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Abstract
● AIM:  To determine whether an antisense RNA 
corresponding to the human Alu transposable element 
(Aluas RNA) can protect human lens epithelial cells (HLECs) 
from methylglyoxal-induced apoptosis. 
● METHODS: Cel l  count ing  k i t -8  (CCK-8)  and 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) assays were used to assess HLEC viability. HLEC 
viability/death was detected using a Calcein-AM/PI double 
staining kit; the annexin V-FITC method was used to detect 
HLEC apoptosis. The cytosolic reactive oxygen species 
(ROS) levels in HLECs were determined using a reactive 
species assay kit. The levels of malondialdehyde (MDA) 
and the antioxidant activities of total-superoxide dismutase 
(T-SOD) and glutathione peroxidase (GSH-Px) were 
assessed in HLECs using their respective kits. RT-qPCR and 
Western blotting were used to measure mRNA and protein 
expression levels of the genes.
● RESULTS: Aluas RNA rescued methylglyoxal-induced 
apoptosis in HLECs and ameliorated both the methylglyoxal-
induced decrease in Bcl-2 mRNA and the methylglyoxal-
induced increase in Bax mRNA. In addition, Aluas RNA 
inhibited the methylglyoxal-induced increase in Alu sense 
RNA expression. Aluas RNA inhibited the production of 
ROS induced by methylglyoxal, restored T-SOD and GSH-

Px activity, and moderated the increase in MDA content 
after treatment with methylglyoxal. Aluas RNA significantly 
restored the methylglyoxal-induced down-regulation of Nrf2 
gene and antioxidant defense genes, including glutathione 
peroxidase, heme oxygenase 1, γ-glutamylcysteine synthetase 
and quinone oxidoreductase 1. Aluas RNA ameliorated 
methylglyoxal-induced increases of the mRNA and protein 
expression of Keap1 that is the negative regulator of Nrf2. 
● CONCLUSION: Aluas RNA reduces apoptosis induced 
by methylglyoxal by enhancing antioxidant defense. 
● KEYWORDS: human Alu antisense RNA; human lens 
epithelial cells; methylglyoxal toxicity; antioxidant defense; 
apoptosis
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INTRODUCTION

G rowing evidence indicates that cataractogenic stresses 
can result in the production of misfolded proteins by the 

endoplasmic reticulum (ER)[1]. To reduce misfolded proteins 
from cells before the stresses induce senescence, the cells 
produce a cascade of reactions called ER stress[2-3]. ER stress 
upregulates the production of intracellular reactive oxygen 
species (ROS) and activates Nrf2, a central transcriptional 
factor for protecting cell against stress, in order to maintain 
cellular redox homeostasis by regulating the expression of a 
group of genes that protect cells[4-5]. Nrf2 is normally localized 
to the cytosol via binding with its negative regulator Keap1, 
which is in turn bound to cytosolic actin[1]. Nrf2 binds with 
Keap 1 under non-stress conditions; upon oxidative/ER stress, 
Nrf2 isolates from Keap1, translocates to the nucleus, and 
activates the expression of a number of antioxidant-related 
genes[6-8]. The Nrf2 pathway is believed to regulate as many as 
600 cytoprotective genes[9-12].
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Methylglyoxal (MGO) is a reactive carbonyl aldehyde 
compound that is an end product of glycolysis. MGO is 
cytotoxic and induces cell apoptosis by inducing the production 
of ROS[13]. These negative effects underlie the role of MGO as 
a mediator of the secondary complications of diabetes mellitus, 
including cataracts[14-15]. In the eye, the ROS causes cellular 
damage that induces cataract formation[16].
Short interspersed nuclear elements (SINEs) occupy 
approximately 10% of the mammalian genome[17-18]. Alu 
elements are the main SINEs in the human genome[17-19]. These 
Alu elements can be transcribed into Alu RNA. The expression 
of Alu RNA increases under oxidative stress and after infection 
by viruses[20-21]. Alu RNA levels may also be associated with 
the development of disease; for example, the accumulation 
of Alu RNA increases death of retinal pigmented epithelium 
in geographic atrophy[22]. Previous works have confirmed 
that SINEs and SINE RNA regulate gene expression[23-25]. 
Our previous studies also indicated that murine SINE B1 
antisense RNA retards the mouse aging process by removing 
accumulated ROS in senescent cells and regulating the expression 
of aging-associated genes[19]. Importantly, there are established 
methods for producing genetically engineered SINE RNAs that 
are of sufficient quality for cell and animal experiments[26-27]; 
the availability of these methods means that nucleic acid 
reagents of treating aged-related diseases can be obtained. 
In this study, we examined whether human SINE antisense RNA 
(Aluas RNA) can protect human lens epithelial cells (HLECs) 
from apoptosis induced by MGO and sought to explore the 
mechanisms by which Aluas RNA could have this effect. 
MATERIALS AND METHODS
Cell Culture and Cell Transfection  HLECs (SRA01/04, 
Huatuo, Suzhou, China) were cultured in DMEM medium (4.5 g/L 
glucose, ThermoFisher Scientific, USA), supplemented with 
10% fetal calf serum (FCS; ZETATM Life, USA) under 5% CO2 
at 37℃. 
Yeast tRNA (tRNA) was purchased from Solarbio Life 
Sciences; Alu sense RNA (Alu RNA) and Alu antisense RNAs 
were prepared by our laboratory[26-27]. These Alu antisense 
RNAs include AluYas RNA, AluJBas RNA and AluSPas RNA. 
Our experiments have shown that all of them reduced the 
apoptosis of HLECs induced by MGO. Different Alu elements 
(AluY, AluJB and AluSP) have more than 80% homologous, 
thus we presented the results of AluYas RNA (Aluas RNA) in 
this manuscript. The Aluas RNA sequence (283 bp) is 5’ – TG
AGACGGAGTCTCGCTGTGTCGCCCAGGCTGGAGTGC
AGTGGCGCGATCTCGGCTCACTGCAAGCTCCACCTCC
CAGGTTCACGCCATTCTCCTGCCTCAGCCTCTTGAGT
AGCTGGGACTACAGGCACCCGCCACCACACCCGGCT
AATTTTTTTGCATTTTTAGTAGAGACGGGGTTTCACCG
TATTAGCCAGGATGGTCTTGATCTCCTGACCTTGTGAT

