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Abstract
● AIM: To explore hub genes for glaucoma based on 
bioinformatics analysis and an experimental model verification.
● METHODS: In the Gene Expression Omnibus (GEO) 
database, the GSE25812 and GSE26299 datasets were 
selected to analyze differentially expressed genes (DEGs) 
by the GEO2R tool. Through bioinformatics analysis, 9 hub 
genes were identified. Receiver operating characteristic 
(ROC) curves and principal component analysis (PCA) were 
performed to verify whether the hub gene can distinguish 
glaucoma from normal eyes. The mouse model of glaucoma 
was constructed, and the real-time reverse transcriptase-
polymerase chain reaction (RT-qPCR) assay was performed 
to detect the expression levels of hub genes in glaucoma.
● RESULTS: There were 128 overlapping DEGs in the 
GSE25812 and GSE26299 datasets, mainly involved in 
intracellular signalling, cell adhesion molecules and the Ras 
signalling pathway. A total of 9 hub genes were screened 
out, including GNAL, BGN, ETS2, FCGP4, MAPK10, MMP15, 
STAT1, TSPAN8, and VCAM1. The area under the curve (AUC) 
values of 9 hub genes were greater than 0.8. The PC1 axle 
could provide a 70.5% interpretation rate to distinguish 
glaucoma from normal eyes. In the ocular tissues of 
glaucoma in the mice model, the expression of BGN, 
ETS2, FCGR4, STAT1, TSPAN8, and VCAM1 was increased, 
while the expression of GNAL, MAPK10, and MMP15 was 
decreased.
● CONCLUSION: Nine hub genes in glaucoma are 
identified, which may provide new biomarkers and 
therapeutic targets for glaucoma. 
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INTRODUCTION

G laucoma, the second leading cause of blindness, is a 
group of chronic progressive optic nerve diseases[1]. 

It is estimated that 111.8 million people will have glaucoma 
due to the expansion of the ageing population in 2040[2]. 
Currently, lasers therapy, and drugs are the main treatments for 
glaucoma[3-5]. But other diseases are induced in the treatment 
of glaucoma, such as corneal endothelial cell loss, causing 
corneal decompensation[6]. Therefore, it is extremely important 
to further explore the molecular mechanisms and therapeutic 
targets of glaucoma.
Glaucoma is characterized by loss of retinal ganglion cells, 
thinning of the retinal nerve fiber layer, and progressive 
depression of the optic nerve disc[7]. Elevated intraocular pressure 
(IOP) is the most important predisposing factor for glaucoma[8]. 
Glaucoma is influenced by genetic factors. Early-onset, which 
occurs before age 40, is associated with Mendelian inheritance, 
and adult-onset glaucoma has complex genetic features[9]. 
Mutations in OPTN and TBK1 account for approximately 
2%-3% of familial normal-tension glaucoma, inducing patients 
to develop the disease before the age of 40y[10-11]. In addition, 
the vascular endothelial growth factor (VEGF) family is a key 
inducer of corneal neovascularization, consisting of positive 
regulators of retinal angiogenesis[12-13]. Studies have shown that 
VEGF-A gene showed significant changes in expression upon 
recovery from hypoxic tissue damage in retinal diseases and in 
proliferative vitreoretinopathy samples[14-15]. 
In recent years, with the rapid development of bioinformatics 
and high-throughput sequencing, a growing number of genes 
related to glaucoma have been identified. The GSE218153 
gene expression profile in the Gene Expression Omnibus 
(GEO) database shows that TIPARP is associated with IOP 
regulation[16]. Margeta et al[17] found that Apoe and Galectin-3 
are upregulated in the glaucomatous retina and during 
the transformation of microglia into a neurodegenerative 
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phenotype, as revealed by high-throughput sequencing. 
Further study shows that diminished activation of APOE4 
microglia offers protection in glaucoma, and targeting APOE-
Galectin-3 signaling presents a potential therapeutic strategy 
for this vision-impairing condition[18]. However, the underlying 
molecular mechanisms are not fully understood and need to be 
further explored for better clinical application.
In this study, the GSE25812 and GSE26299 datasets from the 
GEO dataset were selected to analyze differentially expressed 
genes (DEGs). Hub genes were identified by bioinformatics 
analysis. Hub gene expression was experimentally validated 
by constructing a mouse model of glaucoma. This study may 
provide new biomarkers and therapeutic targets for glaucoma.
MATERIALS AND METHODS
Ethical Approval  All experimental protocols were approved 
by the Animal Ethics Committee of Anhui Medical University. 
(No.LLSC20221257). All methods were carried out in 
accordance with the Guide for the Care and Use of Laboratory 
Animals. All methods are reported in accordance with 
ARRIVE guidelines for the reporting of animal experiments. 
The study was carried out in accordance with the relevant 
guidelines and regulation.
Microarray Data Source  We selected the GSE25812 
(GPL6887, Illumina MouseWG-6 v2.0 expression beadchip) 
and GSE26299 [GPL1261, (Mouse430_2) Affymetrix Mouse 
Genome 430 2.0 Array] datasets from the GEO database. 
Three non-glaucomatous samples and three glaucomatous 
samples in the GSE25812 dataset were selected. Ten non-
glaucomatous samples and ten glaucomatous samples in the 
GSE26299 dataset were chosen for analysis.
Identification of Differentially Expressed Genes  The 
GSE25812 and GSE26299 datasets were analyzed using the 
GEO2R tool (www.ncbi.nlm.nih.gov/geo/geo2r). The overlapping 
DEGs of the two datasets were identified by plotting the Venn 
diagram (http://jvenn.toulouse.inra.fr/app/example.html).
Functional Enrichment Analysis of Differentially Expressed 
Genes  Gene Ontology (GO) functional enrichment analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis for the overlapping DEGs were 
performed in the Database for Annotation, Visualization, and 
Integrated Discovery database (https://david.ncifcrf.gov/). Box 
plots and bubble plots for the top 6 GO terms and the top 8 
KEGG pathways based on P-values were then plotted using 
the cluster Profiler package in R software (version 3.6.1).
Construction of the Protein-Protein Interactions Network 
and Identification of Hub Genes  The DEGs were analyzed 
using the STRING (https://www.string-db.org/) online 
database to predict the interaction relationships between 
proteins encoded by DEGs. For the significance criteria, the 
confidence interaction score was set at 0.15. The protein-

