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Abstract
● AIM: To analyze abnormal gene expressions of mice eyes 
exposed to blue light using RNA-seq and analyze the related 
signaling pathways.
● METHODS: Kunming mice were divided into an 
experimental group that was exposed to blue light and 
a control group that was exposed to natural light. After 
14d, the mice were euthanized and their eyeballs were 
collected. Whole transcriptome analysis was attempted to 
analyze the gene expression of the eyeballs using RNA-seq 
to reconstruct genetic networks. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
were used to reveal the related signaling pathways.
● RESULTS: The 737 differentially expressed genes 
were identified, including 430 up and 307 down regulated 
genes, by calculating the gene FPKM in each sample 
and conducting differential gene analysis. GO and KEGG 
pathway enrichment analysis showed that blue light 
damage may associated with the visual perception, sensory 
perception of light stimulus, phototransduction, and JAK-
STAT signaling pathways. Differential lncRNA, circRNA 
and miRNA analysis showed that blue light exposure 
affected pathways for retinal cone cell development and 
phototransduction, among others.
● CONCLUSION: Exposure to blue light can cause a 
certain degree of abnormal gene expression and modulate 

signaling pathways in the eye.
● KEYWORDS: blue light; eye; whole transcriptome 
sequencing; gene expression; signaling pathways; mice
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INTRODUCTION

E xposure to blue light induces various biochemical and 
physiological changes in the eyes. In previous studies, 

blue light has been found to have high photochemical energy, 
and long exposure times to this high energy light often lead 
to eye diseases such as age-related maculopathy, dry eye and 
cataracts[1-5], and it will cause a worsening of visual fatigue 
and nearsightedness[6-7]. In addition, blue light can affect 
sleep quality by inhibiting melatonin secretion and affecting 
the hormonal balance[8-11]. It has been reported that the blue 
light spectral range at 415-455 nm was the most damaging 
light to the retina; light could pass through the lens directly 
to the retina and lead to irreversible photochemical retinal 
damage[12-16]. Moderately intense blue light can induce non-
necrotic cell death or apoptosis and high intensity blue 
light can induce necrosis due to its phototoxicity[17-19]. The 
mechanism underlying this damage is suggested to be related 
to the accumulation of reactive oxygen species (ROS) and 
oxidative stress[20-21]. Additionally, in rat retina, blue light-
induced mitochondrial dysfunction was observed[22-24].
In addition to the effects on the function and structure of the 
eyes, some data also suggest that periodic blue light exposure 
can affect gene expression. Genetic studies suggest that 
prolonged exposure to blue light can increase Bax and decrease 
Bcl-2 and Bcl-xL expression[25]. Blue light induces a large 
number of free radicals that can destroy messenger ribonucleic 
acid (mRNA) and proteins under aerobic conditions, and it has 
been unequivocally demonstrated that the N-retinylidene-N-
retinylethanolamine (A2E) is a mediator of blue light damage 
in the retinal pigment epithelium[26-29]. 

Blue light-induced eye damage
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In recent years, people have become increasingly attentive 
to eye discomfort related to blue light. Previous studies 
provided a solid framework for future eye disease studies and 
the development of blue light blocking filters. These studies 
revealed the important influence of blue light on the function 
and structure of the eyes; however, the cellular and molecular 
mechanisms leading to blue light-induced retinal damage 
are not completely understood. To understand the molecular 
mechanisms associated with blue light-induced eye diseases, 
we hypothesized that gene expression would change in rat 
eyeballs exposed to experimental blue light compared to 
normal eyeballs. To test the hypothesis, we investigated the 
whole-genome regulation of eyeballs exposed to blue light. 
We systematically analyzed the genetic background of blue 
light-exposed eyeballs using genome-wide gene expression 
profiling (RNA-seq). Using gene-based analysis, we 
identified differentially expressed RNA and identified genes 
that are involved in blue light hazards. We found that blue 
light influenced the expression of genes in the eyeballs and 
modulated a set of signaling pathways to cause eye diseases.
MATERIALS AND METHODS
Ethical Approval  All protocols were approved by the 
Laboratory Animal Ethics Committee of Weifang Medical 
University and the study was adherence to the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision 
Research.
Animals and Processing Methods  Specific pathogen 
free (SPF), 4-week-old female Kunming mice (20±0.1 g) 
were obtained from the Jinan Pengyue experimental animal 
company [SCXK (Lu) 20140007, Jinan, China]. The mice were 
housed at 25℃ and fed standard rodent chow and tap water. 
The mice were housed for 2d before experiments to adapt to 
the environment. A total of 5 mice were separated and housed 
in two groups. The control group was exposed to natural light, 
while the experimental group was exposed to blue light (18 W, 
PL-L, Philips) and surrounded by a dark container. After 14d, 
the mice were euthanized and their eyeballs were collected in 
phosphate buffer saline (PBS; pH=7.5) for subsequent whole 
transcriptome analysis by Genesky Bio-Tech (Shanghai, 
China). All data had been deposited at NCBI Gene Expression 
Omnibus (http://ncbi.nlm.nih.gov/geo/) and the GEO accession 
number is GSE149549. 
Total RNA Extraction and Quality Control  Total RNA was 
extracted from each tissue sample using the Trizol method. 
The total amount and concentration of the RNA was measured 
using an Invitrogen Qubit 3.0 spectrophotometer (Thermo 
Fisher Scientific, USA). The purity of the RNA was confirmed 
by testing the ratio of OD 260/280 and OD 260/230 using a 
NanoDrop 2000. The integrity of the RNA was measured by 
agarose gel electrophoresis and an Agilent 2100 bioanalyzer. 

