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Abstract
● Glaucoma is a kind of optic neuropathy mainly manifested 
in the permanent death of retinal ganglion cells (RGCs), 
atrophy of the optic nerve, and loss of visual ability. The 
main risk factors for glaucoma consist of the pathological 
elevation of intraocular pressure (IOP) and aging. Although 
the mechanism of glaucoma remains an open question, 
a theory related to mitochondrial dysfunction has been 
emerging in the last decade. Reactive oxygen species (ROS) 
from the mitochondrial respiratory chain are abnormally 
produced as a result of mitochondrial dysfunction. Oxidative 
stress takes place when the cellular antioxidant system fails 
to remove excessive ROS promptly. Meanwhile, more and 
more studies show that there are other common features of 
mitochondrial dysfunction in glaucoma, including damage of 
mitochondrial DNA (mtDNA), defective mitochondrial quality 
control, ATP reduction, and other cellular changes, which 
are worth summarizing and further exploring. The purpose 
of this review is to explore mitochondrial dysfunction in 
the mechanism of glaucomatous optic neuropathy. Based 
on the mechanism, the existing therapeutic options are 
summarized, including medications, gene therapy, and 
red-light therapy, which are promising to provide feasible 
neuroprotective ideas for the treatment of glaucoma.
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INTRODUCTION

G laucoma is a group of neurodegenerative diseases[1] 
marked by the irreversible death of retina ganglion 

cells (RGCs), characteristic optic atrophy, and loss of visual 
fields[2]. At present, glaucoma has become the leading cause of 
permanent blindness all around the world[3]. A comprehensive 
assessment from 2014 anticipated that there will be 111.8 
million glaucoma patients worldwide in 2040[4]. Based on 
whether the anterior chamber angle is open or not and whether 
the intraocular pressure (IOP) is raised, glaucoma can be 
roughly divided into three categories: open angle glaucoma 
(OAG), angle-closure glaucoma (ACG) and normal tension 
glaucoma (NTG)[5]. In light of the similarities between 
glaucoma and primary mitochondrial optic neuropathies[6-7], 
numerous studies have concentrated on the impact of 
mitochondrial dysfunction in the course of glaucoma, which is 
the main topic of our review as well.
Although glaucoma has been a threat to human health for 
many years, the exact pathogenesis and contributing factors 
of glaucoma remain an open question to be elucidated. On the 
one hand, it is acknowledged that the primary risk factor for 
glaucoma is pathologic elevated IOP[8]. The stability of IOP 
is kept by the aqueous humor generated by the ciliary body. 
When aqueous humor is generated too much or outflow is 
blocked, the IOP will rise progressively. Increased IOP causes 
mechanical stress and injury to RGCs and the optic nerve 
head (ONH), particularly the lamina cribrosa and surrounding 
tissues[9]. Damaged optic neuronal axons under prolonged 
stress result in poor transport, impeding the retrograde 
movement of essential trophic factors from the brainstem to 
the RGCs[10]. Meanwhile, a decrease in the transfer of oxygen 
and nutrients to the retina and optic nerve is generated as a 
result of blood vessel compression brought on by high IOP, 
which causes the production of reactive oxygen species (ROS) 
and oxidative damage[11].
Aging is another key factor affecting the progression of 
glaucoma[8]. Although there are significant differences in glaucoma 
prevalence of different races, it increases substantially with 
age[12]. What’s more, our group has shown that mitochondrial 
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DNA (mtDNA) integrity, the copy number of mtDNA, fusion 
mediators, mitophagy, and genes related to antioxidation all 
show a downward trend with the increase of age in the retina 
of zebrafish models[13]. Additionally, due to the increasing 
need for light-emitting diodes (LEDs) and digital screens, light 
damage is a significant factor in ocular aging. Exposure to 
certain wavelengths or intensities of light for a certain time can 
result in serious damage to the retina[14-15], which may facilitate 
the development of age-related ocular disorders. Other risk 
factors[16], including thin corneas, positive family history, 
and ethnicity, are also connected with the pathogenesis of 
glaucoma.
Currently, IOP is the sole variable that can be controlled and is 
proven to be effective in glaucoma treatment[17]. However, the 
degeneration of RGCs and axons is still progressing after strict 
control of IOP[7]. Therefore, finding the exact pathological 
mechanisms of glaucoma and developing specific treatment 
options are urgently needed. Here we review the significance 
of preserving healthy mitochondrial function for the retina 
and optic nerve and how mitochondrial dysfunction affects the 
pathogenesis of glaucoma. Then we summarize current and 
potential therapeutic options, particularly mitochondrial-related 
ones. The therapies aimed at improving mitochondrial function 
at the cellular or molecular level may offer new hope for 
research and clinical utility to delay the process of glaucoma.
Normal Mitochondrial Functions in the Retina and Optic 
Nerve
Energy and reactive oxygen species  In normal situations, 
the light passing through the pupil is sensed by retinal 
photoreceptor cells[18]. The signal will be transmitted by a 
series of retinal cells and finally by RGCs to the visual cortex. 
The axons of RGCs forming the optic nerve cross the lamina 
cribrosa and are wrapped in myelin sheaths post the lamina 
cribrosa[19]. Instead of carrying out saltatory conduction, 
unmyelinated prelaminar and laminar RGC axons transmit 
electronic signals by high-density voltage-sodium channels and 
Na+-K+ adenosine triphosphate (ATP) pumps[19]. Because of this 
special structure, the neurons and optic nerve require oxidative 
phosphorylation (OXPHOS) to produce large quantities of 
ATP to keep the electrochemical gradients for transmitting 
signals[20]. Corresponding to this condition, a physiological rise 
in the number of mitochondria is found in the unmyelinated 
RGC axons[21]. Mitochondria are important sites for producing 
energy in the form of ATP[22]. Meanwhile, it participates in cell 
apoptosis, the balance between the production and removal of 
active substances, and the regulation of intracellular calcium 
absorption and release[23-24]. As the primary energy source of 
most cells, the mitochondrial OXPHOS system includes two 
essential components – the electron transport chain (ETC) and 
ATP synthases (Figure 1). Five protein complexes helping 

