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Abstract 
● Endophthalmitis is a serious ophthalmic disease 
characterized by changes in the eye’s posterior segment, 
such as hypopyon and intraocular inflammation, vitritis 
being a hallmark. Infection-caused endophthalmitis can 
lead to irreversible vision loss, accompanied by eye pain or 
eye distention, and in the most severe cases the removal of 
the eyeball. Microorganisms such as bacteria, fungi, viruses, 
and parasites typically account for the disease and the 
entry pathways of the microbial can be divided into either 
endogenous or exogenous approaches, according to the 
origin of the etiological agents. Exogenous endophthalmitis 
can be derived from various occasions (such as post-
operative complications or trauma) while endogenous 
endophthalmitis results from the bloodstream which carries 
pathogens to the eye. This review aims to summarize the 
application of new technology in pathogen identification of 
endophthalmitis so as to prevent the disease and better 
guide clinical diagnosis and treatment.
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INTRODUCTION

E ndophthalmitis is a serious ophthalmic disease 
characterized by some changes in the posterior segment 

of the eye such as hypopyon and intraocular inflammation, 

vitritis being a hallmark[1]. Infection-caused endophthalmitis 
can lead to irreversible vision loss, accompanied by eye pain or 
eye distention, and in the most severe cases the removal of the 
eyeball, in which process the hosts’ response to infection plays 
an important role in causing endophthalmitis-related damage[2]. 
Microorganisms such as bacteria, fungi, viruses, and parasites 
typically account for the disease and the entry pathways 
of the microbial can be divided into either endogenous 
or exogenous approaches, according to the origin of the 
etiological agents. Exogenous endophthalmitis can be derived 
from various occasions (such as post-operative complications 
or trauma) while endogenous endophthalmitis results from the 
bloodstream which carries pathogens to the eye[3].
High-throughput sequencing (HTS), a gene detection means 
with a high success rate and low costs, shows great utility 
in the clinical analysis of ocular samples and detection of 
pathogens in patients diagnosed with endophthalmitis[4]. HTS 
technology is also called the next-generation sequencing (NGS) 
technologies, which are specifically divided into second and 
third-generation sequencing technologies[5]. As an application 
for HTS, metagenomic NGs (mNGS) is a powerful technology 
that can simultaneously achieve the qualitative and quantitative 
identification of pathogens in endophthalmitis, which is more 
accurate and has revealed wide prospects for identifying 
pathogens that have not been previously identified, compared 
with traditional pathogen culture[6-7]. There has been much 
discussion of the advantages and disadvantages of metagenomic 
techniques, the lack of corresponding reference gene sequence 
databases, technical difficulties of metagenome assembly, and 
phasing in heterogeneous environmental samples being some 
of its disadvantages. The advantages that are most conducive 
to clinical occasions include greater resolution of species and 
strains across phyla and functional content[8-9]. 
In recent years, the nanopore sequencing technology, known 
as the fourth-generation sequencing technology, has become 
a major breakthrough in the realm of genome sequencing 
after the second and third-generation sequencing technology. 
Owing to the emergence of the long-read nanopore sequencer 
MinION developed by Oxford Nanopore Technologies 
(ONT) and later the sequencer PromethION with improved 
throughput, rapid pathogens detection can be achieved, despite 
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its high error rate at the base level, the need of repetitive tests, 
optimized signal noise ratio (SNR), more reader heads and so 
forth to be improved[10-12]. Besides, the application of long-read 
technology has made it possible to interpret complex genomes 
and obtain metagenomic assembled genomes, especially 
conducive to the study of microbial communities[13].
This review aims to summarize the application of various molecular 
techniques in the diagnosis and treatment of endophthalmitis.
MATERIALS AND METHODS
In order to describe in detail the importance of new 
technologies in the diagnosis, treatment and prognosis of 
endophthalmitis, we searched the literature through PubMed 
and Web of Science databases extensively from 1998 to 2022 
by using the keywords (infectious endophthalmitis, culture, 
metagenomics, nanopore sequencing). The following query 
conditions were applied: 1) (infectious endophthalmitis) 
AND (culture); 2) (infectious endophthalmitis) AND 
(metagenomics); 3) (infectious endophthalmitis) AND 
(nanopore sequencing). Most relevant results were manually 
screened and categorized by Li ZY. In this literature review, we 
summarized the microbial composition of endophthalmitis, and 
compared the traditional culture method with the molecular 
diagnostic technology, showing the superiority of molecular 
sequencing technology in detecting microorganisms.
RESULTS
Diagnosis of Endophthalmitis
Microbiological composition of endophthalmitis  Exogenous 
endophthalmitis is the most common, while eye surgery is a 
major cause of endophthalmitis. Postoperative endophthalmitis 
can be divided into non-infectious (sterile) endophthalmitis 
and infectious endophthalmitis. Infectious endophthalmitis 
is mainly caused by microorganisms while non-infectious 
endophthalmitis can be attributed to several causes, including 
postoperative retained soft lens material or drug toxicity 
in the eye[3]. According to literature reports, among all the 
surgical causes of exogenous endophthalmitis, cataract 
surgery accounted for the largest proportion, followed by lens 
implantation, vitrectomy, penetrating keratoplasty, glaucoma 
drainage device, trabeculectomy, and intravitreal injection[14]. 
However, a series of studies have shown a downward trend 
in the incidence of endophthalmitis after cataract surgery[15]. 
Acute-onset endophthalmitis occurred in 0.04% of 8 542 838 
cataract surgeries performed in the United States between 2013 
and 2017[16]. In addition, some external eye surgeries can also 
cause endophthalmitis[17].
The widespread use of eye surgery has also led to a series 
of changes in the overall microbiome of the eye[18]. Ong et 
al[19] analyzed changes in the bacterial community patterns 
of endophthalmitis after cataract surgery or intravitreal 
injection, revealing Staphylococcus epidermidis as the most 