RNA samples with concentrations ≥100 ng/µL, total RNA >2 μg, 
OD 260/280 values between 1.8 and 2.2, OD 260/230 ≥2.0, 
and RNA integrity (RIN) values ≥7 were considered qualified 
RNA samples.
Total RNA-seq Library Preparation and Quality Control  
After incubation of RNA with a biotin-modified probe, 
the probe was captured by a streptavidin magnetic bead to 
eliminate rRNA. The obtained samples were purified by 
AMPure XP magnetic beads, and then buffer composed of 
elution, fragmented, and random primers was added and 
the samples were incubated at 94℃. Thermal fracture led to 
fragments distributed between 100 and 300 bp. Using first-
strand synthesis buffer and Invitrogen SuperScript IV reverse 
transcriptase (SS IV; Thermo Fisher Scientific, USA), this 
fragmented RNA was used as a template to synthesize the first-
strand cDNA. Actinomycin D was added to the first-strand 
synthesis buffer to prevent the reverse transcription of DNA 
templates and to ensure the reverse transcription specificity 
of RNA templates. After that, the double-stranded synthesis 
premix system was added to the synthesized first-strand 
cDNA, and the product was purified by Agencourt AMpure 
XP magnetic beads. From this reaction we obtained purified 
double-stranded cDNA and then added a 3’ end plus “A” 
buffer reaction system to this system. Finally, ligation buffer 
and a double-stranded sequencing linker was added to the 
library; we used T4 DNA ligase (NEB, UK; 30℃, 10min) to 
attach the illumina sequencing linker to the DNA library. The 
library was purified using the Agencourt SPRI select Nucleic 
Acid Fragment Screening kit (Beckman Coulter, USA). 
We used polymerase chain reaction (PCR) to expand the 
cDNA library, the Invitrogen Qubit 3.0 spectrophotometer 
(Thermo Fisher Scientific, USA) to measure the library 
concentration, and the Agilent 2100 bioanalyzer to measure the 
library fragment sizes and distribution. After diluting qualified 
samples, the library was sequenced using the illumina high-
throughput sequencing platform and a 2×150 bp paired-end 
sequencing strategy. 
Small RNA Library Construction and Quality Control  
Total RNA extraction and quality control are described in 
section 1.2. Purified total RNA was ligated to the 3’ end (T4 
DNA ligase 2; 28℃, 60min) and 5’ end (T4 RNA ligase; 
28℃, 60min) of mature miRNA. Using Super Script IV 
reverse transcriptase, first-strand cDNA was synthesized using 
reverse transcription primers complementary to the sequence 
on the linker. We performed PCR synthesis that used the first-
strand cDNA as a template to expand the miRNA double-
stranded library. The target miRNA library was separated 
using high-resolution polyacrylamide gel electrophoresis 
(PAGE, 6%). The cDNA library concentration was measured 
using the Invitrogen Qubit 3.0 spectrophotometer (Thermo 
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Fisher Scientific, USA). Library fragment size and distribution 
were measured using an Agilent 2100 bioanalyzer. After the 
qualified sample was diluted, the library was sequenced by 
2×150 bp paired-end sequencing using an illumina high-
throughput sequencing platform.
Sequencing Data Quality Control, Filtration, and 
Reference Genome Alignment  The raw sequencing data 
was quality control tested using Fast QC and R (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Raw reads 
were filtered using TrimGalore (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/) to remove the 
sequencing primer, sequences with low end mass (Q<10) and 
sequences with fragment lengths <35 bp. The clean reads were 
used for subsequent analysis. The filtered reads were compared 
with the reference database (mouse genome version: mm 
version) using the HISAT2 software[30]. RNA_seQc (http://
www.broadinstitute.org/cancer/cga/rna-seqc)[31] was used to 
determine regional distribution statistics for exons, introns 
and intergenic (gene) regions. The saturation and redundancy 
sequences of samples were analyzed and measured using the 
RNA_seQc software. Variable shear analysis was performed 
using rMATS[32]. Transcripts of each sample were assembled 
and merged and new transcripts were predicted using StringTie 
and cufflink. 
RNA (lncRNA, mRNA, circRNA) expression and 
differential analysis  The quality-controlled sequences 
were compared to the reference genome using HISAT2. The 
expression of known genes and transcripts was quantified 
using the Stringtie analysis process, and the fragments per 
kilobase of exon per million fragments mapped (FPKM) 
values of each RNA at the RNA level were counted. We 
then compared the RNA expression levels (FPKM value) 
of the different sample groups using Deseq2 software[33]. 
Differentially expressed RNA (including lncRNA, mRNA, 
and circRNA) were identified with P values <0.05 and |log2 
(fold change)| ≥1. RNA with log2 (fold change) values >1 
were labeled as upregulated genes (up) and those with log2 
(fold change) values <-1 were labeled as downregulated genes 
(down). Differentially expressed RNAs were displayed using a 
volcano map, and selected differentially expressed RNAs were 
analyzed using a heatmap.
Functional and pathway enrichment analysis of differential 
mRNA  Using the R package clusterProfiler (http://
bioconductor.org/packages/release/bioc/html/clusterProfiler.
html), we obtained the cellular component (CC), molecular 
function (MF), and biological process (BP) terms of the 
differentially expressed genes. Enrichment and signaling 
pathway analysis were performed for differential genes. We 
used the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
public database[34] for KEGG pathway enrichment analysis 