protein interactions (PPI) network was visualized using 
Cytoscape software (version 3.9.1). Hub modules were 
identified using the Molecular Complex Detection (MCODE) 
plug-in. The screening criteria were: Degree cutoff ≥2, node 
score cutoff ≥0.2, K-core ≥2, and max depth=100. 
Analysis of Hub Genes  We mapped the ridge plot of hub 
genes expression as well as screened for diagnostic biomarkers 
of glaucoma by receiver operating characteristic (ROC) 
curves analysis and principal component analysis (PCA). The 
corresponding area under the ROC curve (AUC) greater than 
0.5 was considered to be significant. An interpretation rate of 
greater than 50% for the PC axis was considered significant.
Construction of a Model Mouse for Glaucoma  We 
induced glaucoma in the eye of mice by injecting magnetic 
microbeads[19]. C57 mice (6-8 weeks old, weighing 18-20 g, SPF 
Biotechnology Co. Ltd., Beijing, China) were used to generate 
the glaucoma models. Two days before the anterior chamber 
injection, mice were treated with ofloxacin hydrochloride 
eye drops (H20067760, Shanglinag Pharmaceutical, Jiangxi 
Province, China) for against infection. The eyes of the mice 
were dilated with compound tropicamide drops (J20180051, 
Santen, Pharmaceutical, Osaka, Japan), and then injected with 
intramuscular injection of Zoletil 50 [8ADTA, Virbac Trading 
(Shanhai), Shanhai, China] and xylazine hydrochloride 
injection (20210308, Fangzheng, Pharmaceutical, Jilin, China), 
at doses of 10 and 4 mg/kg, respectively, for general anesthesia 
and corneal surface anesthesia. Approximately l-2 mm away 
from the cornea at the corneoscleral limbus of the mice, an 
insulin syringe with a needle diameter of 30 G (Yeso-med, 
Wuxi, China) was injected into the anterior chamber with 20 μL of 
a suspension of silica magnetic beads (Knowledge & Benefit 
Sphere, Suzhou, China) at a concentration of 50 mg/mL. The 
mice were then placed intraoperatively with their eyes up on a 
warming pad and cared for until awakening. After 14d, mice 
were anesthetized by intraperitoneal injection of Zoletil 50 and 
xylazine hydrochloride injection. After cervical dislocation 
execution, the eyes of the mice were immediately removed and 
immersed in paraformaldehyde.
Hematoxylin-Eosin Staining  Tissue from each group of mouse 
eye tissue was taken and placed in 4% paraformaldehyde 
solution for fixation. After dehydration in ethanol, the tissue 
was embedded in paraffin impregnation and sectioned to 4 
microns for hematoxylin-eosin (HE) staining. The mouse 
eye tissue physiological changes were observed under a light 
microscope (OLYMPUS, Japan) and photographed.
Real-time Reverse Transcriptase - Quantitative Polymerase 
Chain Reaction Assay  We have referred to the relevant 
literature for the specific experimental steps of reverse 
transcriptase - quantitative polymerase chain reaction (RT-
qPCR)[20]. The primer sequences used are shown in Table 1.