CCGCCCACCTCGGCCTCCCAAAGTGCTGGGATTACAG
GCGTGAGCCACCGCGCCCAGCC – 3’. 
We compared the results of transfection of Aluas RNA into 
HLECs using Lipofectamine 2000 and calcium phosphate 
transfection (CPT)[28]. Although the transfection efficiency of 
Lipofectamine 2000 was relatively high, this method resulted 
in the death of a lot of HLECs. Transfection with CPT reagent 
had fewer side effects, and the transfection efficiency was also 
acceptable. We therefore used the CPT method to transfect 
tRNA, Alu RNA or Aluas RNA into HLECs. Briefly, 1.0×105 
cells were plated in each well of 24-well plates, then cultured 
at 37℃ for 24h. Fourteen microliters of transfection solution 
[72 μL of 1 mg/mL RNA, 28 μL of 0.5 mol/L calcium chloride, 
54 μL of 2×HBS (280 mmol/L NaCl, 50 mmol/L HEPES, 
1.5 mmol/L Na2HPO4, pH 7.05), and 856 μL double distilled 
water] was added to HLECs in one well of 24-well plate. 
Our subsequent experiments proved that 14 μL of the above 
formulation was the appropriate dose. CPT reagent alone was 
used as a negative control. Transfected HLECs were cultured 
for 48h under 5% CO2 at 37℃. After 48h of transfection, the 
medium was replaced with fresh 10% FCS-DMEM medium. 
The cells were then treated with one of several concentrations 
of MGO: 0, 25, 50, 100, or 200 µmol/L (Shanghai Yuanye Bio-
Technology Co. Ltd, China) for indicated time. The cells were 
harvested and used in later experiments.
Cell Counting Kit-8 Assays  Cell counting kit-8 (CCK-8) 
(Boster Biological Technology, Wuhan, China) kit was used to 
assess HLEC viability according to the previous description[13].
Cell Viability/Death Detection  The Calcein-AM/PI double 
staining kit (BiolabTechnology Co., Ltd, Beijing, China) was 
used to detect the cell viability and cell death according to the 
description of Palsamy et al[29].
Reactive Oxygen Species Staining  Cytosolic ROS levels 
in HLECs were determined using a reactive species assay kit 
(Beyotime Biotechnology, Beijing, China) that uses the cell-
permeant indicator molecule 2’,7’-dichlorodihydrofluoresce
in diacetate (H2-DCFH-AD) according to the manufacturer’s 
instructions and reported references[29-30]. One hundred cells 
were randomly selected from each sample, and the integral 
optical density (IOD) value of these one hundred cells was 
analyzed by Gel-Pro analyzer software. The total IOD values 
represent the fluorescence intensity of this sample. When 
comparing the effect of MGO concentration on ROS level, the 
intensity of fluorescence in the samples from the 0 μmol/L MGO 
group was set to 1; when comparing the effect of RNA on ROS 
levels, the intensity of fluorescence in CPT reagent+MGO 
group was set as 100%.
Biochemical Analysis  Total-superoxide dismutase (T-SOD), 
glutathione peroxidase (GSH-Px), and malondialdehyde 
(MDA) kits (Shanghai Ruifen Biotechnology, Co., LTD, 