and selected the pathways associated with the differentially 
expressed genes. The threshold for the above analysis was set 
to a P-value<0.05 and a corrected P-value (P.adjust) <0.05 
using the Benjamini and Hochberg method.
Prediction and functional analysis of differentially 
expressed lncRNA target genes  LncRNA software[35] was 
used to predicted the target genes of the differentially expressed 
lncRNA. GO and KEGG pathway enrichment analyses were 
performed on the differentially expressed lncRNA target genes. 
The threshold for the above analysis was set to a P-value <0.05 
and a corrected P-value (P.adjust) <0.05 using the Benjamini 
and Hochberg method.
circRNA recognition and analysis  The start and end 
positions of circRNAs and the gene annotations for the 
corresponding sources were predicted and statistical analysis 
was performed on the length of the circRNA using CIRI2 
software[36]. The expression of circRNAs in different samples 
was measured by CIRI software. Differential analysis of the 
circRNA was performed using the R packages clusterProfiler 
and DEseq[37-38]. The standard for differentially expressed 
circRNAs was P<0.05 and |log2 (fold change)| >0; among 
the differentially expressed circRNAs, a log2 (fold change) 
>0 was labeled as an upregulated gene (up) and log2 (fold 
change) <0 was labeled as a downregulated gene (down). The 
differentially expressed circRNA-derived genes were subjected 
to GO and KEGG enrichment analysis using the R package 
clusterProfiler. The significance threshold was set to a P-value 
<0.05 and a Benjamini and Hochberg method-corrected 
P-value (P.adjust) <0.05.
Target miRNA prediction of differential circRNA  The 
sequences of differentially expressed circRNAs were used to 
predict miRNA binding sites using miRanda software[39]. The 
miRNA sequence could then be extracted from the miRBase 
(http://www.mirbase.org/) database[40-43].
miRNA data analysis  Quality control of raw data was carried 
out using FASTX-Toolkit software (http://hannonlab.cshl.
edu/fastx_toolkit/), including the filtering out of connector 
sequences, sequences without a 3’ linker and insert, sequences 
with a Q20 with a ratio below 60% and sequences with lengths 
other than 18-36 bp. Small RNA length distribution statistics 
were determined for quality-controlled sequences. The 
sequences after quality control were BLAST compared (http://
blast.ncbi.nlm.nih.gov/) with the mature miRNA sequences of 
the corresponding species from the miRBase database (http://
www.mirbase.org/)[40-43]. All preprocessed and unduplicated 
unique sequences for each sample were compared with the 
Rfam database (http://rfam.xfam.org/)[44]. The number and 
proportion of sequences for different types of small RNA (such 
as miRNA, rRNA, scRNA, snoRNA, snRNA, tRNA, etc.) 
genomes were statistically analyzed.

Blue light-induced eye damage



1213

Int J Ophthalmol,    Vol. 13,   No. 8,  Aug.18,  2020         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

Analysis of miRNA differential expression  The small RNA 
sequences of all samples were compared with the precursor 
and mature miRNAs from the miRbase database (http://
www.mirbase.org/)[40-43] of the corresponding species using 
miRDeep2 software (https://www.mdc-berlin.de/8551903/
en/)[45], from which we obtained known miRNAs and their 
secondary structures. The expression of known miRNAs in 
each sample was statistically analyzed and the expression of 
new miRNAs in each sample was predicted. Differentially 
expressed miRNAs were screened using the R package 
DESeq2[37-38]. The screening criteria was P<0.05 and |log2 
(fold change)| >0; log2 (fold change) >0 was labeled as an 
upregulated gene (up), and a log2 (fold change) <0 was labeled 
as a downregulated gene (down). Differentially expressed 
miRNAs were displayed using a volcano map, and hierarchical 
clustering analysis (heatmap) was performed on selected 
differentially expressed miRNAs. The miRNA target genes 
were predicted using miRanda (http://www.microrna.org/
microrna/home.do)[46] and RNAhybrid (http://bibiserv.techfak.
uni-bielefeld.de/rnahybrid/)[47]. Genes predicted by both 
methods were reported as the final result. The target genes of 
differentially expressed miRNAs were subjected to GO and 
KEGG enrichment analysis. The significance threshold was 
set to a P-value <0.05 and a Benjamini and Hochberg method 
corrected P-value (P.adjust) <0.05.
Coexpression Analysis
Differential  mRNA-miRNA and lncRNA-miRNA 
coexpression analysis  The target genes of the differentially 
expressed miRNAs were predicted using miRanda software, 
from which we obtained the intersection between predicted 
target genes and differentially expressed mRNAs. The 
correlation between differentially expressed mRNAs and 
miRNAs was tested using the cor. test function in R, with a 
correlation coefficient cor<0. Similarly, the interaction between 
lncRNA and miRNA was predicted using miRanda software, 
and the target relationship between lncRNA and mRNA 
(cis and trans) was predicted using miRanda software. The 
intersection of target relationship analysis and coexpression 
analysis was reported as the final result, and the cor. test 

