Celastrol inhibits laser-induced choroidal neovascularization by decreasing VEGF induced proliferation and migration

Zhen Li, Ke–Wen Zhou, Fang Chen, Fu Shang, Ming–Xing Wu

1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
2Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China

Correspondence to: Ming-Xing Wu. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center Sun Yat-sen University No.54 Xianlie Road, Guangzhou 510060, Guangdong Province, China. wumingx@mail.sysu.edu.cn

Received: 2022-01-13 Accepted: 2022-04-13

Abstract

● AIM: To evaluate celastrol’s effect on choroidal neovascularization (CNV).
● METHODS: In this study, neovascular formation in vitro (tube formation and aortic ring culture) and in vivo (laser induced neovascular in mice) was treated with celastrol to evaluate this natural compound’s impact on CNV. Western blot was applied to explore the possible mechanism for it. For in vitro assay, triplicate for each group was repeated at least three times. For in vivo assay, each group contains 5 mice.
● RESULTS: Celastrol suppressed tube formation and aortic ring sprout neovascularization. In vitro assay exhibited that celastrol inhibiting vascular endothelial growth factor (VEGF)-induced proliferation and migration of human umbilical vein endothelial cells and human choroidal endothelial cells, and by blocking VEGF signaling. Furthermore, intraperitoneal administration of celastrol significantly reduced the area of laser-induced CNV in an in vivo mouse model. By day 14, the area of CNV had decreased by 49.15% and 80.26% in the 0.1 mg/kg celastrol-treated group (n=5) and in the 0.5 mg/kg celastrol treated group (n=5), respectively, compared to the vehicle-treated group (n=5).
● CONCLUSION: Celastrol inhibits CNV by inhibiting VEGF-induced proliferation and migration of vascular endothelial cells, indicating that celastrol is a potent, natural therapeutic compound for the prevention of CNV.

● KEYWORDS: celastrol; choroidal neovascularization; proliferation; vascular endothelial growth factor; human choroidal endothelial cells

DOI:10.18240/ijo.2022.08.01

Citation: Li Z, Zhou KW, Chen F, Shang F, Wu MX. Celastrol inhibits laser-induced choroidal neovascularization by decreasing VEGF induced proliferation and migration. Int J Ophthalmol 2022;15(8):1221-1230

INTRODUCTION

Choroidal neovascularization (CNV) refers to the growth of abnormal new blood vessels from the choroid into the sub-retinal space accompanied by vascular leakage, retinal edema, and vision loss[1-2]. CNV is a major pathological change in ocular diseases that lead to blindness, such as age-related degeneration, pathologic myopia, angioid streaks, and trauma. Although the pathogenesis of CNV is not clearly understood, growth factors, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-induced cell proliferation and migration, play an important role in CNV development. Currently, anti-VEGF drugs are the most widely used treatment for CNV. Although these drugs are helpful in reducing the risk of visual deterioration, they only improve vision in 33% of patients[3-4]. Some patients experience worsening vision function, regardless of aggressive treatment with anti-VEGF agents[5-6], suggesting other vascular mediators contribute to ocular angiogenesis. Furthermore, patients often exhibit CNV recurrence and require repeated treatments. A regimen of multiple intravitreal injections for months or years is associated with many complications, such as cataracts, retinal detachment, and endophthalmitis, as well as significant costs[7-8]. Studies have shown that participants in monthly dosing groups had a higher incidence of macular atrophy than those in discontinuous treatment groups, suggesting that anti-VEGF therapy induces the formation of macular atrophy in some patients[9-11]. To improve the outcomes of CNV treatment and reduce the cost to the patient, an alternative anti-angiogenic treatment is needed.
Celastrol, a natural products extracted from traditional Chinese herb, exhibits potent anti-inflammatory, anti-oxidant, and anti-angiogenic activities. This drug has been widely used to treat chronic inflammation, autoimmune diseases, and many types of cancer by modulating multiple pro-angiogenic and pro-inflammatory cytokines, such as hypoxia-inducible factor-1α, TNF-α, and VEGF. These cytokines play a major role in the proliferation of endothelial cells and the progression of angiogenesis. Previous studies have reported that celastrol has anti-angiogenic effects on both in vitro and in vivo assays. However, few studies have evaluated the effect of celastrol on CNV. Thus, the present study investigated the effect of celastrol using a popular mouse model of laser-induced CNV.

MATERIALS AND METHODS

Ethical Approval All animal experiments were conducted in accordance with the Statement for the Use of Animals in Ophthalmic and Vision Research and approved by the Institutional Animal Care and Use Committee of Zhongshan Ophthalmic Center. Eye cup of human beings was collected from the Eye Bank of Guangdong Province with the approval of the Sun Yat-sen University Medical Ethics Committee after getting the consent from the donor in accordance with the Declaration of Helsinki.