Hub genes for glaucoma



1017

Int J Ophthalmol,    Vol. 16,    No. 7,  Jul.18,  2023         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

Statistical Analysis  GraphPad Prism 9 (version 9.5.0.730) was 
used to conduct the statistical analysis. To compare continuous 
variables between the two groups, an unpaired t-test was 
conducted. P<0.05 was regarded as statistically significant.
RESULTS
Identification of Differentially Expressed Genes  GSE25812 
and GSE26299 datasets were downloaded from the GEO 
database to screen DEGs. The GSE25812 dataset contains 
6 samples: 3 non-glaucomatous samples (control) and 3 
glaucomatous samples (model). Meanwhile, the GSE26299 has 
20 samples, including 10 non-glaucomatous samples (control) 
and 10 glaucomatous samples (model). We first standardized 
the read counts for each sample in GSE25812 and GSE26299 
datasets. The findings revealed that the median values are 
nearly identical for each sample (Figure 1A: GSE25812, 
Figure 1B: GSE26299), demonstrating that the GSE25812 and 
GSE26299 datasets fit the criteria for further research. There 
were 1737 DEGs in the GSE25812 dataset, of which 742 were 
up-regulated, and 995 were down-regulated (Figure 2A). In the 
GSE26299 dataset, there were 1532 DEGs, including 647 up-
regulated genes and 885 down-regulated genes (Figure 2B). 
Then we plotted the heatmap of the top 25 up-regulated and 
down-regulated genes (Tables 2 and 3) according to P value in 
the GSE25812 and GSE26299 datasets (Figure 2C and 2D). 
Venn diagram showed that there were 128 overlapping DEGs 
for GSE25812 and GSE26299 datasets (Figure 3). 
Functional Enrichment Analysis of Overlapping 
Differentially Expressed Genes  GO annotation analysis 
and KEGG pathway analysis was performed in the DAVID 
database to explore the potential molecular functions of the 
overlapping DEGs. According to P-value, the top 6 GO terms 
with the most significant enrichment were picked out, and 
the results were shown in the bubble plot of GO enrichment 
analysis (Figure 4A). The results showed that in the MF 

category, the DEGs primarily had an essential correlation with 
protein kinase binding, protein serine/threonine kinase activity 
and metal ion binding. For the BP category, the DEGs were 
mainly involved in neural crest cell migration, vasodilation and 
TOR signaling. For the CC category, the DEGs were mainly 
enriched in the cell surface, nucleoplasm and endoplasmic 
reticulum. According to p-value, the top 8 KEGG pathways 
with the most significant enrichment were picked out, and 
the results are shown in the bubble plot of KEGG pathways 
enrichment analysis (Figure 4B). The results showed that 
the DEGs were mainly enriched in expression and PD-1 
checkpoint pathway in cancer, cell adhesion molecules and 
Ras signaling pathway.
Construction of PPI Networks and Identification of Hub 
Genes  A PPI network was constructed in the STRING 
database to analyze the interactions of the overlapping DEGs. 
The PPI network consists of 76 genes (Figure 5). Then the PPI 
network was visualized by Cytoscape software. The MCODE 
was then used to identify highly interconnected clusters from 
the PPI network of DEGs as potential functional molecular 
complexes for glaucoma, from which nine hub genes were 