function was used to perform a correlation test. The correlation 
test standard between lncRNA and differential mRNA 
expression was cor≠0 and P<0.05. 
A positive correlation between lncRNA-mRNA expression 
(cor>0 and P<0.05) was constructed for the above relationship, 
and a lncRNA-miRNA-mRNA ceRNA regulatory network 
was constructed. The miRNAs with the most ceRNA network 
regulation were selected to construct ceRNA regulatory maps 
using Cytoscape software.
Coexpression analysis of differential circRNA-miRNA 
and miRNA-mRNA  Same as above, the target relationship 
between differentially expressed circRNAs and miRNAs was 
predicted using miRanda software. The target relationship 
between differentially expressed mRNAs and miRNAs was 
predicted using miRanda software and RNAhybird software. 
A correlation test was performed using the cor. test function. 
Based on positive correlations between differentially expressed 
circRNAs and mRNAs (cor>0 and P<0.05), we constructed 
a circRNA-miRNA-mRNA ceRNA regulatory network and 
selected the miRNAs with the most ceRNA network regulation 
for the construction of ceRNA regulatory maps (Cytoscape 
software).
RESULTS
Summary of Whole-Transcriptome Sequencing Results  
Whole genome sequencing produced a total of 780.82 M 
raw read (112.41 G bases) data. After filtering and quality 
control, we obtained 780.57 M reads (112.23 G bases), with 
an average of 156.11 M reads and 22.45 G bases per sample; 
the overall sample had an average GC content of 49.02%. The 
total amount of rRNA was 26.56 M reads which made up an 
average content of 3.52% of clean reads (Table 1). The above 
data indicates that we obtained high quality RNA-seq data. 
The average alignment rate with the reference genome (mm 
10 version) was 87.93%, and the alignment rates at intragenic, 
exonic, intronic, and intergenic regions were 91.41%, 39.46%, 
51.95%, and 8.52%, respectively. Saturation analysis of the 
sequencing results showed that the sequencing results were 
close to saturation at a 40% alignment of the sequencing 
reads (the vertical axis value approached 1), indicating that 

Table 1 Summary of RNA-seq data

Sample Raw reads Clean reads Ratio 
(%)

GC 
(%) rRNA reads rRNA 

(%)
Mapped ratio 

(%)
Intragenic 

(%)
Exonic 

(%)
Intronic 

(%)
Intergenic 

(%)

14d-B-A 185930276 185876760 99.97 47.10 2614060 1.41 90.28 91.97 37.29 54.68 7.96

14d-B-B 142287612 142238592 99.97 50.18 6951077 4.89 86.52 90.76 40.88 49.88 9.17

14d-L-A 162549728 162486404 99.96 49.07 6046820 3.72 87.95 91.58 40.57 51.01 8.36

14d-L-B 172148134 172091260 99.97 48.77 4908356 2.85 88.98 91.66 38.75 52.91 8.27

14d-L-C 155837534 155792718 99.97 50.00 7356808 4.72 85.93 91.07 39.82 51.25 8.86

Total 780.82 M 780.57 M / / 26.56 M / / / / / /

Average 156.16 M 156.11 M 99.97 49.02 5.32 M 3.52 87.93 91.41 39.46 51.95 8.52
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the overall quality of saturation is high, and the sequencing 
coverage encompassed most of the expressed genes (Figure 1).
Screening and Enrichment Analysis of Differential 
mRNAs  By calculating the gene FPKM in each sample and 
conducting differential gene analysis [using P<0.05 and |log2 
(fold change)| values ≥1 as the threshold], we identified 737 
differentially expressed genes, including 430 upregulated 
genes [log2 (fold change) >1, P<0.05] and 307 downregulated 
genes [log2 (fold change) <-1, P<0.05; Figure 2A]. These 
differentially expressed genes had significantly different 
expression patterns in the case and control samples (Figure 2B). 
GO enrichment analysis revealed case/control differential 
gene enrichment of 425 BP, 29 CC, and 39 MF. The top 30 
GO terms are listed in Figure 3A. BPs that were significantly 
associated with these differentially expressed genes included 
visual perception/sensory perception of light stimulus and 
the response to interferon-gamma (IFN-γ). CCs that were 
significantly associated with these genes included the 
photoreceptor outer segment, photoreceptor cell cilium, 
and the non-motile cilium. MFs that were significantly 
associated included cytokine receptor activity, G-protein 
coupled receptor binding, CCR chemokine receptor binding 
and T cell receptor binding (P.adjust<0.05). Further analysis 
of KEGG pathway enrichment showed that the case/control 
differentially expressed genes were significantly associated 
with 39 KEGG pathways, including phototransduction, the 
JAK-STAT signaling pathway, cytokine-cytokine receptor 
interactions, chemokine signaling pathways and several 
pathways associated with viruses or bacteria (including herpes 
simplex infection, Staphylococcus aureus infection, Kaposi 
sarcoma-associated herpesvirus infection, and Epstein-Barr 
virus infection, among others). The top 10 KEGG pathways 
are illustrated in Figure 3B. In addition, we identified 1229 
novel transcripts (data not shown) and 207 fusion genes. Many 
genes in this cluster were involved in the visual perception of 
light stimulus and phototransduction and included JAK-STAT 
signaling pathway-associated genes, OLFM2, GUCA1B, IRF7, 
MYO10, and GADD45B genes.
Screening and Analysis of Differentially Expressed 
lncRNA, circRNA and miRNAs  A total of 4331 differentially 
expressed lncRNAs were identified in this study, which 
included 2476 upregulated [log2 (fold change) >1, P<0.05] 
lncRNAs and 1855 downregulated [log2 (fold change) <-1, 
P<0.05, Figure 4A] lncRNAs. Heatmaps of differentially 
expressed lncRNA clusters showed that these lncRNAs had 
significantly different expression in the case and control 
samples (Figure 4B); however, no novel differentially 
expressed lncRNA was detected. A total of 176 target genes 
of 169 differentially expressed lncRNAs were predicted using 
lncTar software. These target genes were significantly enriched 