Animals and the Induction of Choroidal Neovascularization

This study used 6–8 weeks old C57BL/6J mice. CNV was induced in mice by laser photocoagulation. Briefly, the procedure was performed on anesthetized 10% ketamin (100 mg/kg) and 1% xylazine (10 mg/kg) intraperitoneally animals with dilated pupils using a laser photocoagulator (Micron IV, Phoenix Research Laboratories, Pleasanton, CA, USA). Images were captured using the Micron IV (Phoenix Research Laboratories, Pleasanton, CA, USA). Images were taken at 3, 7, and 14d after laser treatment. FFA images with fluorescein administration by intraperitoneal injection were taken five minutes after fluorescein sodium was injected. Mice were sacrificed by intravenous injection of air after anesthesia 3, 7, or 14d after laser photocoagulation, and the eye cups were removed and incubated with 4% paraformaldehyde at 4°C overnight. The choroid/retinal pigment epithelium (RPE)/sclera was set in 24-well culture plates, and 0.5% bovine serum albumin (BSA) with 0.1% triton was added for 2h at room temperature for blocking. After being washed with PBS, fluorescein-isothiocyanate-conjugated isolecitin B4 (Vector, Burlingame, CA, USA, 1:500) was added and the sample were covered with a cover slip. CNV was visualized using a fluorescerin microscope (FV1000; Olympus, Tokyo, Japan).

Cell Culture and Western Blot

Primary human choroidal endothelial cells (hCEC) were retrieved from donors with methods described before. Briefly, an eye was collected from the Eye Bank of Guangdong Province within 6h from death and soaked in 0.25% povidone iodine at room temperature for 30min. After the anterior segment was removed, the choroid was isolated from the sclera with forceps, and 0.2% pronase was used for the detachment of endothelial cells. After digestion at 37°C for 4-6h, cells were collected by centrifugation. The cell pellet was resuspended in endothelial cell medium (ECM; ScienCell, USA) without serum, and CD31 beads were used to separate hCEC from the other cells. Primary cultures of human umbilical vein endothelial cells (HUVEC) were obtained and cultured as previously described. The hCEC and HUVEC were cultured in completed ECM. All cells were cultured at 37°C in a humidified 5% CO2 atmosphere. After treatment with VEGF or different concentrations of celastrol, the whole proteins of the hCEC and HUVEC were collected. Western blotting was performed by probing with anti-tyrosine-protein kinase (Src, 36D10, Cell Signaling Technology, USA), anti-phosphor-
RESULTS

Reducing Vascular Endothelial Growth Factor-induced Neovascularization in Vitro To evaluate whether celastrol prevented VEGF-induced neovascularization, two in vitro models of neovascularization—a tube-formation assay and an aorta-ring culture assay—were performed. As 2 μmol/L celastrol is toxic to HUVEC [24] and both low (0.1 μmol/L) [25] and high (1 μmol/L) [25] inhibited migration of HUVEC, three concentrations of celastrol, 0.1, 0.5, and 1 μmol/L, were applied for this study. As shown in Figure 1, 20 ng/mL VEGF stimulated the tube formation of HUVEC and hCEC, while 0.1 and 0.5 μmol/L celastrol significantly decreased VEGF-induced tube formation. A higher concentration of celastrol (1 μmol/L) significantly diminished VEGF-induced HUVEC tube formation, but it had less effect on hCEC. The aortic ring assay is a more physiologically relevant in vitro model for angiogenesis, as it develops blood vessels from aortic explants using the surrounding endothelial cells, which is akin to angiogenesis in vivo. This study found that 20 ng/mL VEGF increased both the number and length of vascular sprouting by 60%. Similar to the tube formation assay, 0.1 μmol/L celastrol attenuated VEGF-induced vascular sprouting to the level of the control group. Although 0.5 μmol/L celastrol decreased vascular sprouting by 30%, a statistical analysis showed no difference (Figure 2). Since 0.5 μmol/L celastrol did not significantly decrease vascular sprouting, a higher concentration of celastrol (1 μmol/L) was not applied to the aortic ring assay.