180

China) were used to detect the activity of T-SOD, GSH-Px and 
levels of MDA, respectively, in the HLECs. 
Analysis of mRNA Expression Using RT-qPCR  TRIzol 
(Thermo Fisher Scientific) was used to extract total RNA 
from HLECs. RT-qPCR was performed according to previous 
description[19]. Alu RNA was detected using asymmetric RT-
qPCR. Briefly, total RNA was extracted from HLECs using 
TRIzol and reverse transcribed into cDNA. The ratio of 
upstream primers to downstream primers of qPCR was 100:1; 
this method preferentially amplifies only Alu RNA. Table 1 
presents the primers for RT-qPCR.
Assessment of Apoptosis  Apoptosis was quantified using 
the annexin V-FITC method, which detects phosphatidyl 
serine that is externalized in the early phases of apoptosis, as 
described previously[31]. 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
Bromide Assays  HLECs were plated at 2×104 per well in 96-
well plates (200 µL 10% FCS-DMEM), attached overnight, 
transfected with Aluas RNA, and treated with MGO. The 
viability of cells was measured using 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide assays (MTT) according 
to the previous description[13].
Western Blotting  HLECs were lysed in RIPA buffer (Beyotime 
Biotechnology, Shanghai, China) and stored at -80℃ until 
analysis. Protein levels were quantified using the BCA protein 
assay kit (Solarbio Life Sciences, China). The expression 
levels of protein were detected using Western blotting 
according to previous report[31].
The intensity of each band was normalized to that of β-actin. 
The IOD value of each lane was analyzed using Gel-Pro 
analyzer software.
Statistical Analysis  SPSS17.0 software was used for 
statistical processing of data when necessary. Differences 
between groups were analyzed by one-way ANOVA. Results 
are expressed as mean±SD. Values were considered statistically 
significant when P<0.05.
RESULTS
MGO Increases Cell Death, Cell Apoptosis and ROS 
Production in HLECs  To assay the effects of MGO on cell 
death, cell apoptosis and ROS production in HLECs, we 
treated HLECs with different concentrations of MGO (0, 25, 
50, 100, or 200 µmol/L). Treatment with MGO increased cell 
death, and almost no cell death was observed in HLECs that 
were treated without MGO (Figure 1A, 1B). MGO treatment 
also had a concentration-dependent growth inhibition effect in 
HLECs (Figure 1C) and induced significant production of ROS 
(Figure 1D). In contrast, no apparent ROS production was 
observed in HLECs that were treated without MGO (Figure 
1D). Based on this, we sought to determine whether cell 
death induced by MGO reflected an increase in apoptosis. 

Indeed, treatment with MGO induced HLEC apoptosis 
(Figure 1E). 
Bearing in mind these results, we sought an optimal dose of 
MGO that would result in a moderate amount of cell damage 
for subsequent experiments. Exposure to 100 µmol/L MGO 
caused 28.6% cell death (Figure 1B), 36.8% growth inhibition 
(Figure 1C), and 41.2% apoptosis (Figure 1E), compared to 
the appropriate controls, and induced robust ROS (Figure 
1D). Therefore, we selected 100 µmol/L MGO for subsequent 
experiments except where otherwise specified.
Aluas RNA Rescues the Death of HLECs and Inhibits ROS 
Production Induced by MGO  To determine whether Aluas 
RNA can rescue HLEC death induced by MGO, we transfected 
HLECs with different RNAs, including Aluas RNA, Alu sense 
RNA (Alu RNA), tRNA, and CPT reagent and then added 
MGO at several concentrations (0, 25, 50, 100 and 200 µmol/L) 
after 48h. MGO treatment decreased the viability of HLECs 
(Figure 2A). Aluas RNA transfection rescued HLEC viability 
after MGO treatment, but Alu RNA and tRNA did not (Figure 
2A). We then examined whether Aluas RNA could rescue 
HLEC viability. Treatment with Aluas RNA was able to restore 
viability after MGO treatment (Figure 2B). These results 
suggest that while MGO reduces cell viability, Aluas RNA can 
protect cells against MGO-induced damage.
Compared to CPT reagent alone, Aluas RNA decreased cell 
death after treatment for 24h with 100 µmol/L MGO (Figure 
2C, 2D). The results show that Aluas RNA, but not Alu RNA, 

Table 1 Primers used for RT-qPCR

Target Sequences Length of 
products (bp)