in 18 GO_BPs (P.adjust<0.05). GO_CCs and GO_MFs that 
were significantly associated with these target genes were not 

Figure 1 The saturation curves of samples sequenced.

Figure 2 Volcano plot (A) and hierarchical clustering (B) of 
differentially expressed mRNAs  A: Volcano plot. Green and 
red nodes indicate down- [log2 (fold change) <-1, P<0.05] and 
upregulated mRNAs [log2 (fold change) >1, P<0.05], respectively. 
Blue color represents nondifferentially expressed mRNAs. B: 
Heatmap analysis. Red and green color denotes up- and down-
regulated expression profiles, respectively.

Blue light-induced eye damage
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detected. The top 30 GO terms (10 BP, 10 CC and 10 MF) 
that were associated with these target genes are displayed in 
Figure 5A. The GO_BP terms that lncRNA target genes were 

associated with included the response to leukemia inhibitory 
factor, the ‘regulation of gene expression, epigenetic’, retinal 
cone cell development and gene silencing by miRNA. KEGG 
pathway enrichment analysis did not identify any significantly 
associated pathways (P.adjust>0.05), but those that may be 
involved included phototransduction, arginine biosynthesis, 
and fructose and mannose metabolism. The top 10 associated 
KEGG pathways are displayed in Figure 5B.
A total of 3550, 2497, 2345, 2843, and 2255 circRNAs were 
predicted from 5 sequencing samples (Table 2). The circRNA 
expression in the different samples was detected using 
CIRI software, and a 97 differentially expressed circRNAs 
were identified using the R package DEseq. There were 49 
upregulated circRNAs and 48 downregulated circRNAs. 

Table 2 Summary of circRNA prediction

Sample Count Max length Min length Average length

14d-B-A 3550 196044 142 21975
14d-B-B 2497 199551 140 23091

14d-L-A 2345 199551 137 22541

14d-L-B 2843 192744 135 21888

14d-L-C 2255 191928 143 22026
Average 2698 / / 22304

Figure 3 The GO terms and KEGG pathways associated with 
differentially expressed mRNAs in the case sample compared to 
the control  A: Top 30 GO terms. Ten categories are listed for each 
classification. B: Top 10 KEGG pathways. Bubble size represents 
gene number; Bubble color indicates P.adjust value. MF: Molecular 
function; CC: Cellular component; BP: Biological process.

Figure 4 Volcano plot and hierarchical clustering of differentially 
expressed lncRNAs  A: Volcano plot. Green and red nodes indicate 
down- [log2 (fold change) <-1, P<0.05] and upregulated lncRNAs 
[log2 (fold change) >1, P<0.05], respectively. Blue color represents 
nondifferentially expressed lncRNAs. B: Heatmap analysis of 
differentially expressed lncRNAs. Red and green color denotes up 
and downregulated expression profiles in samples, respectively.