common pathogen. This supports some previous experimental 
findings[20-21]. Dave et al[22] investigated the cases of infectious 
endophthalmitis after evisceration of the eyeball. Vitreous 
samples were obtained and their microbial spectrum and 
antibiotic susceptibility were analyzed. They found that gram-
positive bacteria accounted for the largest proportion, followed 
by fungi, and gram-positive bacteria accounted for the smallest 
proportion. Streptococcus, Aspergillus, and Pseudomonas 
aeruginosa were the most common isolates. Gram-positive 
bacteria were most sensitive to vancomycin and susceptibility 
to imipenem showed the highest in gram-positive bacteria.
Traditional laboratory diagnosis of endophthalmitis  
Microscopic smear and culture results of intraocular fluid 
are of great significance for diagnosis and culture results are 
deemed the gold standard for clinical diagnosis and medication 
guidance[23]. However, only less than 1% of environmental 
microbes can be cultured with current techniques and in only 
40% of cases can culture yield a putative pathogen result[24-25]. 
Moreover, whether a sample is positively-cultured is related to 
many factors, such as the clinical characteristics of the patient, 
the sampling sites as well as laboratory facilities. Studies 
indicate that both aqueous tap and vitrectomy can increase the 
possibility of obtaining a positive culture[26]. Culture media 
also poses influences to culture results[27-29]. We summarized 
the sequencing and culture results of clinically suspected 
endophthalmitis in Table 1[4,20,23,26,29-49]. Due to the low and 
varied culture rate and the small amount of intraocular fluid 
samples, rapid and accurate diagnosis of acute endophthalmitis 
is very important and closely related to the degree of visual 
loss of the patient. 
Molecular diagnostic techniques of endophthalmitis  
Thereafter, a series of molecular biology methods emerged, 
providing new insights into the pathology of the ocular 
microbiome and ocular infections. 
First came the technology of 16S polymerase chain reaction 
(PCR), which proves to be more accurate and shows more 
sensitivity in comparison with the traditional culture[46]. 
Afterwards, with the advent of an unbiased sequencing 
technique, the NGS of 16S rDNA amplicons and later the 
application of shotgun metagenomics, a more advanced 
and prompt method has been proposed for the detection of 
insidious pathogens in endophthalmitis. All pathogens, even 
those unculturable can be detected, without being limited by 
the starting primers[50-51]. Although NGS has the advantage of 
high throughput, its short-read characteristics render it difficult 
to identify repeats in gene sequences, followed by several other 
defects[52-54]. More recently, nanopore-targeted sequencing, 
characterized by long-read, also known as the fourth-
generation sequencing technique, appears to be a promising 
real-time diagnostic platform for infectious endophthalmitis, 
especially in culture-negative cases[32-33]. 
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It is to be emphasized that traditional metagenomics, referred to 
as 16S metagenomics or targeted amplicon sequencing (TAS), 
aims to analyze the gene loci (such as 16S rRNA and ITSs[13]) 
of bacteria or fungi with specific characteristics through 
amplicon-based PCR targeted sequencing. Though accurate 
in identification, this method shows a number of limitations, 
such as the high requirements for amplicons and the relatively 
small number of species that can be detected due to the lack 
of reference taxonomy[55]. However, shotgun metagenomics 
or microbial whole-genome sequencing (MWGS), realized 
by the sequencing process of the fragmented DNA after being 
extracted directly from the environment and then sheared 
without isolation of microbes, enables high-throughput 
screening and detection of pathogens. Although this method 
reduces the resolution of presently-known pathogens 
(which targeted methods can better achieve), more detailed 
information can be obtained through this “untargeted” process, 
which is conducive to the detection of rare pathogens[56-58]. 
Metagenomic methods can provide taxonomic analysis of 
the microbiome, assess its potential function, and quantify 
it. The clinical applications include identifying microbial 
species, metabolic pathways, and metabolites related to the 