Nrf2 F: 5′-acacggtccacagctcatc-3′ 96
R: 5′-tgcctccaaagtatgtcaatca-3′

Bax F: 5′-caggatgcgtccaccaagaa-3′ 197
R: 5′-gcaaagtagaagagggcaaccac-3′

Bcl2 F: 5′-gctaccgtcgtcgtgacttcgc-3′ 147
R: 5′-ccccaccgaactcaaagaagg-3′

gSH-Px F: 5′-gaagtgcgaagtgaatgg-3′ 224
R: 5′-tgtcgatggtacgaaagc-3′

γ-gcS F: 5′-tggatgatgccaacgagtc-3′ 185
R: 5′-cctagtgagcagtaccacgaata-3′

HO-1 F: 5′-gggctgtgaactctgtccaat-3′ 162
R: 5′-ggtgagggaactgtgtcagg-3′

NQO1 F: 5′-ttctgtggcttccaggtctt-3′ 104
R: 5′-tccagacgtttcttccatcc-3′

Glo1 F: 5′-gcagaaccgcagcccccgtc-3′ 172
R: 5′-ggattagcgtcattccaaga-3′

Keap1 F: 5′-tacgatgtggaaacagagacgtgga-3′ 264
R: 5′-acaggtacagttctgctggtcaatct-3′

Alu RNA F: 5′-ggctgggcgcggtggctcac-3′ 117
R: 5′-gtagagacggggtttcaccg-3′

β-actin F: 5′-ccaaccgcgagaagatga-3′ 97
R: 5′-ccagaggcgtacagggatag-3′

F: Forward primer; R: Reverse primer.
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tRNA, or appropriate experimental controls, rescued HLEC 
death induced by MGO.
Our previous studies indicated that murine SINE B1 antisense 
RNA could reduce ROS accumulation in the blood cells of 
senescent mice[19]. Therefore, we next investigated whether 
Aluas RNA inhibited ROS production in HLECs. We 
transfected HLECs with Aluas RNA, tRNA, or CPT reagent 
alone and then treated the cells with 100 µmol/L MGO for 
24h. Transfection with Aluas RNA resulted in strong inhibition 
of the increased ROS production caused by MGO (Figure 2E). 
The intensity of fluorescence in CPT reagent+MGO group 
was set as 100%, the relative fluorescence intensities of Aluas 
RNA+MGO and tRNA+MGO groups were 21.31% and 
87.6%, respectively (Figure 2F). 
Aluas RNA modulates the increase in Alu sense RNA (Alu 
RNA) induced by MGO  To determine whether Aluas RNA 
transfection affects the levels of Alu RNA, we used RT-qPCR 
to measure the levels of Alu RNA expression in HLECs. MGO 
treatment induced an increase in the Alu RNA expression level 

(Figure 3). Aluas RNA transfection modulated the increase in 
Alu RNA induced by MGO (Figure 3).
Aluas RNA Affects the Expression of Bcl-2 and Bax  
Having previously observed that MGO induces apoptosis 
and that Aluas RNA can rescue cell death in the context of 
MGO treatment, we next sought to determine whether Aluas 
RNA affects HLEC apoptosis induced by MGO. Aluas RNA 
transfection inhibited apoptosis in HLECs. The fraction of 
apoptotic cells in the Aluas RNA+MGO group was lower than 
that of the MGO+CPT reagent group. To determine whether 
Aluas RNA affects apoptosis by modifying the levels of the 
anti-apoptotic factor and the pro-apoptotic factor, we then 
examined the relative expression of Bcl-2 and Bax mRNA 
and protein. MGO treatment increased Bax mRNA expression 
(Figure 4B) and protein expression (Figure 4C, 4D; P<0.05) 
and decreased the Bcl-2 mRNA expression of (Figure 4E) 
and protein expression (Figure 4F, 4G; P<0.05) compared 
to controls. However, treatment with Aluas RNA followed 
by treatment with 100 µmol/L MGO for 24h significantly 

Figure 1 MGO induces cell apoptosis and ROS production in HLECs  a: Images of PI staining for cell death in HLEcs treated for 24h with 

different concentrations of MgO. F: Fluorescence; W: White light. B: Percentage of cell death measured from the images in Figure 1a. n=3. 
aP<0.05 vs 0 μmol/L MgO group. c: Measurement of HLEc proliferation via ccK-8 after treatment with MgO for 24h. Proliferation decreased 

significantly with increasing concentration of MgO. the proportion of growth inhibition induced by 100 µmol/L MgO was 36.8% (0.6025-