complete the process of OXPHOS are located on the inner 
membrane of mitochondria[25]. Electrons from niacinamide 
adenine dinucleotide (NADH) or reduced flavin adenine 
dinucleotide (FADH2) are sequentially transferred to oxygen 
through the complexes, while protons are pumped into the 
space between the inner and outer membranes to create a 
proton concentration gradient[26]. When these protons return to 
the mitochondrial matrix, ATP is produced by ATP synthase[26]. 
The stable production of ATP in mitochondria is the basis for 
the normal operation of various cellular functions. 
It is worth mentioning that the mitochondrial respiratory chain 
provides sufficient energy but also produces reactive oxygen 
or nitrogen species (ROS/RNS; Figure 1), such as hydrogen 
peroxide (H2O2), hydroxyl radical (OH), the anion radical (O2-) 
and nitric oxide radical[27-28]. Complex I and III of the ETC are 
the most active sites for the generation of ROS[29]. Despite the 
fact that ROS and RNS, which is generated by the reaction of 
nitric oxide and ROS, can act as critical second messengers in 
many signaling processes[7,30], excessive reactive species can 
oxidize DNA and various biological molecules, representing 
the primary cause of damage to cellular structures[30]. There are 
a lot of antioxidants that fight against oxidation inside cells, 
such as glutathione peroxidases, superoxide dismutase, and 
catalases[31], which can alleviate the harmful effects resulting 
from reactive species. Nevertheless, under some situations 
and damage, the production of reactive substances surpasses 
the capacity of the cellular antioxidant mechanism[28]. This 
leads to the state of oxidative stress, which is regarded as an 
imbalance between oxidants and antioxidants that tends to 
favor oxidation, resulting in destroy of redox signaling and/
or molecular damage[27,32]. Oxidative stress can irreparably 
damage mitochondrial and cellular functions.
Mitochondrial Quality Control  As byproducts of 
mitochondrial energy production, ROS can cause mtDNA 
mutations and interfere with protein folding and structure. 
Therefore, a sophisticated quality control mechanism needs 
to be developed to remove damaged components and 
biosynthesize new macromolecules[33]. In this regard, it is 
essential to mention mitophagy as well as mitochondrial 
dynamics - fusion and fission. Mitophagy, called the selective 
autophagy of mitochondria[34], is a mechanism that eliminated 
damaged mitochondria and is precisely mediated by PTEN-
induced putative kinase 1 (Pink1) and Parkin[35]. In addition, 
the morphology and connectivity of the mitochondrial 
network are controlled by the processes of mitochondrial 
fusion and fission, depending on the demand for specific 
biological needs[36-37]. Fusing together several mitochondria to 
produce a single mitochondrion is an example of fusion while 
fission refers to the process of breaking apart a single large 
mitochondrion into many smaller ones[38]. 
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Mitochondria constantly undergo the cycle of fusion and 
fission, so they come in a variety of shapes[39]. Fusion mediated 
by optic atrophy 1 (Opa1) and mitochondrial fusion proteins 
1/2 (Mfn1/Mfn2) can dilute mutant mtDNA with non-mutant 
mtDNA for mitigating DNA damage[40]. In an obvious fusion 
event, two mitochondria collide end to end and fuse at the 
site of the collision[39]. The outer membrane of mitochondria 
fuses first and the inner mitochondrial membrane (IMM) 
fuses as well. Meanwhile, the mitochondrial contents mix 
and spread throughout the new mitochondria. In addition, 
there is a course called the “kiss-and-run fusion” event[41]. 
One mitochondrion does not undergo an obvious structural 
combination, but exchanges matrix contents with another 
during brief encounters[41]. Therefore, the significance of 
mitochondrial fusion is not only morphological regulation but 
also content exchange. As for the fission event, it contributes 
to biosynthesizing new mitochondria and also to removing 
dysfunctional mitochondria[42-43]. How this dual fate happens 
has intrigued scientists. New studies find that when cells are 
about to proliferate, mitochondria tend to undergo midzone 
fission[44]. However, before most peripheral fission, which is 
mediated by dynamin-related protein 1 (Drp1) and fission 
protein 1[45], mitochondrial membrane potential and proton 
motive force are reduced, while ROS and calcium levels are 
increased. The cellular changes suggest that mitochondrial 
dysfunction may drive mitochondria to undergo peripheral 
fission to remove damaged mitochondria[44]. Although it is 
not clear how to keep the balance between fusion and fission, 

it has been found that fission usually occurs shortly after 
fusion[42] (Figure 2). After a fission event, some mitochondria 