Table 1 Primer sequence information used in this study

Name Sequences (5’-3’)
GAPDH-F CTCATGACCACAGTCCATGC
GAPDH-R TTCAGCTCTGGGATGACCTT
GNAL-F GCTGGCAGAAAAAGTCTTGG
GNAL-R GCAGGTGAAGTGAGGGTAGC
BGN-F GACAACCGTATCCGCAAAGT
BGN-R GTGGTCCAGGTGAAGTTCGT
ETS2-F AATGCAGGCACCAAACTACC
ETS2-R GTCCTGGCTGATGGAACAGT
FCGR4-F AACGGCAAAGGCAAGAAGTA
FCGR4-R CCGCACAGAGAAATACAGCA

Figure 1 Normalization to samples in the GSE25812 and the GSE26299 datasets  A: Cross-comparability evaluation of data set samples in the 

GSE25812; B: Cross-comparability evaluation of data set samples in the GSE26299 dataset.
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Table 2 The top 25 DEGs of the up-regulated versus down-regulated genes in the GSE25812 dataset

Name Description log2 fold change P Up/down
Tdrd7 Tudor domain containing 7 3.50 3.90E-11 Up
Snhg12 Small nucleolar RNA host gene 12 1.73 9.83E-08 Up
Ttc27 Tetratricopeptide repeat domain 27 1.13 1.27E-03 Up
Hspb1 Heat shock protein 1 0.99 5.20E-05 Up
ND5 NADH dehydrogenase subunit 5 0.94 1.33E-02 Up
Actb Heat shock protein 8 0.81 2.84E-03 Up
Fbxo10 Actin, beta 0.78 2.35E-02 Up
Ppm1e Actin, beta 0.75 4.36E-02 Up
Snx22 F-box protein 10 0.75 1.10E-03 Up
AA467197 RIKEN cDNA 5430416N02 gene 0.63 8.57E-06 Up
Ccdc117 Protein phosphatase 1E (PP2C domain containing) 0.63 3.49E-06 Up
Cryab Sorting nexin 22 0.63 2.38E-05 Up
Lin7a Kelch-like 22 0.63 4.67E-04 Up
Ints3 Expressed sequence AA467197 0.62 3.01E-04 Up
H2-Eb1 Coiled-coil domain containing 117 0.61 6.24E-03 Up
Gm11837 Crystallin, alpha B 0.58 6.57E-03 Up
Uba6 Lin-7 homolog A (C. elegans) 0.57 1.12E-02 Up
Tmem254a Integrator complex subunit 3 0.55 5.38E-05 Up
Gadd45a Histocompatibility 2, class II antigen E beta 0.54 7.26E-04 Up
Abcc5 Predicted gene 11837 0.52 3.15E-02 Up
Ceacam2 Ubiquitin-like modifier activating enzyme 6 0.51 4.36E-02 Up
Hfe RIKEN cDNA 1300017J02 gene 0.51 5.01E-05 Up
Ndufa5 Transmembrane protein 254a 0.50 4.21E-02 Up
S100a6 Growth arrest and DNA-damage-inducible 45 alpha 0.50 1.21E-03 Up
Ech1 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 0.49 1.68E-03 Up
Olfml3 LKAAEAR motif containing 1 (IKAAEAR murine motif) -0.22 1.62E-02 Down
Hbb-bs Calcium channel, voltage-dependent, alpha2/delta subunit 1 -0.22 6.13E-03 Down
Serbp1 Dipeptidylpeptidase 9 -0.22 1.49E-02 Down
Kctd12 Hook microtubule tethering protein 3 -0.22 3.48E-02 Down
Osbp2 THO complex 3 -0.22 3.66E-02 Down
Alox12 Kinesin family member 27 -0.22 1.31E-02 Down
Pigt Mastermind like 3 (Drosophila) -0.22 7.06E-03 Down
Scnn1b Zinc finger protein 638 -0.22 2.81E-02 Down
Epb41l4a Zinc finger protein 454 -0.22 9.08E-03 Down
Pabpc1 Remodeling and spacing factor 1 -0.22 1.72E-02 Down
Fus Vomeronasal 1 receptor 19 -0.22 6.55E-03 Down
Rgs5 Lectin, mannose-binding 1 like -0.22 1.90E-02 Down
Aqp1 Zinc finger, HIT type 6 -0.22 1.99E-02 Down
Ankrd40 Transmembrane and tetratricopeptide repeat containing 4 -0.22 1.78E-02 Down
Casp7 Coagulation factor V -0.22 1.56E-02 Down
Gstp1 RIKEN cDNA 2310030G06 gene -0.22 2.12E-02 Down
H2afy Alpha-kinase 2 -0.22 1.24E-02 Down
Lgmn Oocyte specific homeobox 6 -0.22 4.10E-02 Down
Plekhs1 FMS-like tyrosine kinase 1 -0.22 2.59E-02 Down
Snap47 Centrosomal protein 63 -0.22 1.23E-02 Down
Pkn1 RIKEN cDNA 1700102P08 gene -0.22 2.18E-02 Down
Optn Predicted gene 436 -0.22 3.74E-02 Down
Ide Isoleucine-tRNA synthetase 2, mitochondrial -0.22 4.97E-02 Down
Ssbp2 Bridging integrator 3 -0.22 1.27E-02 Down
Ogn Hyaluronoglucosaminidase 3 -0.22 3.77E-02 Down