0.3807/0.6025×100%). D: Relative fluorescence intensity (ROS) measured from images of the HLEcs treated with the indicated concentrations 

of MgO for 24h. Fluorescence levels were corrected to account for the background. the intensity of fluorescence in cells treated with 0 μmol/L MgO 

was set to 1. aP<0.05 vs 0 μmol/L MgO group. E: MgO induces HLEc apoptosis. MgO: Methylglyoxal; HLEc: Human lens epithelial cells; ccK-8: 

cell counting kit-8; ROS: Reactive oxygen species; PI: Propidium iodide.
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Figure 2 Aluas RNA rescues HLEC death and inhibits ROS production induced by MGO  a: Detection of cell viability via ccK-8 in HLEcs 
transfected with aluas RNa, alu RNa, tRNa or cPt reagent alone, with different concentrations of MgO. the proliferation of HLEcs transfected 
with aluas RNa was higher than that of HLEcs transfected with alu RNa, tRNa or cPt reagent alone. B: Detection of aluas RNa effects on 
promoting the proliferation of HLEcs using Mtt assays. MgO reduces cell proliferation and reduces cell viability, while aluas RNa protects 
cells against MgO-induced damage. n=3. aP<0.05. c: Images of calcein aM, showing live cells, and PI staining, showing cell death, in HLEcs 
transfected with aluas RNa and/or cPt reagent and treated with 100 μmol/L MgO for 24h. D: calculation of cell death from the images shown 
in Figure 2C. n=3. aP<0.05 vs cPt reagent + MgO group. E: Representative images of ROS levels in HLEcs transfected with aluas RNa, tRNa, or 
cPt reagent alone and treated with 100 µmol/L MgO. F: Fluorescence; W: White light. F: Relative fluorescence intensity of the images shown in Figure 2E. the 
intensity of fluorescence in the cPt reagent + MgO group was set to 100%. Fluorescence levels were corrected to account for image background. aP<0.05 vs 
the tRNa + MgO group and the cPt reagent+MgO group. HLEc: Human lens epithelial cells; ROS: Reactive oxygen species; MgO: Methylglyoxal; ccK-8: 
cell counting kit-8;  cPt: calcium phosphate transfection; Mtt: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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moderated both of these effects, inhibiting the increase in Bax 
mRNA expression (Figure 4B) and protein expression (Figure 
4C, 4D; P<0.05) and the decrease in Bcl-2 mRNA expression 
(Figure 4E) and protein expression (Figure 4F, 4G; P<0.05).
Aluas RNA Affects Oxidative Stress-Related Factors 
Previous works demonstrated that MGO can cause oxidative 
stress in cells by scavenging superoxide dismutase (SOD)[32-33]; 
the resulting imbalance between the ROS generation and 
antioxidant defense leads to ROS accumulation, which can 
cause apoptosis[34]. To examine the role of oxidative stress in 
HLECs after MGO treatment, we next assessed the levels of 
T-SOD. Treatment with 100 µmol/L MGO for 24h resulted in 
significantly lower T-SOD activity (P<0.05; Figure 5A) and 
GSH-Px activity (P<0.05; Figure 5B) compared to the HLECs 
without treatment with MGO. In contrast, treatment with 
Aluas RNA significantly rescued the MGO-induced decreases 
in T-SOD and GSH-Px (P<0.05; Figure 5A, 5B). MGO 
treatment for 24h also increased MDA content (P<0.05; Figure 
5C), while Aluas RNA treatment reduced the MGO-induced 
increase in MDA content (P<0.05; Figure 5C). The results 
prove that Aluas RNA alleviates the oxidative stress induced 
by MGO in HLECs.
The glyoxalase system has important roles in reducing the 
toxicity of MGO[35]. Depletion of GSH can suppress Glo1 
function and induce significant accumulation of MGO[36]. 
Totally 100 µmol/L MGO treatment for 24h decreased the 
expression of Glo1 mRNA (Figure 5D). In contrast, treatment 
with Aluas RNA significantly rescued the MGO-induced 
decrease in Glo1 expression (Figure 5D).