Figure 1 Electron transport chains in healthy and dysfunctional mitochondria  The ETC is made up of four different protein complexes: 
complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (cytochrome reductase), and complex IV (cytochrome 
oxidase). Electrons that originate from NADH or FADH2 are finally transported to oxygen after passing through complex I or complex II, 
coenzyme Q, complex III, cytochrome c, and complex IV. During the process, oxygen can react with electrons in advance to produce ROS. In 
healthy mitochondria, ROS can be well removed while in dysfunctional mitochondria, the antioxidant capacity of mitochondria and the electron 
transport efficiency are reduced, resulting in excessive ROS and causing oxidative damage to mitochondria[32]. ETC: Electron transport chain; 
ROS: Reactive oxygen species; Cyto c: Cytochrome c; Q: Coenzyme Q. Created by Figdraw.

Figure 2 A schematic illustration of the relationship between 

mitochondrial fission, fusion, and mitophagy  Mitochondria are 

continuously recycled between mitochondrial fission and fusion events. 

Mitochondrial fusion mechanisms dilute the effects of mutation by 

fusing mutated mtDNA (orange) with non-mutated mtDNA. When the 

damage exceeds a certain limit, mitochondrial fission occurs, in which 

mitochondria depolarize. Subsequently, these mitochondria either 

return to normal membrane potential (thick arrow) and continue the 

cycle, or remain depolarized[42]. However, sustained depolarization 

will trigger Opa1 cleavage and Mfn1 reduction, along with Pink1/

Parkin accumulation. Eventually, these mitochondria are cleared by 

mitophagy after remaining in the pre-autophagic pool for several 

hours. mtDNA: Mitochondrial DNA; Opa1: Optic atrophy 1; Mfn1: 

Mitofusin-1; Pink 1: PTEN-induced kinase 1. Created by Biorender.
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remain in a state of constant depolarization suggesting 
dysfunction. Such mitochondria are solitary for several hours 
in the pre-autophagic pool and then cleared by mitophagy[42]. 
After undergoing a brief period of depolarization, healthy 
mitochondria return to normal membrane potential and 
continue the cycle of fusion and fission[42]. 
Mitochondrial Dysfunction in Glaucoma  Mitochondrial 
dysfunction means that mitochondria are not able to carry 
out normal functions. Because of the high-energy demand, 
it is essential that the neurons in the retina and optic nerve 
have the appropriate number of mitochondria and that these 
mitochondria are functioning properly[23]. The aspects of 
mitochondrial dysfunction can be described by crosstalk 
among oxidative stress, membrane depolarization, mtDNA 
damage, reduction of ATP synthesis, cristae decomposition, 
and defective mitophagy[11,35], all of which can be reflected 
in the course of glaucoma. Here we mainly summarize 
mitochondrial dysfunction into three major blocks for review: 
mtDNA damage, oxidative stress, and defective mitochondrial 
quality control.
Mitochondrial DNA damage  Importantly, mtDNA is close 
to the location of the mitochondrial respiratory chain and not 
safeguarded by protective proteins[32], making it exceptionally 
susceptible to oxidative damage caused by ROS. Hence, the 
rate of mutation in mitochondrial DNA is significantly higher 
than that of nuclear DNA[35]. ROS can cause single-strand 
breaks (SSBs), double-strand breaks (DSBs), or oxidized 
bases[46], resulting in mtDNA mutations. A previous study 
has shown that the integrity and volume of mtDNA gradually 
decline with age on account of the accumulation of oxidative 
damage from ROS[47]. The extent of the damage can be 
measured by the level of a biomarker called 8-hydroxy-2’-
deoxyguanosine (8-OH-dG)[48], which indicates oxidative 
damage to DNA. The contents of 8-OH-dG in the aqueous 
humor of primary open angle glaucoma (POAG) patients 
are considerably greater than that of the healthy group[49]. 
Besides, the elevated level of 8-OH-dG was discovered in the 
trabecular meshwork (TM) of POAG patients, which suggests 
that the damage to mtDNA is not confined to the retina but is 
widespread in the eyes. 
What’s more, a previous study showed that 27 different novel 
mtDNA nonsynonymous mutations are identified in POAG 
patients, among which 22 mutations could be pathogenic[50]. 
Although mtDNA encodes only about 1% of mitochondrial 
proteins, it contains protein subunits involved in OXPHOS[35]. 
Mutations of related genes or defects in components of 
OXPHOS could contribute to mitochondrial dysfunction. 
For instance, mutations in the mitochondrially encoded 
cytochrome B (MT-CYB), which encodes cytochrome b in 
Complex III, can cause defects in Complex III and disrupts 