DEGs: Differentially expressed genes. 

Hub genes for glaucoma
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Table 3 The top 25 DEGs of the up-regulated versus down-regulated genes in the GSE26299 dataset (continued)

Name Description log2 fold change P Up/down
Lcn2 Lipocalin 2 2.87 1.87E-09 up
Ccl12 Chemokine (C-C motif) ligand 12 2.09 9.22E-09 up
Steap4 STEAP family member 4 2.07 1.69E-09 up
Ciapin1 Cytokine induced apoptosis inhibitor 1 2.01 2.37E-06 up
Defa15 Defensin, alpha, 15 2.00 7.68E-06 up
Chil1 Chitinase-like 1 1.89 1.48E-12 up
Sla Src-like adaptor 1.88 1.58E-06 up
Csnk2a1 Casein kinase 2, alpha 1 polypeptide 1.81 8.97E-17 up
Ndel1 nudE neurodevelopment protein 1 like 1 1.81 2.31E-14 up
Lyz1 Lysozyme 1 1.80 5.07E-10 up
Edn2 Endothelin 2 1.76 7.52E-12 up
C3 Complement component 3 1.72 4.79E-07 up
Neo1 Neogenin 1.67 1.58E-05 up
AA409587 Casein kinase 2, alpha 1 polypeptide 1.66 5.85E-13 up
Megf11 Expressed sequence AA409587 1.63 1.45E-13 up
Slc5a3 Multiple EGF-like-domains 11 1.63 7.70E-11 up
Gfap Solute carrier family 5 (inositol transporters), member 3 1.61 3.77E-13 up
Idh3a Glial fibrillary acidic protein 1.59 3.61E-10 up
Pten Mannosidase 2, alpha 2 1.56 8.18E-15 up
Riok1 Isocitrate dehydrogenase 3 (NAD+) alpha 1.53 2.28E-06 up
Npvf Phosphatase and tensin homolog 1.52 2.57E-11 up
Tmem56 Cysteine rich protein 61 1.49 1.48E-08 up
Pla2g6 RIO kinase 1 (yeast) 1.49 2.03E-12 up
Pot1a Neuropeptide VF precursor 1.47 1.18E-06 up
Tagln2 Transmembrane protein 56 1.46 8.08E-12 up
Tfap2e UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 6 -1.88 2.20E-13 Down
Ddx55 Hyaluronan and proteoglycan link protein 1 -1.85 3.11E-11 Down
Chd3os Complexin 1 -1.74 7.33E-17 Down
Mro RIKEN cDNA 1110032F04 gene -1.67 3.43E-13 Down
Zp3 DiGeorge syndrome critical region gene 8 -1.66 6.61E-15 Down
Atg10 Major urinary protein 10 -1.62 2.81E-02 Down
Myl7 Serine/threonine kinase 32A -1.61 5.41E-14 Down
Spats1 Leucine-rich repeat LGI family, member 1 -1.56 4.25E-14 Down
Gm9958 T-box 20 -1.56 5.81E-12 Down
Fpr1 Cholinergic receptor, nicotinic, alpha polypeptide 3 -1.56 2.99E-13 Down
Rrm2 Potassium voltage-gated channel, Shal-related family, member 2 -1.55 6.42E-12 Down
Gm2769 Calbindin 2 -1.53 1.52E-17 Down
Rarb Junction adhesion molecule 2 -1.51 1.95E-14 Down
Mapre3 RIKEN cDNA 4933438K21 gene -1.50 1.03E-02 Down
Gdf3 RNA binding protein gene with multiple splicing -1.50 5.59E-10 Down
Nphp3 Neurofilament, heavy polypeptide -1.48 1.14E-14 Down
Lap3 Adenylate cyclase activating polypeptide 1 -1.42 4.26E-13 Down
Grap Kit ligand -1.41 2.16E-14 Down
Saa2 Forkhead box P2 -1.40 2.95E-08 Down
Bpifb3 Copine IV -1.37 8.54E-13 Down
Ergic3 Anoctamin 3 -1.37 9.29E-12 Down
Mx1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B) -1.35 2.97E-13 Down
Zmym3 cDNA sequence BC048546 -1.31 3.42E-09 Down
Alyref Regulator of G-protein signaling 4 -1.31 8.02E-12 Down
Rab17 A disintegrin and metallopeptidase domain 10 -1.30 4.21E-10 Down