Aluas RNA Affects the Expression Levels of Genes of 
Nrf2 and Antioxidant Defense  A recent report illustrated 
the relationship between the Nrf2 pathway, a key pathway 
for dealing with oxidative stress, and cataracts. This report 
suggested that MGO can aggravate cataract formation by 
inhibiting Nrf2-dependent antioxidant protection[37]. We 
therefore examined whether Aluas RNA could affect the Nrf2 
pathway. Treatment with 100 µmol/L MGO for 24h decreased 
the expression of Nrf2 (Figure 6A), quinone oxidoreductase 
1 (NQO1; Figure 6D), heme oxygenase 1 (HO-1; Figure 6E), 
γ-glutamylcysteine synthetase (γ-GCS; Figure 6F), and GSH-
Px (Figure 6G) mRNA compared to control. In contrast, 
treatment with Aluas RNA significantly increased the levels 
of Nrf2 (Figure 6A), NQO1 (Figure 6D), HO-1 (Figure 
6E), γ-GCS (Figure 6F), and GSH-Px (Figure 6G) mRNA 
compared to control (P<0.05). The levels of Nrf2 (Figure 6A,), 
NQO1 (Figure 6D), HO-1 (Figure 6E), γ-GCS (Figure 6F), 
and GSH-Px (Figure 6G) mRNA were significantly increased 
in the Aluas RNA /MGO co-treated group compared to the 
MGO group (P<0.05). In addition, MGO treatment decreased 
the levels of Nrf2 protein (Figure 6B, 6C), and cotreatment 
with Aluas RNA and MGO significantly increased Nrf2 protein 
levels (Figure 6B, 6C). 
MGO treatment induced greater Keap1 mRNA (Figure 6H) 
and protein expression (Figure 6I, 6J), while treatment with 
Aluas RNA followed by treatment with MGO significantly 
decreased Keap1 expression (Figure 6H-6J, P<0.05). 
Potential Mechanism for the Effect of Aluas RNA on 
MGO-Caused Apoptosis in HLECs  Based on the results 
above, we hypothesize that Aluas RNA reduces MGO-induced 
apoptosis of HLECs by enhancing antioxidant defense (Figure 7). 
Hwang et al[38] reported that H2O2 induced Alu transcription 
and apoptosis in retinal pigment epithelial cells. Alu RNA 
accumulation causes P2X7 activation; P2X7 mediates influxes 
of Ca2+, which is the key effector for ROS production from 
mitochondria[39]. Alu RNA expression promotes Ca2+ influx, 
in turn, couples the Pyk2/c-Src complex and PKC to initiate 
ERK1/2-directed mitochondrial stress. VDAC-1/2, the major 
channel at the outer mitochondrial membrane, is responsible 
for uptake of Ca2+ and ERK1/2 into mitochondria and 
promotes ROS production[39]. The accumulating ROS damages 
cellular proteins, lipids, DNA and other biological molecules 
and can cause cell apoptosis[40]. Our working hypothesis is that 
MGO induces Alu RNA expression, while the binding Aluas 
RNA with Alu RNA inhibits the resulting influx of Ca2+ and 
blocks toxic effects of Alu RNA. More experiments need to 
be performed in the future if we want to thoroughly prove the 
above hypothesis. 
DISCUSSION
Previous works have proved that MGO can cause cell 

Figure 3 Aluas RNA transfection inhibits the expression of Alu RNA  

MgO treatment induces an increase in the expression level of alu 

RNA. aP<0.05. Aluas RNA transfection inhibits the increase in Alu 

RNa induced by MgO. bP<0.05. aStatistical difference between the 

cPt reagent group and the cPt reagent + MgO group; bStatistical 

difference between the aluas RNa+MgO group and the cPt 

reagent+MgO group. MgO: Methylglyoxal; cPt: calcium phosphate 

transfection.
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oxidative stress by scavenging SOD and glutathione[41-43]. The 
imbalance between ROS generation and antioxidant defense 
results in the ROS accumulation in cells, and accumulated 
ROS can damage cellular proteins, lipids, DNA and other 
biological molecules and cause cell apoptosis[33-34]. ROS 
accumulation causes human lens epithelial cells apoptosis, 
then lead to cataract formation. HLECs are immortalized cells 
that transition from an immortalized state to undergo apoptosis 
(loss of immortalization) when treated with MGO (or H2O2). 
In this way, there are some similarities in the molecular 
processes by which immortalized cells (HLECs) and primary 

lens epithelial cells undergo apoptosis in response to oxidative 
damage. Therefore, HLECs treated with MGO can, to some 
extent, model the apoptosis induced by oxidative damage 
during the formation of cataracts. 
It has also been reported that ROS account for MGO’s role in 
inducing apoptosis[44-46]. In the present study, treatment with 
MGO increased HLEC death and apoptosis. These results are 
consistent with literature reports. 
To begin to analyze the potential role of Aluas RNA in 
this process, we introduced Aluas RNA into HLECs by 
transfection. Interestingly, our results depended on the 

Figure 4 Aluas RNA transfection ameliorates MGO-induced changes in Bax and Bcl-2 mRNA  a: aluas RNa transfection inhibits MgO-

induced apoptosis in HLEcs. aP<0.05; bP<0.05. B: aluas RNa inhibits the MgO-induced increase in Bax mRNa levels. aP<0.05; bP<0.05. C: Aluas 