the production of ATP[51]. In TM cells, the complex I inhibitor 
Rotenone could increase the generation of ROS and induce 
the release of cytochrome c, finally leading to oxidative stress 
and cell apoptosis[52]. Thus, damaged mtDNA can cause 
negative consequences for ROS production and clearance, ATP 
production, and other mitochondrial functions[47].
Oxidative stress  Oxidative stress is an essential component 
in the course of glaucoma, particularly in the occurrence of 
mitochondrial dysfunction. According to the present studies, 
oxidative stress can be a cause and/or a concomitant result 
of mitochondrial dysfunction. The specific mechanisms need 
to be further explored and summarized, which is the focus of 
discussion in this section.
Intraocular hypertension and oxidative stress  Based on the 
previous studies, the abnormal structure and function of TM 
cells could be a crucial reason for increased IOP in primary 
OAG[48] (Figure 3). Due to the fact that the TM has a lower 
level of antioxidant defense than both the cornea and iris, TM 
cells are the most vulnerable tissues to oxidative damage in 
the anterior chamber[53]. The imbalance between oxidation and 
antioxidation in aqueous humor leads to the increase of ROS, 
which lowers the adherence of TM cells to the extracellular 
matrix and stimulates the pathway of nuclear factor kappa-B 
(NF-κB) in addition to damaging the mtDNA of TM 
endothelial cells, eventually leading to the collapse, fusion 
and enlargement of TM cytoskeleton[48]. NF-κB is a kind of 
transcription factor whose constant activation can induce the 
expression of proinflammatory factors[54], aggravating the 
inflammation responses in glaucoma. All of these changes 
deteriorate the abnormal resistance of TM cells to aqueous 
humor drainage, giving rise to progressively increasing IOP. 
The gradual rise in IOP causes mechanical injury to the ONH 
and surrounding tissues[55], thereby compressing the central 

Figure 3 A schematic diagram of the relationship between oxidative 

stress and high IOP  Excessive ROS can damage the TM cells, greatly 

increasing their resistance to aqueous humor and making persistent 

high IOP. High IOP causes mechanical injury to the optic nerve and 

compresses the retinal central artery, resulting in reduced blood 

flow and oxygen deprivation. Hypoxia reduces ATP production 

and stimulates the generation of superoxide by complex III. It also 

results in decreased mitophagy, which further intensifies oxidative 

stress. IOP: Intraocular pressure; ROS: Reactive oxygen species; TM: 

Trabecular meshwork; ONH: Optic nerve head.

Mitochondrial dysfunction in glaucoma
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retinal artery. Vascular dysregulation interferes with the self-
regulatory function of ocular perfusion, so the eyes can no 
longer maintain a constant blood flow. This impaired blood 
flow to the eye results in a decreased supply of oxygen to the 
retina. Vascular dysfunction allows ocular structures, including 
the retina and TM, to undergo repeated reperfusion injury and 
unstable oxygen supply[56], exacerbating oxidative stress and 
poor availability of energy within cells. During glaucoma, 
RGC axons primarily rely on glycolysis to compensate for 
deficient mitochondrial function, but glycolysis is not sufficient 
to salvage the metabolic vulnerability caused by glaucoma[57]. 
When the retina is hypoxic-ischemic, three types of nitric oxide 
synthases are produced: neuronal (nNOS), endothelial (eNOS), 
and inducible (iNOS)[58]. Nitric oxide (NO) produced by nNOS 
and iNOS is involved in cytotoxic effects, causing neuronal 
and axon damage[59]. Meanwhile, NO can trigger multiple 
pathways through different mediators resulting in cell death, 
such as the transcription of apoptotic proteins and the influx 
of Ca2+[60-61]. And NO competes with oxygen for cytochrome 
c oxidase, leading to reduced mitochondrial cytochromes 
and other REDOX centers in the respiratory chain[62]. Under 
hypoxia, before reaching cytochrome c, electrons from the 
REDOX center escape and interact with O2 to form superoxide 
anion radicals[20,62]. Prolyl hydroxylases (PHD), which is 
necessary for the first step of the ubiquitination and degradation 
process of hypoxia-inducible factor 1α (HIF-1α), can be inhibited 
by ROS, thus triggering the stabilization of HIF-1α, which in 
conjunction with HIF-1β activates downstream transcription[63]. 
One previous study demonstrates that HIF-1α does increase 
in glaucomatous eyes compared to healthy people[64]. 
Hypoxia can also disrupt the dynamic balance between the 
mitochondrial fission-fusion cycle, causing it to wobble toward 
the fission tendency and resulting in excessive fragmentation of 
the network of mitochondria[65]. In terms of specific molecular 
mechanisms, the Opa1 released under hypoxia would be 
converted to S-Opa1. Excessive cumulation of S-Opa1 would 
inhibit the activity of fusion[65-66]. Hypoxia-induced increased 
mitochondrial fission can divide dysfunctional mitochondria 
from the network and eliminate them through mitophagy[67], 
perhaps as an endogenous rescue response to mitochondrial 
damage. In the review of Jassim et al[20], long-term hypoxia 
can cause mitochondrial dysfunction and hinder the mitophagy 
induction process, amplifying the buildup of damaged 
mitochondria, perhaps because the damage to mitochondria 
caused by hypoxia exceeds the ability to repair. 
Aging and oxidative stress  Typically, aging causes the 
degradation of the antioxidant system and the reduction of 
mitochondrial efficiency, resulting in the formation of aging 
mitochondria, thus increasing ROS and oxidative stress, 
ultimately causing cell apoptosis[68]. In glaucoma, aging can 