DEGs: Differentially expressed genes. 
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identified, including GNAL, BGN, ETS2, FCGP4, MAPK10, 
MMP15, STAT1, TSPAN8, and VCAM1 (Figure 6). 
Biomarkers of Nine Hub Genes for Glaucoma  Based on the 
GSE25812 dataset, the ridge plot of hub genes expression were 
mapped by the ggridges packages in R software. The results 
showed that among nine hub genes, the data distribution of 
MMP15 and STAT1 is relatively dense, and STAT1 had the 
highest expression. The sample size expressing FCGR4 was 
the largest (Figure 7). We plotted the ROC curve for nine hub 
genes by the pROC packages in R software, according to the 

GSE25812 dataset. The results showed that the AUC values 
of nine hub genes were greater than 0.8 (Figure 8A-8E), 
indicating that they could be used as diagnostic biomarkers for 
glaucoma. Then we performed PCA on nine key genes. Figure 
9 showed that a total of two PC axes are generated, including 
PC1 and PC2. PC1 explained the vast majority of the variance 
(70.5%), while PC2 provided a lower rate of explanation 
(11.3%; Figure 9), which illustrating that PC1 could be used to 
distinguish the glaucoma from the normal eyes.
Construction of a Mouse Model for Glaucoma  Next, we 
constructed a mouse model for glaucoma. HE staining showed 
that in the control group, ocular tissues such as atrial angle 
and retina were normal. However, the model group exhibited 
some ocular hypertension induced retinopathy, such as retinal 
atrophy and thinning, disorganized cells in the inner and outer 
nuclear layers, and significantly fewer retinal ganglion cells 
(Figure 10). 
Validation of mRNA Expression of Nine Hub Genes  
We then performed RT-qPCR to validate the expression 
of nine genes in glaucoma. The results showed that the 
mRNA expressions of BGN, ETS2, FCGR4, STAT1, 
TSPAN8 and VCAM1 were significantly elevated in the 
model groups compared with the control groups. while the 

Figure 2 Identification of DEGs for glaucoma  A: Volcano plot of DEGs in the GSE25812 dataset. Red dots represent up-regulated genes in 

the group, and blue dots represent down-regulated genes in the group. B: Volcano plot of DEGs in the GSE26299 dataset. C: Heatmap of the 

up-regulated versus down-regulated genes ranked the top 25 in the GSE25812 dataset. Red represents highly expressed genes, and blue 

represents lowly expressed genes. D: Heatmap of the up-regulated versus down-regulated genes ranked the top 25 in the GSE26299 dataset.  