development and treatment of human diseases, and further 
promoting the discovery of microbiome-targeted drugs, 
and improving human health management efforts[34,59]. By 
simultaneously conducting NGS and culture on infected 
endophthalmitis and normal vitreous specimens, Deshmukh 
et al[44] concluded that the specificity of culture and clinical 
diagnoses of NGS was 20% and 100%, and the sensitivity of 
culture and clinical diagnoses of NGS was 87.5% and 88%, 
respectively. Therefore, NGS is expected to be a diagnostic 
platform for infective culture-negative endophthalmitis. In 
addition, by isolating culture-based microorganisms from 
patient specimens, whole genome sequencing (WGS) can be 
performed on these microorganisms, thus determining their 
taxonomic affiliation, phylogenetic relationships, potential 
antibiotic resistance genes, and virulence-related genes[60].
Meanwhile, long-read sequencing allows precise assembly 
of bacterial genomes in the complex microbiome and holds 
promise for the identification of undiscovered organisms[61]. 
Nanopore sequencing technology enables single-stranded 
DNA or RNA to pass through nano-sized holes in artificially 
manufactured membranes to convert biological signals of bases 
into current signals, which are then interpreted by algorithms 

Table 1 Culture results of intraocular fluid samples from endophthalmitis patients by different teams
Teams Techniques Sample capacity Positive rate

Zhu et al[30] (2022) Culture, mNGS 36 27.8%, 88.9%

Low et al[31] (2022) Culture, Illumina WGS, 16S Nanopore, Nanopore WGS 23, 20, 18, 23 78.3%, 73.9%, 75%, 83.3%

Huang et al[32] (2021) Culture, NTS 18 44.4%, 94.4%

Jun et al[33] (2021) Culture (AH), Culture (VH), NanoAmpli-Seq (AH), NanoAmpli-Seq (VH) 8 37.5%, 75%, 100%, 75%

Mishra et al[34] (2021) NGS, PCR 16 100%, 62.5%

Kosacki et al[35] (2020) Culture, panbacterial PCR, culture & PCR 142, 137, 128 54.2%, 48.9%, 64.1%

Selva Pandiyan et al[36] (2020) Culture, panbacterial PCR 88 19.3%, 34.1%

Xu et al[23] (2020) Culture 44 45.5%

Feng et al[37] (2020) Culture 157 45.0%

Bhikoo et al[26] (2020) Culture 259 52.1%

Corredores et al[38] (2021) Culture 16 62.5%

Mak et al[39] (2020) Culture 18 27.8%

Zhou et al[40] (2020) Culture 22 9.1%

Gandhi et al[4] (2019) Culture, Illumina NGS 75 24%, 86.7%

Mishra et al[41] (2019) Traditional culture, Automated culture, Broad-range PCR 195 8.7%, 30.8%, 65.1%

Yang et al[42] (2018) Culture 670 39.7%

Xu et al[43] (2018) Culture 40 60.0%

Deshmukh et al[44] (2019) Culture Illumina NGS 34 44.1%, 88.2%

Deshmukh et al[45] (2018) Culture 46 54.3%

Pongsachareonnont et al[29] (2017) Plate culture, blood culture, PCR 41 12.2%, 26.8%, 26.8%