lead to reduced tolerance of RGCs and optic nerve to various 
stimuli and pressure, eventually resulting in the degeneration 
and loss of RGCs[7]. It has been demonstrated that as people 
age, the contents of nicotinamide adenine dinucleotide (NAD+; 
a crucial component in REDOX reactions) and glutathione 
in the retina gradually decrease, compelling RGCs more 
susceptible to high IOP[69]. This age-related vulnerability is also 
observed in other neurodegenerative diseases[7], suggesting 
that neurons are indeed unusually sensitive to cellular changes 
related to aging. The phenomenon of oxidative stress is a 
significant characteristic of aging[7], suggesting a synergistic 
relationship between the two. Many metabolites crucial for 
the metabolism of mitochondria and preventing damage from 
the damage of oxidative stress are discovered to decrease 
with age in the optic neurons of DBA/2J mice, which is a 
classical model of inherited and age-related glaucoma[70]. 
RGCs gradually switch to fatty acid metabolism after a period 
of mitochondrial stress and metabolite depletion[69]. The beta-
oxidation of fatty acid can drive the production of ROS[71], 
causing damage to several molecules. Additionally, advanced 
glycation end products (AGEs), which have been observed in 
the retina and optic disc of glaucomatous eyes, are formed in 
aging retinas under oxidative stress. Large accumulations of 
AGEs can form protein aggregates and produce more ROS to 
exacerbate the state of oxidative stress[7]. 
Our team’s prior research[13] has demonstrated that in the 
aging retinas of zebrafish, the increased demand for nutrients 
and energy activates mTOR, which encourages the fission 
of mitochondria to increase the production of ATP and make 
up for the deterioration in mitochondrial function brought on 
by aging. In the long term, however, a sustained increase in 
fission and a constant decrease in fusion can have a detrimental 
effect, exacerbating the aging process. Accumulation of excess 
ROS was also found in the retinas of aging zebrafish, resulting 
in oxidative damage that destroys mtDNA. Meanwhile, 
because mitophagy is inhibited by activated mTOR, unhealthy 
and damaged mitochondria are not eliminated in time. Thus, 
the aging process of the eye is accompanied by a series of 
changed molecules related to the dysfunction of mitochondria, 
which plays a pathogenic role in neurodegenerative diseases, 
including glaucoma.
Additionally, light-induced damage is another important aspect 
of ocular aging. Various lights that people expose to in daily 
life may cause an increasing accumulation of damage in the 
eyes, particularly blue light (310-450 nm) coming from LED 
light and electronic devices[72]. With short wavelength and 
strong penetration, blue light can arrive at the mitochondria 
of the retina[73] and be absorbed by the ETC components 
containing flavin and cytochrome[74], inducing photochemical 
effects. Moreover, blue light enables mitochondria to decrease 
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ATP synthesis and boost ROS production[75-76], suggesting that 
the injury caused by blue light is closely related to oxidative 
stress. In R28 cells, 411 nm blue light significantly increased 
the content of superoxide free radicals in mitochondria[75]. 
Blue light also contributes to the fragmentation of DNA[75] and 
the stimulation of caspase-3 and Bcl-associated X-protein[76], 
causing apoptotic neuronal death. Researchers believe that 
daily intake of blue light does not harm normal neurons 
because they have mechanisms to maintain homeostasis[15]. But 
in glaucoma, mitochondrial homeostasis has been disrupted 
due to various factors, so optic neurons are more vulnerable to 
blue light[15,77]. 
Other factors and oxidative stress  Calcium is significant 
in fundamental cell metabolism and signaling, interacting 
with systems participating in the control of ROS[78]. Calcium 
from the endoplasmic reticulum or cytoplasm can reach the 
membrane gap and the matrix of mitochondria, regulating 
different proteins and enzymes depending on where they are 
located[79]. Abnormal calcium influx may be triggered when 
certain injuries occur, such as disruption of the integrity of 
the mitochondria membrane or inhibition of calcium ATPase 
activity[78]. Constant overload of calcium opens mitochondrial 
permeability transition pores, promoting mitochondria to 
release ROS and calcium into the cytosol, eventually leading 
to mitochondrial dysfunction[80]. Moreover, ROS itself can 
restrain the activity of calcium ATPase in neurons[81], aggravate 
the disorder of intracellular calcium homeostasis, and generate 
more ROS. With the age rising, various metabolites and 
oxidative stress work together to gradually impair calcium 
homeostasis, leading to the degeneration of ocular cells[82].
It is believed that the buildup of neurotoxic amounts of 
glutamate has a significant relationship to oxidative stress[11], 
which is a common feature of many neurodegenerative 
disorders[83]. Glutamate is one of the primary neurotransmitters 
in the mammalian central nervous system[83]. Glutamate 
toxicity is mediated mainly by glutamate binding with 
N-methyl-D-aspartate (NMDA) receptors, which are distributed 
throughout the brain[84]. According to research, one single 
injection of 20 nmol/L NMDA into the vitreous body of 
adult rats led to the death of 70% of RGCs in the retina[84]. 
Higher level of glutamate are found in the vitreous of patients 
with glaucoma, which induces a compensatory mechanism 
producing more glutamine synthetase (GS)[85]. Although GS 
can regulate the physiological concentration of glutamate, they 
are extremely sensitive to oxidative damage[86]. ROS modifies 
GS, preventing glutamate in the retina from being converted 
to a non-toxic form. Excessive glutamate stimulates NMDA 
receptors for the long term, subsequently causing the influx of 
Ca2+[87] and cell death. 
Oxidative stress and related factors mentioned in this section 