DEGs: Differentially expressed genes.

Figure 3 Venn diagram for overlapping DEGs in GSE25812 and 

GSE26299 dataset  DEGs: Differentially expressed genes.

Hub genes for glaucoma
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mRNA expressions of GNAL, MAPK10 and MMP15 were 
significantly decreased (Figure 11).

DISCUSSION
The pathophysiology of glaucoma is frequently associated with 
hereditary factors. Genetic linkage analysis[21], whole exome 
sequencing[22] and genome-wide association study[23] are used 
to identify the genes that are responsible for glaucoma[24]. In 
recent years, an increasing number of genes associated with 
glaucoma have been revealed. In the trabecular meshwork, 
the expression of BDKRB1 was significantly reduced after 
dexamethasone treatment[25]. VEGF plays a crucial and 
possibly dominant role in the development of intraocular 
neovascularization and neovascular glaucoma[26]. In the 
present study, we downloaded the datasets of GSE25812 and 
GSE26299 from GEO database and finally identified 9 key 
genes including GNAL, BGN, ETS2, FCGP4, MAPK10, 
MMP15, STAT1, TSPAN8 and VCAM1. The AUC curve 
area for the 9 key genes was greater than 0.8, and the PC1 
axis composed of them had an interpretation rate of 70.5% 

Figure 4 GO annotations and KEGG pathways for overlapping genes  A: The top 6 items of the GO annotations are illustrated in a bubble plot. 

B: The top 8 KEGG pathways are illustrated in a bubble plot. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Figure 5 The PPI network of the overlapping DEGs  DEGs: 

Differentially expressed genes; PPI: Protein-protein interactions.

Figure 6 The hub modules of the overlapping DEGs  DEGs: 

Differentially expressed genes.

Figure 7 The expression abundance analysis of hub genes  The 

horizontal coordinates represent the amount of gene expression, 

the shape of the peaks indicates the dispersion between a set of 

data, and the vertical coordinates represent the number of samples 

corresponding to the amount of gene expression.
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to distinguish glaucoma from normal eyes. Moreover, the 
expression of BGN, ETS2, FCGR4, STAT1, TSPAN8 and 
VCAM1 was increased in the mouse model of glaucoma. 
Conversely, the expression of GNAL, MAPK10 and MMP15 
was decreased.
In this study, a total of 128 overlapping DEGs were screened in 
the GSE25812 and GSE26299 datasets. The utilization of GO 
and KEGG functional enrichment analyses for DEGs facilitated 
the identification of genes associated with various biological 
processes. In the MF category, the DEGs primarily associated 
with protein kinase binding, protein serine/threonine kinase 

Figure 8 ROC curve analysis of key genes  A: GNAL; B: BGN; C: ETS2; D: FCGP4; E: MAPK10; F: MMP15; G: STAT1; H: TSPAN8; I: VCAM1. ROC: 

Receiver operating characteristic. 

Figure 10 Histological changes in glaucoma was observed by HE 

staining  HE staining: Hematoxylin-eosin staining.

Figure 9 PCA analysis of key genes  The coordinate axes PC1 and PC2 of 

the plot are the first and second principal components (rate of variance 

explained by latent variables). Dots represent samples and different 

colors indicate different groupings. PCA: Principal component analysis.

Hub genes for glaucoma
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Figure 11 Validation of mRNA expression of 9 hub genes  A: RT-qPCR to detect mRNA expression levels of GNAL. B: BGN. C: ETS2. D: FCGR4. E: 

MAPK10; F: MMP15; G: STAT1; H: TSPAN8; I: VCAM1. aP<0.05, bP<0.01, cP<0.001. RT-qPCR: Real-time reverse transcriptase-polymerase chain reaction; 

GLC: Glaucoma.