RNa inhibits the MgO-induced increase in Bax protein levels. n=3. D: the amount of protein (IOD value) per lane for images shown in Figure 

4C. aP<0.05; bP<0.05. E: aluas RNa rescues the MgO-induced decrease in Bcl-2 mRNa levels. aP<0.05. bP<0.05. F: Aluas RNA rescues the 

MgO-induced decrease in Bcl-2 protein levels. n=3. g: the amount of protein (IOD value) per lane for images shown in Figure 4F. aStatistical 

difference between the cPt reagent group and the cPt reagent + MgO group; bStatistical difference between the aluas RNa+MgO group and 

the cPt reagent +MgO group. MgO: Methylglyoxal; HLEc: Human lens epithelial cells; IOD: Integral optical density;  cPt: calcium phosphate 

transfection.
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transfection method. We did not observe an anti-aging effect 
when Aluas RNA was transfected into human fibroblasts with 
Lipofectamine 2000. However, human fibroblasts transfected 
with Aluas RNA using CPT reagent did show a decrease 
in senescence (data not shown). We speculate that the anti-
senescence effect of Aluas RNA is related not only to the RNA 
sequence but also to its position in the cells and fragment 
size. The RNAs generated by transfected expression vectors 
are normally located at transcriptional foci in the nucleus; 
however, the RNAs transfected using CPT reagent will first 
enter the cytoplasm and then enter into the nucleus, resulting 
in a more even distribution. In addition, the RNA fragments 
produced by transfected expression vectors are larger than 
those produced after transfection with CPT reagent. For our 
subsequent experiments, we therefore transfected HLECs with 
Aluas RNA using CPT reagent.
In this study, treatment with Aluas RNA rescued MGO-
induced damage and increased proliferation in HLECs. It 
has been reported that SINE RNAs have important roles 

in gene expression regulation[17]. Alu RNA accumulation 
activates the expression of apoptotic proteins and related to 
geographic atrophy, and an Alu RNA antisense oligonucleotide 
was recently reported to be effective for treating geographic 
atrophy[47-49]. We observed similar effects with MGO in 
HLECs; MGO treatment increased the expression level of 
Alu RNA, and Aluas RNA transfection inhibited this increase 
(Figure 3).
The most important factor in the development of cataracts 
is aging, though other factors such as environmental and 
genetic stresses are known to play a role[37]. One of the ways 
that aging contributes to the formation of cataracts is through 
the accumulation of oxidative damage. Indeed, aged eyes are 
more sensitive to ROS[50], and lens epithelial cells have been 
reported to be sensitive to ROS[51-52]. In this study, transfection 
with Aluas RNA restored MGO-induced increases in ROS 
levels, and rescued MGO-induced decreases in the activities 
of T-SOD and GSH-Px, which are associated with antioxidant 
defense. Aluas RNA treatment also increased the expression 

Figure 5 Aluas RNA increased antioxidant protection in HLECs  a: aluas RNa restores the MgO-dependent decrease in t-SOD activity in 

HLEcs. aP<0.05; b P<0.05. B: aluas RNa partially rescues the MgO-dependent decrease in gSH-Px activity in HLEcs. aP<0.05; bP<0.05. C: Aluas 

RNa ameliorates the MgO-dependent increase in MDa content in HLEcs. aP<0.05; bP<0.05. D: aluas RNa significantly rescues MgO-induced 

decreases in Glo1 expression. aP<0.05; bP<0.05. aStatistical difference between the cPt reagent group and the cPt reagent + MgO group; 
bstatistical difference between the aluas RNa+MgO group and the cPt reagent +MgO group. MgO: Methylglyoxal; t-SOD: total-superoxide 

dismatase; MDa: Malondialdehyde; cPt: calcium phosphate transfection; HLEc: Human lens epithelial cells; gSH-Px: glutathione peroxidase.
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of Glo1 mRNA (Figure 4). The glyoxalase system has an 
important role in reducing toxicity of MGO[53]. Depletion of 

GSH suppresses the Glo1 function and induces significant 
MGO accumulation[54].