are dynamic, overlapping, and diverse. In many cases, it is 
even hard to tell causes from effects. Mitochondria, as the 
main source of ROS, naturally become the core concept of the 
hypothesis that oxidative stress drives glaucoma pathogenesis. 
Defective mitochondrial quality control  Mitochondria 
possess a specific macroautophagy mechanism known 
as mitophagy, which exists to eliminate dysfunctional 
mitochondria and retain a well-functioning mitochondrial 
population[88]. Mitophagy is of vital importance for the 
normal functioning of mitochondria, which involves two 
reasons[89]: 1) Mitochondria are the main origin of ROS and are 
extremely susceptible to the damage of oxidation. 2) Defective 
mitochondria could produce more ROS, releasing cytochrome 
c to induce cell apoptosis[90]. The process of mitophagy is 
strictly controlled by Pink1 and Parkin. Pink1 encoded by 
nuclear DNA is a serine/threonine kinase, participating in the 
upstream of a cytosolic protein Parkin[91]. Normally, Pink1 is 
primarily located in the IMM. Then Pink1 is translocated by 
mitochondrial translocases to the cytosol and degraded by 
the proteasomes[91]. Under this condition, Pink1 is unable to 
ubiquitinate outer mitochondrial membrane (OMM) proteins 
and Parkin. Nevertheless, in damaged mitochondria, Pink1 
is not degraded by proteasomes but is transported to OMM 
to accumulate. Subsequently, Pink1 phosphorylates the 
ubiquitin of Parkin and initiates the activity of Parkin. Protein 
substrates are ubiquitinated by Parkin, and autophagosomes 
are recruited to degrade the mitochondria[91]. More and more 
studies have shown that impaired mitophagy can worsen 
the state of mitochondrial dysfunction in glaucoma[92], and 
induction of mitophagy is expected to protect RGC against 
neurodegeneration of glaucoma[93]. Hu and coworkers 
demonstrated that upregulation of Parkin by mitophagy in 
primary cultures RGCs that were subjected to glutamate 
excitotoxicity can be improved by overexpressing Opa1, 
achieving the goal of RGC protection[94]. In addition, a recent 
study reported that iron chelator deferiprone, a mitophagy 
inducer, can increase mitophagy and decrease cell apoptosis 
to protect RGCs. Together, coordinating the level of 
mitophagy may be the key to protecting RGCs and axons from 
glaucomatous degeneration.
A crucial aspect of mitochondrial quality management is the 
cycle between mitochondrial dynamics - fusion and fission, as 
well as mitophagy, especially within the optic nerve with high 
energy requirements. Mediated by Drp1, mitochondrial fission 
aims at mitochondrial separation and further asymmetric 
separation, resulting in the production of normal and damaged 
organelles[95]. The latter is eventually removed by mitophagy[95]. 
During oxidative stress, accumulated ROS accounts for a 
decrease in mitochondrial output, so mitochondria need to 
increase fission and decrease fusion to compensate for the 
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decline in function[13]. What’s more, the imbalance of fusion 
and fission in cells plays a bridge between the elevated IOP and 
mitochondrial dysfunction in the degeneration of glaucoma[92]. 
Ju et al[96] have shown that high IOP can induce mitochondrial 
fission and cristae depletion in RGCs in glaucomatous DBA/2J 
mice, resulting in mitochondrial dysfunction. Recent research 
described a possible molecular mechanism of mitochondrial 
division induced by ocular hypertension. In RGCs of DAB/2J 
mice, high IOP causes a decrease in the apolipoprotein 
A-I binding protein (AIBP) expression, which increases 
mitochondrial fission and reduces ATP production[97]. Similarly, 
in glaucomatous DAB/2J mice, high IOP can significantly 
increase the dephosphorylation of Drp1 at serine 637, which 
enhances the fragmentation of mitochondria and neuronal cell 
apoptosis[98]. 
Mitochondrial fusion mediated by Opa1 and Mfn1/2 can promote 
mitochondrial biogenesis and network for mitochondrial 
integrity via distributing mitochondrial proteins and expediting 
the complementation of normal and mutated mtDNA[99]. 
Nguyen et al[100] have discovered that Opa1 deficiency 
can decrease the level of superoxide dismutase 2 (SOD2) 
and increase the NMDA receptors, leading to glutamate 
excitotoxicity and oxidative stress. Moreover, Opa1 deficiency 
also causes the loss of RGCs and increased mitochondrial 
fission in the optic nerve[100].  Excessive proteolytic 
transformation of L-Opa1 to S-Opa1 is observed in the 
fragmentation and dysfunction of mitochondria[101]. Increased 
expression of Opa1 and the ratio of L-Opa1/S-Opa1 protect 
RGCs from ischemia-induced damage[102]. Interestingly, the 
maintenance of mitochondrial cristae structure[39] and inhibition 
of cell apoptosis by blocking the release of cytochrome c 
are two functions of Opa1 that are unrelated to the control 
of fusion[103]. Besides, it has been shown that overexpression 
of Mfn2 can increase the fusion process of mitochondrial 
and elevate the level of respiration[104]. Collectively, it can be 
concluded that maintaining the stable operation of mitophagy 
and mitochondrial dynamics is essential for the improvement 
of glaucomatous degeneration. 
Optic Neuroprotective Strategies Related to Mitochondrial 
Function  Traditional antiglaucoma medications, such as 
cholinergic drugs, alpha-2 adrenergic agonists, prostaglandin 
analogues, and beta-blockers, reduce IOP by blocking the 
generation of aqueous humor and increasing its efflux[105]. 
Nevertheless, some of these drugs have been found to protect 
the optic nerve from dying by increasing neurotrophic factor 
expression, regulating the release of glutamate and binding to 
receptors[106-107]. It can be seen that in addition to reducing IOP, 
traditional drugs also have the ability to regulate several factors 
and processes concerning mitochondria.
Given the importance of oxidative stress in glaucoma, 