Sachdeva et al[20] (2016) Culture 50 68.0%

Lee et al[46] (2015) Culture, qPCR, Illumina NGS 21 66.7%, 47.6%, 57.1%

Gower et al[47] (2015) Culture 502 58.0%

Pijl et al[48] (2010) Culture 250 66.4%

Wong et al[49] (2004) Culture 34 61.8%

mNGS: Metagenomic next-generation sequencing; qPCR: Real-time quantitative polymerase chain reaction; NTS: Nanopore targeted 
sequencing; AH: Aqueous humor; VH: Vitreous humor.
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and metagenomic matching can be performed[62] (Figure 1). 
Recently, the Oxford Nanopore MinION has been widely 
favored due to its portability, rapidity, and full-length 16S 
rRNA in data reading, exhibiting a good application prospect. 
Through the Oxford Nanopore sequencing technology, the 
16S rRNA gene of bacteria was directly amplified by PCR, 
realizing rapid identification of bacteria[63]. Besides, several 
studies have demonstrated the capabilities of nanopore 
sequencers in bacterial metagenomic applications, especially in 
bacterial infections[64-66]. By using nanopore platforms for long-
read deep sequencing, a cross-sectional diagnostic comparison 
study conducted by Low et al[31] testifies to show the potential 
of nanopore sequencing for cost-effective real-time identification 
of causative pathogens in endophthalmitis. Moreover, the 
technique could also be used to understand bacterial genomic 
properties related to virulence and antibiotic resistance[67].
Prophylaxis, Treatment, and Prognosis of Endophthalmitis  
A retrospective, cross-sectional study conducted by Zafar 
et al[68] revealed a range of risk factors associated with the 
development of endophthalmitis within 90d after cataract 
surgery, which includes age, gender, race, and Charlson 
comorbidity index (CCI). Friling et al[69] stated that the risk of 
endophthalmitis after immediately sequential bilateral cataract 
surgery (ISBCS) is relatively lower than delayed sequential 
bilateral cataract surgery (DSBCS) but not to be neglected. 
However, later studies pointed out that there was no difference 
in the risk of postoperative endophthalmitis between bilateral 
and unilateral surgeries[70-71]. 
Preventive measures after cataract surgery are also associated 
with endophthalmitis[72]. Melega et al[73] verified in a 
randomized controlled trial that intracameral injection of 
0.5% moxifloxacin reduced the incidence of endophthalmitis 
after cataract surgery. Intraocular lenses (IOLs) loaded with 
moxifloxacin (MXF) and ketorolac (KTL) were able to 
release antibiotics at therapeutic levels while displaying good 
biocompatibility[74]. A retrospective cohort study conducted by 

Ho et al[75] shed light on the conducive effect of early pars plana 
vitrectomy (PPV) on the prognosis of acute endophthalmitis 
after eye surgery and pointed out that endophthalmitis after 
post-cataract surgery as well as negative culture was associated 
with better prognosis. Meanwhile, endoscopic vitrectomy may 
allow for the early management of endophthalmitis, thereby 
controlling infection and avoiding evisceration[75-76]. 
Study shows that nanopores have revolutionized the prognosis 
and treatment of diseases by simply using femoler-scale 
analytes[77]. And in recent years, nanomaterial has shown 
advantages in the treatment of endophthalmitis. An in situ 
gel system with nanostructured lipid carriers (CIP-NLC-IG) 
was developed for topical ocular administration to enhance 
and sustain the antimicrobial activity of therapy of bacterial 
endophthalmitis[78]. Then came the photodynamic therapy. 
Chen et al[79] constructed ZIF-8-PAA-MB@AgNPs@Van-PEG, 
a composite nanomaterial that showed good biocompatibility 
and antibacterial ability. Ye et al[80] developed the AuAgCu2O-
bromfenac sodium nanoparticles (AuAgCu2O-BS NPs), 
and with their photodynamic effects and nanostructures 
releasing metal ions and sodium bromfenac, antibacterial, anti-
inflammatory, and Methicillin-resistant Staphylococcus aureus 
(MRSA) killing effects can be simultaneously realized, thus 
co-treating endophthalmitis after cataract surgery, which has 
been confirmed in vivo and in vitro. Later, Li et al[81] reported a 
cationic aggregation-induced luminescence of triphenylamine 
thiophene pyridinium (TTPy) for photodynamic treatment 
of bacterial endophthalmitis. TPPy has a good antibacterial 
effect in rat models, which triggers innate immune responses 
in the early stages of infection, limits the subsequent intense 
inflammatory response, and protects the retina from bacterial 
toxins and inflammation-induced bystander injury effects. It 
preserves vision, giving TTPy potential for clinical application 
in ophthalmic infections.
It is to be noted that the identification of causative pathogens 
is of great significance for the prognosis of endophthalmitis. 