Figure 5 The GO terms and KEGG pathways associated with 
the targets of differentially expressed lncRNAs in the case sample 
compared with the control  A: Top 30 GO terms. Ten categories are 
listed for each classification; B: Top 10 KEGG pathways. Bubble size 
represents gene number. Bubble color indicates P.adjust value. CC: 
Cellular component; MF: Molecular function; BP: Biological process.
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Figure 6 includes statistics (Figure 6A) and cluster analysis 
(Figure 6B) for the differentially expressed circRNAs. GO 
enrichment analysis of all the genes (parental genes) from the 
differentially expressed circRNAs found that these genes were 
significantly associated (P.adjust<0.05) with 8 GO_BP, 6 GO_
CC, and 2 GO_MF terms; the top 10 GO terms associated 
with these genes are listed in Figure 7A. The GO_BP terms 
associated with the parental genes included eye development, 
photoreceptor cell maintenance, visual perception and 
photoreceptor cell differentiation. KEGG pathway enrichment 
analysis did not identify any significantly associated pathways 
(p.adjust >0.05). The top 10 associated KEGG pathways are 
displayed in Figure 7B. Parental genes may be associated 
with the phosphatidylinositol pathway signaling system, 
glutamatergic synapses and EGFR tyrosine kinase inhibitor 
resistance. Finally, the target miRNAs of the differentially 
expressed circRNAs were predicted using miRanda 
software. We predicted 137 072 circRNA-miRNA regulatory 
relationships, including 1915 miRNAs and 97 differentially 
expressed RNAs.
A total of 59.77 M reads were obtained through miRNA 
library construction and sequencing, which included 95.97% 
miRNA reads, with an average of 1612 miRNAs identified in 
each sample. The differential expression analysis identified 
84 differentially expressed, known miRNAs (including 42 
upregulated and 42 downregulated) and 26 differentially 
expressed, novel miRNAs (including 7 upregulated and 19 
downregulated; Figure 8). We predicted target genes for these 
known miRNAs and found that 83 miRNAs totaled 5039 
target genes. These target genes were significantly correlated 
(P.adjust<0.05) with 957 GO_BP, 145 GO_CC, 124 GO_MF 
terms (data not shown) and 40 KEGG pathways.
Interaction Analysis and Network Map  As the method 
described, we further screened the interaction pairs of the 
differentially expressed mRNAs, lncRNAs, circRNAs and 
miRNAs and identified 359 circRNA-miRNA interaction 
relationships [cor<0 and P<0.05; including 51 differentially 
expressed circRNAs (16 upregulated circRNAs and 45 
downregulated circRNA)] and 44 differentially expressed 
miRNAs (32 upregulated miRNAs and 12 downregulated 
miRNAs), 721 lncRNA-miRNA interaction relationships 
[cor<0 and P<0.05; including 366 differentially expressed 
lncRNAs (46 upregulated circRNAs and 320 downregulated 
circRNAs)] and 56 differentially expressed miRNAs (16 
upregulated miRNAs and 40 downregulated miRNAs). We did 
not find any significant miRNA-mRNA relationship pairs; none 
of the relationship pairs met the P>0.05 threshold. Prediction 
of lncRNA-mRNA interaction pairs (cis and trans) showed 
that there were 475 425 cis lncRNA-mRNA pairs, including 
289 565 positively regulated cis lncRNA-mRNA relationship 

pairs [cor>0 and P<0.05; including 4233 differentially 
expressed lncRNAs (2439 upregulated lncRNAs and 1794 
downregulated lncRNAs)] and 738 differentially expressed 

Figure 6 Volcano plot and hierarchical clustering of differentially 
expressed circRNAs  A: Volcano plot. Green and red nodes 
indicate down [log2 (fold change) <-1, P<0.05] and upregulated 
circRNAs [log2 (fold change) >1, P<0.05], respectively. Blue color 
represents nondifferentially expressed lncRNAs. B: Heatmap analysis of 
differentially expressed circRNAs. Red and green color denotes up and 
downregulated expression profiles in samples, respectively.

Figure 7 The GO terms and KEGG pathways associated with 
parental genes of differentially expressed circRNAs in the case sample 
compared with the control  A: Top 30 GO terms. Ten categories are 
listed for each classification; B: Top 10 KEGG pathways. Bubble size 
represents gene number. Bubble color indicates P.adjust value. MF: 
Molecular function; CC: Cellular component; BP: Biological process.

Blue light-induced eye damage
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mRNAs (431 upregulated mRNAs and 307 downregulated 
mRNA). The lncRNA trans regulatory results were the same as 
the cis results.
lncRNA ceRNA and circRNA ceRNA network map  To 
construct a ceRNA network map, we utilized 289 565 pairs 
of positive lncRNA-mRNA expression, including 197 
differentially expressed genes and 4232 differentially expressed 
lncRNAs, and identified 162 differentially expressed miRNAs 
that had a defined relationship with the pairs. The lncRNA-
miRNA-mRNA ceRNA network map was constructed 
using Cytoscape software, and was composed of 1593 
ceRNAs and 1029 nodes, which included 17 differentially 
expressed miRNAs, 36 differentially expressed genes, and 
976 differentially expressed lncRNAs. To identify ceRNAs 
that had the greatest likelihood of myopia, we used the 5 
differentially expressed miRNAs with the most interactions 
(including 4 upregulated mRNA, mmu-miR-34a-5p, mmu-
miR-339-5p, mmu-miR-298-5p and mmu-miR-320-3p, and 1 
downregulated mRNA, mmu-miR-485-5p)
The network includes 22 differentially expressed genes 
(downregulated genes included TGM3, HCLS1, PNPLA3 
and IGSF9; upregulated genes included CANT1, Fos, 
GADD45B,  Foxi1,  TREM2,  Oas1a,  Oas1h,  IRF7, 
OLFM2 and Myo10). Each miRNA was regulated by 1-3 
differentially expressed lncRNAs (Figure 9). Examples include 
upregulated OLFM2/Myo10 (up)-mmu-miR-320-3p (up)-
A830012C17Rik/Gm20426/NONMMUG002837.2 (up), 
Fos (up)- mmu-miR-34a-5p (up)-4930573C15Rik (up), and 
Bcl3 (up)- mmu-miR-298-5p (up)- Gm662/4930542C16Rik/
Gm26538 (up), Foxi1/Oas1h/IRF7 (up)- mmu-miR-298-
5p (up)- 1700030A11Rik/Gm11131/Gm11725/Gm16565/
NONMMUG025971.2 (up), Oas1a (up)- mmu-miR-485-
5p (down)-Gm14205/Gm11131 (up), Gadd45b (up)- mmu-