antioxidants may be a good choice to achieve therapeutic 
benefits, especially before irreversible damage occurs. There 
have been numerous studies that have applied antioxidants, 
including several Vitamins, coenzyme Q10, astaxanthin, 
ginkgo biloba, omega 3/6 and resveratrol, to animal models 
of glaucoma to see how effective the drugs are[108]. Dietary 
vitamin E deficiency increases RGC loss and lipid peroxidation 
in surgically-induced rat models of glaucoma, indicating that 
vitamin E can act as an adjunct therapy for glaucoma[109]. A 
study published in 2021 showed that nicotinamide (vitamin 
B3), the precursor of NAD, can effectively prevent metabolic 
disorders induced by ocular hypertension[110]. The normal 
operation and survival of neurons depend on NAD, a REDOX 
cofactor. When nicotinamide was administered to elderly D2 
mice, scientists found that low doses of niacinamide 
(550 mg/kg●d) inhibited the buildup of mitochondria with 
abnormal cristae, limited DNA damage, and prevented the 
expression of most age-related genes within RGCs. At higher 
doses (2000 mg/kg●d), about 93% of the eyes had no damage 
to the optic nerve. This study opens the unexpected possibility 
of long-term use of nicotinamide in the precaution and 
treatment of glaucoma. As a natural antioxidant, resveratrol 
is an agonist of silent information regulators (SIRTs), 
which are widely distributed in the retina of mice, rats, and 
humans[111]. Our previous work has demonstrated that in the 
ischemia/reperfusion models, resveratrol can block the Bax-
caspase-3-dependent apoptotic pathway[112] to display an anti-
apoptotic role, increase the expression of Opa1 and adjust the 
L-Opa1/S-Opa1 ratio[102]. It can also activate the AMPK/SIRT1/
PGC-1α pathway and decrease mTOR signaling, promoting 
mtDNA quality via decreased mitochondrial fragmentation 
and increased mitophagy[13]. Similarly, previous studies by 
our group elaborate that oral administration of naringenin 
can increase the mitochondrial fusion protein 2 and rescue 
the age-related downregulation of autophagy, improving the 
visual function and retinal structure[38]. Hence, antioxidants 
have displayed a strong potential to delay the progression of 
glaucomatous degeneration in experimental glaucoma models.
Apart from testing antioxidants for glaucoma in animals, 
several antioxidants are already in clinical trials, which could 
speed up their use in humans. Ginkgo biloba as a Chinese 
medicinal plant has been undergoing clinical trials because of 
its antioxidant and neuroprotective properties. Ginkgo biloba 
supplementation can significantly provide a neuroprotective 
role for RGCs under hypoxia[113]. In a study published in 2018, 
patients with glaucoma took dietary supplements made up 
of vitamins, minerals, omega 3, and plant extracts including 
Ginkgo biloba. After a month, patients were observed to have 
significantly improved blood flow at the retinal level and 
reduced pressure in the retinal central artery, suggesting an 
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improvement in the disease[114]. All of these results indicate 
that antioxidants have a strong potential in the treatment of 
glaucoma in both animal models and humans, which are 
expected to provide more feasible strategies for the drug 
treatment of glaucoma. Currently, they can be used as adjunct 
drugs in combination with conventional glaucoma drugs to 
improve patient outcomes.
Another important thing to consider when using antioxidants 
is that effective antioxidants are often hydrophobic and less 
water-soluble[115]. Therefore, it is important to take necessary 
measures to improve drug availability for improving drug 
efficacy. For instance, probucol is a kind of bisphenol 
compound with anti-inflammatory and antioxidant properties, 
which can remove free radicals, inhibit lipid oxidation and 
reduce cell apoptosis[116]. Although probucol is the most 
insoluble hydrophobic antioxidant, researchers are able to 
significantly improve the solubility and bioavailability of the 
drug by embedding, modifying or adding excipients, which 
provides a precedent for the application of similar properties of 
antioxidants[116-118].
In addition to the antioxidants mentioned above, drugs that 
can directly increase mitochondrial activity by targeting 
mitochondria are being explored and developed. Mitochondria 
has specific characteristics used for targeting, such as high 
mitochondrial membrane and particular components of 
IMM[119]. The antioxidant lipophilic cations SkQ1, cationic 
plastoquinone derivates, can penetrate the membrane of 
mitochondria and quench ROS to reduce the oxidative damage 
of polyunsaturated fatty acids in mitochondrial cardiolipin[120]. 
SkQ1 blocks necrosis caused by ROS and also slows down 
the development of experimental glaucoma in rabbits[121-122], 
which seems to be a promising strategy but needs more 
evidence for clinical trials. Additionally, penetrating peptides 
that are likely to directly interact with cardiolipin in the 
IMM[123] could neutralize ROS and prevent cardiolipin from 
oxidation, inhibiting ROS-related mitochondrial apoptosis[124]. 
Administration of Szeto-Schiller peptide 31 (SS-31) in models 
of glaucomatous rats can dramatically suppress cytochrome 
c release, boost B-cell lymphoma-2 (Bcl-2) expression, and 
downregulate the Bcl-2-associated X (Bax) proteins. It is 
encouraging that SS-31, the first of the penetrating peptides, is 
already undergoing multiple trials to examine its effectiveness 
and security in treating mitochondrial diseases[125-126], 
especially for glaucoma. Other potential antioxidants targeting 
mitochondria have been identified to provide neuroprotection 
for neurodegenerative diseases[127]. 
Other than medication, mitochondria dynamics-associated 
gene therapies can introduce a new gene into patients to treat 
diseases at the genetic level. As adeno-associated viruses 
(AAV) rarely undergo genome integration and are not related 