Figure 1 Procedure for the detection of intraocular fluid samples by MinION  A: The process of ocular sample collection and detection; B: 
The principle of the NTS. dsDNA stands for double-stranded DNA. The cis side is negatively charged and the trans side is positively charged. 
NTS: Nanopore targeted sequencing.
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Pathogens with low virulence have a better prognosis prone to 
show a better prognosis. For example, the coagulase-negative 
staphylococcal endophthalmitis had a better prognosis than 
streptococcal endophthalmitis[1]. Kirstahler et al[60] studied 
the application of NGS technology supported by WGS in 
the disease management of endophthalmitis after cataract or 
intravitreal injection, pointing out that this technology may 
better distinguish infectious from sterile endophthalmitis. 
In the case of a very high coverage depth of metagenomic 
sequencing, it can also reveal valuable functional information, 
such as antibiotic resistance and virulence-related genes[82].
DISCUSSION
The microbe of the ocular surface is closely related to the 
occurrence of postoperative endophthalmitis[83]. The use of 
metagenomics to obtain information related to the bacteriocin 
gene of ocular microbe may better guide the treatment of 
endophthalmitis. Owing to the narrow range of activity many 
bacteriocins have compared to most existing antibiotics, they 
hold great promise for precise treatment and prevention of 
infection[84]. In addition, metagenomics is of great importance 
in the surveillance of suspected microorganisms that may 
cause disease[85]. By the way, anti-microbial resistance is also 
a problem that cannot be ignored, and metagenomic methods 
can enable us to better understand and control it.
However, nanopore sequencing has some drawbacks to be 
improved. For instance, its application of 16S sequencing 
is limited to bacterial identification[86]. The hypervariable 
region of 16S rRNA is deemed the standard bar code for 
bacteria, while the internal transcription spacer 1 (ITS1) 
of the ribosomal RNA gene cluster has a high potential for 
identifying eukaryotes. Also, the Meta-barcode data analysis 
relies on a carefully managed barcode reference resource. 
Santamaria et al[87] created ITSoneDB in order to produce a 
comprehensive set of ITS1 sequences with robust taxonomies. 
More such references need to be clarified. In addition, long-
read sequencing assembly can have a range of errors. To 
further address this problem, Wick et al[88] introduced a tool 
called Trycyler that makes the results more accurate than in the 
case of automatic assembly. Woyke et al[89] proposed that the 
metagenomic assembly and the assembly-free methods can be 
combined in reads analysis after sequencing to complement 
and verify each other. Other drawbacks include the high cost 
of testing, high requirements for starting materials, and the 
need for a specific analysis of various steps[90]. Finally, and 
fundamentally, metagenomics cannot solve certain problems 
that only pure culture can solve. For example, with genomic 
information alone, we cannot further analyze and identify 
the processes related to cellular physiology in the causative 
microorganisms, which are closely related to microbial 
metabolism and host pathogenic processes[91].

Meanwhile, the possibility of applying ribosome analysis 
to uncultured mixed communities is being explored[92]. In a 
prospective multicenter study diagnostic evaluation study, 
vitreous samples from acute or delayed-onset postoperative 
endophthalmitis patients were analyzed using combined 
methods including bacterial cultures in pediatric blood culture 
bottles and panbacterial PCR, which provides a new idea for 
rapid diagnosis of causative pathogens[35]. 
To date, given the technological innovation especially the NTS 
technology, which has ushered in a new era, the diagnosis and 
treatment of endophthalmitis have made great progress from a 
clinical standpoint. Moreover, the application of metagenomic 
technology and nanopore sequencing in endophthalmitis is also 
expanding. Automated sequencing analysis platforms based on 
bioinformatics technology are also being developed to make 
the analysis of sequencing data more accurate[93-95].
In this review, we briefly introduced the current research status 
of molecular sequencing in endophthalmitis and discussed 
exciting development in sequencing technology. Despite the 
challenges, we believe that nanopore-targeted sequencing has 
greatly contributed to the progress of genomics in the field of 
endophthalmitis and that this is the way forward for research. 
It is likely that we will see an increasing number of clinical 
trials testing combinations of technologies, probing potential 
mechanisms, and collaborating to drive progression in the 
diagnosis and treatment of endophthalmitis.
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