Inhibitory Effect of Celastrol in Vascular Endothelial Growth Factor-Induced Endothelial Cell Proliferation and Migration The impact of celastrol on the viability and proliferation of hCEC and HUVEC was evaluated using CCK-8 assays. No significant difference was observed between the control and celastrol-treatment groups after 24h incubation, indicating that celastrol does not have a toxic effect at these doses (Figure 3A and 3B). Although dye formation in HUVEC treated with 0.1 μmol/L celastrol was less than in the control group, a statistical analysis found no difference among the groups. The result indicating that celastrol have no influence on viability of hCEC and HUVEC. The proliferation rates of HUVEC and hCEC were significantly enhanced by 20 ng/mL VEGF, while 0.1 and 0.5 μmol/L celastrol obstructed the growth of cells induced by VEGF (Figure 3C and 3D). Consistent with tube formation, 1 μmol/L celastrol attenuated VEGF-induced cell proliferation in HUVEC but not hCEC. Among the three doses of celastrol, 0.1 μmol/L...
Celastrol inhibits laser-induced choroidal neovascularization

Celastrol was shown to have the greatest ability to inhibit the function of VEGF.

Endothelial Cell Migration in Angiogenesis

To evaluate the effect of celastrol on migration, a wound healing assay was performed. No significant difference in cell invasion between the control and treatment groups was found during the first 12h. VEGF was shown to have a promoting effect on HUVEC and hCEC at 24h, which is similar to results reported by others. At 24 and 36h, the cell-covered area in the 0.1 µmol/L celastrol group was less than in the VEGF group.
indicating that 0.1 µmol/L celastrol weakened the VEGF-induced migration of HUVEC (P<0.05; Figure 4A and 4B). At higher concentrations of celastrol (0.5 and 1 µmol/L), no inhibitory effects were seen. Even 1 µmol/L celastrol accelerate HUVEC migration at 24h. The increase in hCEC migration with VEGF treatment translated into a significant reduction at 36h with celastrol treatment (Figure 3C and 3D). Both 0.1 and 0.5 µmol/L of celastrol restrained hCEC migration at 36h (P<0.001).

As with HUVEC, the hCEC-covered area in the 1 µmol/L celastrol group was comparable to that of the VEGF group.

Blocking Vascular Endothelial Growth Factor Signaling in Choroidal Neovascularization VEGF plays a key role in the formation and growth of vascular in both physiological and pathological conditions that involve complex signaling. Expression of three major downstream proteins of VEGF signaling—FAK, Src, and Akt—and their phosphorylation were quantified by Western blotting to explore the mechanism of celastrol’s inhibitory effect on neovascular formation. Western blotting demonstrated that VEGF has less effect on the expression and phosphorylation of Src and Akt in HUVEC (Figure 5A and 5B). However, an increasing trend was observed in FAK phosphorylation, while the expression of FAK was maintained in the VEGF-treated group in a time-dependent manner. In contrast, 0.5 µmol/L celastrol diminished the FAK phosphorylation induced by VEGF after 1h of incubation. For hCEC, VEGF increased Src expression and 0.5 µmol/L celastrol decreased it (Figure 5C and 5D).

Inhibited CNV Leakage and Development by Celastrol

The laser-induced CNV mouse model is commonly used to evaluate the effects of treatments for CNV. To analyze the effects of celastrol in vivo, we calculated the area of CNV and its leakage 3, 7, and 14d after induction in mice treated with the vehicle, 0.1 mg/kg celastrol, and 0.5 mg/kg celastrol. CNV area was reduced significantly in the celastrol treatment groups (P<0.001; Figure 6). To our surprise, as the dosage increased, so did the inhibition of celastrol on CNV (P<0.001), which is opposite to the results of the in vitro experiments. On day 14, celastrol attenuated the area of CNV by 49.15% in the 0.1 mg/kg celastrol-treated group and 80.26% in the 0.5 mg/kg celastrol treated group as compared to the vehicle-treated group. In the 0.5 mg/kg celastrol group, CNV was barely seen two weeks after photocoagulation. Celastrol also decreased the leakage of CNV in a dosage-dependent manner (Figure 7). By the end of our observation, the leakage area decreased to 59.99% in the 0.1 mg/kg celastrol-treated group and 41.77% in the 0.5 mg/kg celastrol-treated group compared to the vehicle-treated group.

DISCUSSION

In this study, we demonstrated that celastrol inhibited neovascular formation by blocking VEGF signaling and reducing VEGF-induced proliferation, migration, and tube formation of vascular endothelial cells. Our results also indicate that celastrol is a potent, natural anti-angiogenic compound for suppressing CNV development in mice. On day 3, 7, and 14 after inducing CNV, intraperitoneal administration...
of celastrol significantly reduced the vascular budding area and CNV leakage as seen on flat mounts of the RPE-choroid complex.