miR-485-5p (down) -Gm16174/Gm28703/Ttc39aos1 
(up) of ceRNA etc . ;  and the downregulated TGM3 
(down)- mmu-miR-339-5p (up)- 4930405A21Rik/Dbhos/
Gm11961/NONMMUG036959.1/NONMMUG043173.2/
NONMMUG005330.1 (down), IGSF9 (down)- mmu-miR-34a-
5p (up)-4930405A21Rik (down), HCLS1 (down)- mmu-miR-
298-5p (up)- NONMMUG036959.1/NONMMUG043173.2/
NONMMUG005330.1 (down) or ceRNA of PNPLA3 
(down)- mmu-miR-298-5p (up)- NONMMUG043173.2/
NONMMUG005330.1 (down) etc. 
Similarly, a ceRNA was constructed using the 359 identified 
circRNA-miRNA interaction pairs [including 51 differentially 
expressed circRNAs (16 upregulated circRNAs and 45 
downregulated circRNAs)], with the obtained circRNA-
miRNA-mRNA ceRNA including 35 differentially expressed 
genes, 54 circRNAs and 9 miRNAs for a total of 239 ceRNAs. 
We continued to focus on the top 5 differentially expressed 
miRNAs with the most interactions and used these interactions 
to compose the ceRNA network (Figure 10). The ceRNA 
network that we generated included 22 differentially expressed 
genes (including upregulated FOXI1, OAS1A, GADD45B, 
TREM2, IRF7, OLFM2 and Myo10, and downregulated 
PNPLA3, IGSF9, TGM3, GUCA1B and HCLS1). Other 
examples include TGM3 (down)- mmu-miR-103-3p (up)- 
Eif4g3/Herc3/Cpeb3/Rims2 derived circRNAs (down; here 
you can change to circRNA sites), GUCA1B (down)- mmu-
miR-145-5p (up)- Eif4g3/Herc3/Cpeb3/Rims2 derived 
circRNAs (down), HCLS1/PNPLA3 (down)- mmu-miR-
298-5p (up)- Herc3/Cpeb3/Rims2 derived circRNAs (down), 
Gadd45b (up)-mmu-miR-485-5p (down)- Papd7/Slit2/Inpp4b 
derived circRNAs (up), OAS1A (up)-mmu-miR-485-5p 
(down)-Slit2/Prdm5/Zfhx4/Zzef1 (up), IRF7 (up)- mmu-miR-
298-5p (up)- Slit2/Prdm5/Zfhx4/Zzef1 (up) ceRNA. 

Figure 8 Volcano plot and hierarchical clustering of differentially expressed miRNAs  A: Volcano plot of the differentially expressed known 
and novel miRNAs. Green and red nodes indicate down [log2 (fold change) <-1, P<0.05] and upregulated miRNAs [log2 (fold change) >1, 
P<0.05], respectively. Blue color represents nondifferentially expressed miRNAs. B: Heatmap analysis of the differentially expressed known  
and novel miRNAs. Red and green color denotes up and downregulated expression profiles in the samples, respectively.
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Figure 9 The lncRNA-miRNA-mRNA ceRNA network for the 5 miRNAs with the highest number of interactions  Red and green color 
represent up- and down-regulation in the case sample compared with the control. Circles, triangles, and squares indicate differentially expressed 
miRNAs, lncRNAs and mRNAs (gene), respectively.

Figure 10 The circRNA-miRNA-mRNA ceRNA network of the 5 miRNAs with the highest number of interactions  Red and green color 
represent up- and down-regulation in the case sample compared with the control. Circles, triangles, and squares indicate differentially expressed 
miRNAs, lncRNAs and mRNAs (gene), respectively.

Blue light-induced eye damage
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DISCUSSION
Blue light is abundantly present in low intensity display 
devices, such as mobile phones, display screens, LEDs 
and other lights[48-49]. The use of display devices with low 
intensity blue light has become increasingly popular in the 
present day[50-51]. The retina is the main target tissue of blue 
light damage in terrestrial animals, and the long exposure 
time to high energy blue light causes eye diseases through 
photosensitization and other oxygen-dependent processes. 
However, very little is known about the relationship between 
genetic background, gene expression and blue light damage.
In our study, whole mouse eyeballs were used and a relatively 
large number and diversity of gene expression changes were 
recorded. Our data present both a theoretical and experimental 
study of the blue light damage to eyeballs. We performed 
RNA-seq analysis to reveal the transcriptional changes and key 
signaling pathways affected by blue light. Our data suggested 
that differences in gene expression played a very important 
role in blue light damage. Genes that were involved in blue 
light damage in the eyeball composed a long list of biological 
and MFs, which suggests that blue light damage is associated 
with specific patterns of gene expression and the activation or 
suppression of many eye signaling pathways.
In this study, we identified 737 differentially expressed genes, 
including 430 upregulated genes and 307 downregulated 
genes. Our data indicated that exposure to blue light can cause 
a certain degree of abnormal gene expression in the body. 
Gene ontology analysis revealed that the 737 genes whose 
expression correlated with blue light damage were associated 
with 425 BP, 29 CC, and 39 MF. Genes that we found to be 
involved in blue light damage in mice affected a multitude of 
BP in eyes, such as visual perception and sensory perception 
of light stimulus. Our recent study has shown that exposure to 
blue light can cause a significant increase in the expression of 
OLFACTOMEDIN2 (OLFM2), SMAD2 and SMAD3. Previous 
studies have shown that OLFM2 expression was SMAD2/3-
dependent and the expression of the OLFM2 gene correlated 
with human ocular anomalies and eye diseases, including 
anophthalmia, microphthalmia and coloboma[52-53]. Olfm2 
plays an important role in mammalian eye development and 
visual perception. Some data have suggested that GUCA1B 
gene mutation causes one form of autosomal retinal dystrophy 
and retinal degeneration[54-57] and affects the retina’s sensory 
perception of light stimulus. An experimental study on blue 
light-induced oxidative stress injury on mouse retinas showed 
that blue light induced a decrease in visual function that 
correlated with photoreceptor morphological changes[58-61]. 
Periodic blue light exposure caused atrophy of photoreceptors 
and injured neuron transduction in the retina. Exposure to 
constant blue light considerably reduced the visual responses 