to human diseases, they are widely studied as potential vectors 
for gene therapy[128]. It has been shown that delivering Opa1 in 
vivo via AAV2 can increase the expression of the Opa1 gene 
and protect RGC against glaucomatous neurodegeneration[129]. 
What’s more, Drp1 inhibition can be achieved by in vivo 
delivery of dominant negative Drp1 K38A mutant (Drp1K38A), 
which can protect RGCs by reducing oxidative stress and 
mitochondria fission[92]. Although there are still many aspects 
to be considered in gene therapy, it is clear that it offers 
new hope for mitochondrial dynamics-related treatment for 
neurodegeneration of glaucoma.
Furthermore, non-invasive red light (650-800 nm) can be 
absorbed by the cytochrome of Complex IV, accelerating ATP 
generation[15] and reducing the damage of oxidative stress[23]. 
The release of NO induced by red light can increase the blood 
flow of ONH, strengthening the transport of O2 and nutrients 
to RGC axons[15]. From the data of the literature, red light 
across the pupil of rats can enhance the function and survival 
of RGCs[130]. Red-light therapy can be achieved with a special 
lens that converts ultraviolet light from the sun into extra red 
light[131], which offers a convenient, noninvasive, and painless 
potential treatment for glaucoma. The limitation of red-
light therapy is that the details of the underlying biochemical 
mechanisms remain to be explored. Meanwhile, due to the 
differences in technical methods and various factors, no 
consensus paradigm for treatment has emerged[132], which 
confines the complete establishment of red-light therapy. 
However, it has become a public consensus to try to use good 
light sources for the eyes in daily life (Table 1).
Encouraging achievements continue to emerge in the 
neuroprotective treatment of glaucoma, but some challenges 
cannot be ignored. Most of the antioxidants found are only 
complementary drugs to glaucoma, which need to be in 
combination with conventional drugs. What’s more, they still 
need to go through repeated trials and final approval before 
becoming a true adjuvant for glaucoma. Some drugs are only 
discovered to have possible molecular mechanisms for the 
treatment of glaucoma but have not been translated into clinical 
trials. Furthermore, added mitochondria-targeting drugs 
need to be developed to achieve a more precise therapeutic 
effect against mitochondrial dysfunction. Therefore, how to 
effectively protect RGCs and other cells involved in glaucoma 
remains a great challenge for scientists and clinicians.
CONCLUSION
To sum up, mitochondria are central for cells to perform a 
range of biological activities. Mitochondrial dysfunction 
promotes the development of glaucoma via mtDNA mutations, 
oxidative stress, and defective mitochondrial quality control. 
Scientists have identified a variety of potential neuroprotective 
options for improving mitochondrial function, such as 
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antioxidants, drugs targeting mitochondrial components, 
mitochondrial dynamics-associated gene therapy, and red-
light therapy. Although most are still in the stage of animal or 
clinical trials, they still offer new insights into the adjuvant 
treatment of glaucoma. In conclusion, with the continuous 
exploration of the pathogenesis of glaucoma, the treatment 
system of glaucoma will be more abundant and complete, 
which will bring huge benefits to glaucoma patients, their 
families, and society.
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