphisms, SNP analysis) did not appear to be associated with myopia or refractive error with the dye terminator−based SNaPshot method including Han Chinese high myopia, Japanese high myopia and Caucasian ethnicity myopia[28,33,40,51]. Another research discovered MMP−2 gene was involved in myopia of AMISH families but not in Ashkenazi families using the same genetic analysis means[52]. The results suggested that tagging different promoter SNPs that carrying common sequence or not and environmental heterogeneity probably came out various associations with myopia.

In the next place, TGF−β2 level of high myopia group was significant lower than non−high myopia group, furthermore, there was a significantly negative correlation between TGF−β2 concentration and AL. TGF−β2 is the critical mediator of scleral remodeling during myopia development, it mainly lead to reducing synthesis and increasing resolution of scleral collagen. Researches of TGF−β2 concentration in human myopia subjects are controversial, significantly higher in human aqueous humor and positively correlated with axial length were found but no significant difference in human vitreous between high myopia and control group[27,41], the difference may be generated by tissue diversity and measuring method. Previously, studies in animal models showed that retinal and choroid TGF−β2 mRNA level was not altered while reduced abidingly or fluctuant in the scleral at specific myopia scleral remodeling stages[38,42−43,47−49]. It was probably that the early decrease of scleral TGF−β2 was an indication for retinoscleral signal guiding ocular myopia change[49], these were not in conformity with our study, which could be attribute to tissue and race specificities, detection method may also accounted for part factors.

In conclusion, this study implied that the protein levels of MMP−2 and TGF−β2 changed in the human vitreous of patients with longer axial. The concentration of MMP−2 increased while TGF−β2 decreased in high myopia subjects,
in addition, it implied that longer axial patients had lower level TGF–β2. MMP–2 and TGF–β2 played critical roles in high myopia scleral remodeling. Our study will provide a strong evidence for the research concerned high myopia clinically.

REFERENCES

12 Lai TY, Cheung CM. Myopic choroidal neovascularization; Diagnosis and Treatment. Retina 2016;36(9):1614–1621

221–233
37 Lan YQ, Zhang C, Xiao JH, Zhuo YH, Guo H, Peng W, Ge J. Suppression of IkappaBalpha increases the expression of matrix
metalloproteinase-2 in human ciliary muscle cells. Mol Vis 2009;15:
1977–1987
38 Schipper R, Brand C, Schaeffler F, Feldkaemper MP. Changes in
cellular MMP-2, TIMP-2 and TGFbeta-2 mRNA expression after
imposed myopic and hyperopic defocus in chickens. Exp Eye Res 2006;
82(4):710–719
39 Siegwart JT Jr, Norton TT. Selective regulation of MMP and TIMP
mRNA levels in tree shrew sclera during minus lens compensation and
40 Leung KH, Yin WC, Yap MK, Ng PW, Fung WY, Sham PC, Yip
SP. Systematic investigation of the relationship between high myopia
and polymorphisms of the MMP2, TIMP2, and TIMP3 genes by a DNA
41 Jia Y, Hu DN, Zhou J. Humoral aqueous humor levels of TGF-β2a
42 McBrien NA. Regulation of scleral metabolism in myopia and the role
43 Chen BY, Wang CY, Chen WY, Ma JX. Altered TGF-β2a and
bFGF expression in scleral descemocytes from an experimentally-induced
(4):1133–1144
Regulation of scleral cell contraction by transforming growth factor-β and
stress; competing roles in myopic eye growth. J Biol Chem 2009;284
(4):2072–2079
45 Yokoyama K, Kimoto K, Itoh Y, Nakatsuka K, Matsuo N, Yoshioka
H, Kubota T. The F3K/Akt pathway mediates the expression of type I
collagen induced by TGF-β2a in human retinal pigment epithelial
46 Liu JH. Circadian variations of transforming growth factor-β2a and
basic fibroblast growth factor in the rabbit aqueous humor. Curr Eye Res
2002;24(1):75–80
47 Jolhing AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and
choroidal TGF-β in the tree shrew model of myopia; isoforn expression,
activation and effects on function. Exp Eye Res 2009;88
(3):458–466
48 Mathis U, Schaeffel F. Transforming growth factor-β in the
chicken fugal layers; an immunohistochemical study. Exp Eye Res
2010;90(6):780–790
49 Jolhing AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific
changes in scleral transforming growth factor-β expression and the
regulation of collagen synthesis during myopia progression. J Biol Chem
2004;279(18):18121–18126
50 Siegwart JT, Jr., Norton TT. The time course of changes in mRNA
levels in tree shrew sclera during induced myopia and recovery. Invest
51 Nakashii H, Hayashi J, Yamada R, Yamashiro K, Nakata I,
Shinada N, Ohno – Matsui K, Mochizuki M, Ozaki M, Yoshitake S,
Kuriyama S, Saito M, Lida T, Matsuo K, Matsuo F, Yoshimura U.
Single nucleotide polymorphisms in the promoter region of matrix
metalloproteinase-1, -2, and -3 in Japanese with high myopia. Invest
Ophthalmol Vis Sci 2010;51(9):4432–4436
52 Wojciechowski R, Bailey-Wilson JE, Stambolian D. Association
of matrix metalloproteinase gene polymorphisms with refractive error in
Amish and Ashkenazi families. Invest Ophthalmol Vis Sci 2010;51(10):
4989–4995