and reduced the functional loss of retinal photosensitive 
cells[62]. Mouse retinas became disordered in the inner and 
outer segments of the photoreceptor cells when compared with 
the normal control group after expose to blue light[63]. Our data 
showed that the cell composition of the photoreceptor outer 
segment, the photoreceptor cell cilium, and non-motile cilium 
were significantly correlated with blue light damage. This is 
consistent with previous reports. Additionally, we found that 
MFs including cytokine receptor activity, G-protein coupled 
receptor binding, CCR chemokine receptor binding and T cell 
receptor binding strongly correlated with blue light damage on 
the eyeballs. 
Most noteworthy is the finding that 39 KEGG pathways 
were involved blue light damage to the eyeball, including 
phototransduction, the JAK-STAT signaling pathway, 
cytokine-cytokine receptor interactions and several pathways 
related to viruses or bacteria (including herpes simplex 
infection, Staphylococcus aureus infection and Epstein-
Barr virus infection). Analysis of the main KEGG results 
revealed that the pathways involved in cell apoptosis and 
the response to oxidative stress were among the most 
influenced. Phototransduction takes place in the rod and cone 
photoreceptor cells and it is involved in the progress of light-
triggered electrical signals[64-66]. Previous data also suggested 
that the phototransduction pathway could reverse hyperopia 
in refractive eye development after blue light irradiation[67-68], 
which could help to explain why phototransduction was 
activated after blue light exposure. Some studies indicated that 
Guca1b encoding GCAP1 protein plays an important role in 
phototransduction by activating Ret-GC1[69].
Previous studies showed that Müller cells mediated inner 
retinal osmohomeostasis and displayed hypertrophy after 
blue light treatment[70]. The JAK-STAT signaling pathway can 
regulate the proliferation and differentiation of Müller cells 
and further regulates retinal cell apoptosis[71-73]. In our study, 
JAK-STAT signaling pathways were activated under blue light 
treatment, which suggested that blue light induced Müller cell 
apoptosis through JAK-STAT signaling pathways.
Genes that we found to be involved in refractive error 
development in mice affected a multitude of biological 
functions in the eyeball. For example, we found that mutations 
in the SMAD3 gene were involved in the regulation of scleral 
remodeling by the TGF-β/smad pathway[74]. Mutations 
in OLFM2 were found to be associated with intraocular 
hypertension and development of retinal ganglion cells[53]. 
Taken together, these data suggest that blue-light damage to 
the eyeball is a complicated process that is regulated by a large 
number of pathways. 
Our study also analyzed the association of miRNAs and target 
genes with lncRNAs and circRNAs. Genetic data suggested 
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that miR-34a-5p was related to the oxidative stress response[75]. 
Expression of miR-485-5p was regulated by Gadd45b and 
suppressed cell migration and invasion[76]. We analyzed 5 
differentially expressed miRNAs (including mmu-miR-34a-
5p, mmu-miR-339-5p, mmu-miR-298-5p and mmu-miR-320-
3p). Their relationship was regulated by multiple lncRNAs 
and circRNAs, such as Gadd45b (up)-mmu-miR-485-5p 
(down)- Papd7/Slit2/Inpp4b derived circRNAs (up). The 
results indicated that the mechanism of blue light damage was 
complicated and regulated by many ceRNAs.
Although there are important discoveries revealed by these 
studies, there are also limitations. In our study, we analyzed 
data from 3 pairs of eyes, and because of the small sample size, 
we may have underestimated the actual changes. The accuracy 
of our data needs to be further studied. In summary, we have 
identified a certain extent of the blue light damage to eyeballs 
at the genetic level. Gene expression changes led to changes 
in the gene balance and signaling pathway expression. These 
findings improve our understanding of the global genetic 
responses to blue light exposure in the mouse eye and offer a 
new strategy and theoretical basis to treat eye diseases by gene 
therapy. 
In conclusion, we have identified that blue light damage is 
associated with specific patterns of gene expression and the 
activation or suppression of eye signaling pathways. A certain 
level of blue light can cause damage to eyeball at the genetic 
level. These results thus offer a new strategy and theoretical 
basis to treat eye diseases by gene therapy.
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