activity and metal ion binding. The previous study has shown 
that CDC42 binding protein kinase beta is associated with 
changes in the number of necrotic axons in the optic nerve[27]. 
Rho kinase, a serine/threonine protein kinase, its inhibitors 
reduce IOP in vivo and in vitro[28]. Moreover, a previous study 
showed that dithiocarbamates ligated with metal ions to exert 
an anti-glaucoma effect[29]. In the BP category, the DEGs were 
mainly involved in neural crest cell migration, vasodilation and 
the target of rapamycin (TOR) signaling, which was consistent 
with previous findings[30-32]. In the cellular components (CC) 
category, the DEGs were mainly enriched in the cell surface, 
nucleoplasm and endoplasmic reticulum, which might 
be related to the binding of signaling molecules, genetic 
alterations, and protein metabolic processes[33-34]. In addition, 
KEGG enrichment analysis showed that the DEGs were 
mainly enriched in expression and PD-1 checkpoint pathway 
in cancer, cell adhesion molecules and Ras signaling pathway. 
Integrins, a group of cell adhesion molecules, are involved in 
the progression of ocular diseases[35]. The reduction of IOP 
by Ras inhibitors is most probably by the reestablishment of 
the extracellular matrix (ECM) homeostasis[36]. In addition, 
immune response plays an important role in glaucoma, and 
perhaps immune checkpoint inhibition is a new target for 
glaucoma treatment[37].
Further studies found that the expression of BGN, ETS2, 
FCGR4, STAT1, TSPAN8 and VCAM1 was increased in the 

mouse model of glaucoma. Conversely, the expression of 
GNAL, MAPK10 and MMP15 was decreased. GNAL, also 
known as G protein subunit alpha L, encodes a stimulatory 
G protein alpha subunit. Mutations in GNAL are closely 
related to dystonia, which are involved in glaucoma[38-40]. 
VCAM1, a member of the Ig superfamily, produces a cell 
surface sialoglycoprotein[41]. A genome-wide Meta-analysis 
identifies VCAM1 as a high-risk gene for primary openangle 
glaucoma[42]. In the aqueous humor, VCAM1 might be used as 
a biomarker to predict the progression of diabetic retinopathy, 
and VCAM1 is overexpressed in the iris of uveitis patients[43-44]. 
STAT1 encodes a member of the STAT protein family that 
several ligands, such as interferon-alpha, interferon-gamma, 
epidermal growth factor, platelet-derived growth factor, and 
interleukin (IL)-6, can activate. STAT1 is mainly associated 
with immunity[45-47] and viral infections[48]. In the early period 
after glaucoma filtration surgery, STAT1 expression was 
reduced, acting in a manner complementary to STAT3[49]. 
A study reported that STAT1 expression was upregulated in 
glaucoma but not significantly changed in optic nerve cross-
sections[50]. Differential pathway activity between retinal 
ganglion cell subpopulations may be regulated by STAT1[51]. 
ETS2 encodes a transcription factor that regulates development 
and apoptosis. CDK10 interacts with ETS2 and is involved 
in corneal epithelial wound healing[52]. Arsenic trioxide 
inhibits VEGF-A expression in vascular endothelial cells by 
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upregulating ETS2[53]. In addition, BGN, FCGR4, TSPAN8, 
MAPK10 and MMP15 were found to be aberrantly expressed 
in glaucoma for the first time and may be used as biomarkers. 
Taken together, we hypothesized that the nine hub genes might 
play an important role in the development of glaucoma.
However, there are several shortcomings in this study. First, 
through bioinformatics analysis, we found that the DEGs 
were significantly associated with TOR and Ras signaling 
pathway, but we only studied the key genes and did not 
investigate the signaling pathway in depth. Second, functional 
experiments were not designed due to the limitation of 
scientific research. Nevertheless, our study still provides new 
molecular mechanisms and possible therapeutic targets for 
glaucoma.
In conclusion, a total of 128 DEGs were screened by analyzing 
the GSE25812 and GSE26299 datasets. These DEGs 
were associated with protein kinase binding, cell adhesion 
molecules, and TOR and Ras signaling pathways. Finally, 
9 hub genes for glaucoma were screened, including GNAL, 
BGN, ETS2, FCGP4, MAPK10, MMP15, STAT1, TSPAN8 
and VCAM1, which might provide a theoretical basis for 
clinical application.
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