Although it is now accepted that VEGF plays a vital role in initiating and sustaining pathologic angiogenesis in the eye, animal and human studies have demonstrated that the factors involved in inflammation also contribute to these processes\(^{28-29}\). For example, the role of M2 macrophages has been reported as dominant, and they may also play an important part in the development of CNV\(^{30}\), as treatment targeting M2 polarization has been found to be effective\(^{31-32}\). Multiple clinical trials have proven that celastrol is an effective and well-tolerated drug in the treatment of inflammatory diseases\(^{33}\). Furthermore, a recent study reported on the potent anti-angiogenic effect of celastrol in the inhibition of corneal neovascularization in rats\(^{34}\). Given its promising results as an anti-angiogenic and anti-inflammatory drug, celastrol may have efficacy in treating CNV. Our results support this conclusion, as celastrol diminished neovascularization in two in vitro models: a tube formation assay and an aortic ring formation assay. Moreover, mean CNV area was reduced by 49.15% in 0.1 mg/kg celastrol-treated eyes and 80.26% in 0.5 mg/kg celastrol-treated eyes compared to vehicle-treated eyes, which are similar results to those of previous studies involving other drugs, such as bevacizumab, an FDA-approved anti-VEGF drug that was reported to reduce CNV area by 80% compared to vehicle treatment in laser-induced CNV in mice\(^{35}\).

VEGF pathway activation triggers a series of signaling processes, stimulating vascular endothelial cell proliferation, survival, migration, and permeability, leading to angiogenesis and vascular leakage in pathological conditions. In the present study, two endothelial cells, HUVEC and hCEC, were exposed to 20 ng/mL VEGF or to different concentrations of celastrol. Consistent with previous report, VEGF promoted endothelial proliferation and migration\(^{36-37}\), while celastrol had a minimal effect on endothelial survival and an obvious effect on the proliferation and migration induced by VEGF; this indicates that celastrol may also play a role in anti-angiogenesis and anti-inflammation.
VEGF role and inhibit neovascularization by suppressing the VEGF-induced functional activity of endothelial cells. In fact, celastrol decreases VEGF expression in HUVEC under hypoxia[38] and the phosphorylation of VEGF receptor 2, which is the main signaling receptor whose activation promotes vascular endothelial cell mitogenesis and permeability[39]. Although VEGF function was restrained by celastrol in both HUVEC and hCEC, different signaling pathway activation was observed in the current study. In HUVEC, celastrol prevented FAK phosphorylation, while Src expression was decreased in hCEC, indicating that one type of endothelial cell might not represent the complexity of neovascularization in vivo.

Both FAK and Src have been reported to mediate endothelial migration and proliferation[40-41], while Akt has been found to be more related to cell survival[21,42-43]. This partially explains why Akt expression did not change much in either type of endothelial cell used in our study, as celastrol has a minimal effect on cell survival.

Although data from this work demonstrated celastrol’s inhibitory effects in neovascularization, some results were contradictory, as celastrol in vivo was found to inhibit laser-induced CNV in a dose-dependent manner, while the in vitro experiments showed that a higher dose of celastrol (0.5 or 1 mmol/L) reduced the efficacy of celastrol to suppress VEGF-induced endothelial proliferation, migration, and tube formation, which is consistent with previous reports that lower concentrations of celastrol have a more obvious effect on VEGF suppression and the inducing activity of endothelial cells in angiogenesis[39]. One explanation for this is that the concentration of celastrol in vivo experiments may be lower than it in vitro experiments. Although we calculated the concentration of celastrol and demonstrated that 0.5 mg/kg celastrol is equal to 1 mmol/L celastrol when we treat mice as water, since the water content of mice is 73.2% of their fat-free body weight[44]. The concentration of celastrol in mice eyes may not reach 1 mmol/L because of the blood-retina barrier, which could impact drug distribution. The pharmacokinetic and pharmacodynamic properties of celastrol should be considered in future studies to assure effective dosage of celastrol for anti-neovascularization. Another possibility for the contradictory results is that our in vitro experiment only mimicked part of neovascularization, as the Western blot results show different signal pathway activations in the two types of endothelial cells.

In summary, our study demonstrated that celastrol significantly inhibits the development of laser-induced CNV in mice. Celastrol may serve as an alternative and economical agent
for CNV treatment, either alone or in conjunction with other therapies. Further studies are needed to explore the mechanism of the inhibitory effects of celastrol on angiogenesis and the optimal celastrol dose for preventing CNV.

ACKNOWLEDGEMENTS
The authors wish to thank Dr. Rong Ju for field assistance.

Foundation: Supported by National Natural Science Foundation of China (No.81570826).

Authors’ contributions: Wu MX and Shang F prepared the manuscript. Li Z and Chen F performed analysis of the data. Chen F was not aware of the group allocation. Li Z and Zhou KW executed the conceptualization and design of experiments. All authors read and approved the final manuscript.

Conflicts of Interest: Li Z, None; Zhou KW, None; Chen F, None; Shang F, None; Wu MX, None.

REFERENCES

Celastrol inhibits laser-induced choroidal neovascularization