Figure 6 Aluas RNA increases the expression of Nrf2 and antioxidant defense mRNAs  a: aluas RNa rescues the MgO-induced down-
regulation of Nrf2 mRNa level. aP<0.05; bP<0.05. B: aluas RNa rescues the MgO-induced down-regulation of Nrf2 protein expression. c: the 
amount of protein (IOD value) per lane shown in Figure 6B (means of three independent experiments). aP<0.05; bP<0.05. D: aluas RNa rescues 
the MgO-induced down-regulation of NQO1 mRNa. aP<0.05; bP<0.05. E: aluas RNa rescues the MgO-induced down-regulation of HO-1 mRNa. 
aP<0.05; bP<0.05. F: aluas RNa rescues the MgO-induced down-regulation of γ-gcS mRNa level. aP<0.05; bP<0.05. G: Aluas RNA rescues the 
MgO-induced down-regulation of gSH-Px mRNa. aP<0.05; bP<0.05. H: aluas RNa rescues the MgO-induced up-regulation of Keap1 mRNa 
level. aP<0.05; bP<0.05. I: aluas RNa rescues the MgO-induced up-regulation of Keap1 protein. n=3. J: the amount of protein (IOD value) per 
lane shown in Figure 6I. aP<0.05; bP<0.05. aStatistical difference between the cPt reagent group and the cPt reagent + MgO group; bStatistical 
difference between the aluas RNa+MgO group and the cPt reagent + MgO group. MgO: Methylglyoxal; IOD: Integral optical density; γ-gcS: 
γ-glutamylcysteine synthetase; gSH-Px: glutathione peroxidase; cPt: calcium phosphate transfection.
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Several reports have proved that MGO induces apoptosis in 
cells, including HK-2 cells[55], rat INS-1 pancreatic β-cells[56] 
and human retinal pigment epithelial cells[57]. Our results 
confirmed that MGO can also induce apoptosis in HLECs. 
Aluas RNA also decreased Bax, the pro-apoptotic factor 
and increased Bcl-2, the anti-apoptotic factor. These results 
suggest that Aluas RNA alleviates oxidative stress and inhibits 
apoptosis in HLECs cells exposed to MGO. The target 
sequences of (sense) human Alu RNA interact with proteins 
of the signal recognition particle and regulate gene expression 
by binding to a protein to initiate the apoptotic pathway[58-59]. 
We speculate that the Aluas RNA plays a role in ameliorating 
apoptosis by binding to Alu RNA and counteracting its pro-
apoptotic activity.
Nrf2 works as a molecular switch for the Nrf2-mediated 
antioxidant systems[60]. Nrf2 is a vital inducer of nuclear 
transcription[61] that controls the transcription of many 
antioxidant genes[62]. In this way, Nrf2 is the most important 
endogenous antioxidant stress pathway[63-64]. Recent reports 
have illustrated a relationship between Nrf2 and cataracts[37]. 
MGO was reported to be an inhibitor of Nrf2 suppressors, and 
one study indicated that MGO can aggravate cataract formation 

via suppressing Nrf2-dependent antioxidant protection[35]. 
These reports suggest that Nrf2 is an important target for 
preventing and delaying cataract formation. MGO induced 
overproduction of ROS that damages lens constituents and 
induces failure of the Nrf2 dependent cytoprotein[65]. Keap1 is 
the negative regulator of Nrf2[5]. The results here proved that 
MGO induced the high expression of Keap1 and decreased 
Nrf2 expression, which was consistent with the reports of 
Palsamy et al[65]. In addition, Aluas RNA treatment increased 
Nrf2 expression and decreased Keap1 expression (Figure 6). 
To examine whether Aluas RNA activates the antioxidant 
defense genes to restrain the apoptosis induced by MGO, we 
examined the mRNA levels of GSH-Px, HO-1, γ-GCS and 
NQO1 genes. These results proved that the mRNA levels 
of GSH-Px, HO-1, γ-GCS and NQO1 (antioxidant defense 
genes) were all decreased after MGO treatment. Our results 
confirmed that MGO inhibits the Nrf2 and reduces the 
expression of relevant antioxidant factors. The loss of these 
antioxidants, in turn, leaves HLECs cells less able to remove 
the MGO-induced ROS, which in turn causes oxidative 
damage and induces apoptosis. Co-treatment with Aluas RNA 
significantly increases Nrf2 mRNA and protein levels and 
mRNA levels of GSH-Px, HO-1, NQO1 and γ-GCS genes. 
This is consistent with the hypothesis that Aluas RNA activates 
Nrf2 via increasing the expression of GSH-Px, HO-1, NQO1 
and γ-GCS—among the most important antioxidant enzymes, 
improving responses to oxidative stress, maintaining redox 
balance, and reducing MGO-induced cell apoptosis. 
In summary, we outline the possible molecular mechanisms 
(Figure 7) that Aluas RNA ameliorates MGO-induced 
apoptosis of human HLECs in combination with the reported 
literature and our results in this study. The results in this 
study treatment with Aluas RNA can alleviate MGO-induced 
oxidative damage and apoptosis in HLECs. Our evidence 
further suggests that Aluas RNA decreases apoptosis by 
inhibiting Alu RNA levels, then by increasing the antioxidant 
activity and by activating the expression of Nrf2 and 
antioxidant defense genes. 
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