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Abstract 
● AIM: To evaluate the clinical application value of the 
artificial intelligence assisted pathologic myopia (PM-AI) 
diagnosis model based on deep learning. 
● METHODS: A total of 1156 readable color fundus 
photographs were collected and annotated based on the 
diagnostic criteria of Meta-pathologic myopia (PM) (2015). 
The PM-AI system and four eye doctors (retinal specialists 
1 and 2, and ophthalmologists 1 and 2) independently 
evaluated the color fundus photographs to determine 
whether they were indicative of PM or not and the presence 
of myopic choroidal neovascularization (mCNV). The 
performance of identification for PM and mCNV by the PM-
AI system and the eye doctors was compared and evaluated 
via the relevant statistical analysis.
● RESULTS: For PM identification, the sensitivity of the 
PM-AI system was 98.17%, which was comparable to 
specialist 1 (P=0.307), but was higher than specialist 2 and 
ophthalmologists 1 and 2 (P<0.001). The specificity of the 
PM-AI system was 93.06%, which was lower than specialists 
1 and 2, but was higher than ophthalmologists 1 and 2. 
The PM-AI system showed the Kappa value of 0.904, while 
the Kappa values of specialists 1, 2 and ophthalmologists 
1, 2 were 0.968, 0.916, 0.772 and 0.730, respectively. For 
mCNV identification, the AI system showed the sensitivity 
of 84.06%, which was comparable to specialists 1, 2 
and ophthalmologist 2 (P>0.05), and was higher than 
ophthalmologist 1. The specificity of the PM-AI system was 

95.31%, which was lower than specialists 1 and 2, but 
higher than ophthalmologists 1 and 2. The PM-AI system 
gave the Kappa value of 0.624, while the Kappa values of 
specialists 1, 2 and ophthalmologists 1 and 2 were 0.864, 
0.732, 0.304 and 0.238, respectively.
● CONCLUSION:  In  compar ison to  the  sen ior 
ophthalmologists, the PM-AI system based on deep 
learning exhibits excellent performance in PM and mCNV 
identification. The effectiveness of PM-AI system is an 
auxiliary diagnosis tool for clinical screening of PM and 
mCNV.
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pathologic myopia; choroidal neovascularization
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INTRODUCTION

M yopia, a most prevalent ocular refractive error status, 
has caused considerable impact on the public health 

and socioeconomic well-being burden[1-2]. Pathologic myopia 
(PM), a severe form of myopia commonly seen in high myopia 
worse than -6.00 D, is complicated with the characteristic 
maculopathy lesions and may result in the great risk of sight-
threatening complications. The global incidence of PM was 
about 1%-4% in the general population and 5%-10% in 
diagnosed myopia, with a more serious situation in the Eastern 
Asia nations[3-6].
The pathological lesions of PM are often irreversible, due to 
the lack of effective treatment and poor prognosis. The early 
identification and timely medical intervention are critically 
important for alleviating the vision impairment caused by 
PM[7]. Moreover, as the progression of PM lesions is slow, the 
patients may neglect the ocular symptoms and thus miss the 
chance of intervention in the early stage of PM. Therefore, 
the effective and professional screening for the relevant PM 
lesions is an urgent mission for public vision function health 
care, but also a great challenge in view of the large myopic 
population.
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A Meta-analysis for PM (Meta-PM) study group provided a 
novel simplified and uniform systematic classification system 
for myopic maculopathy based on color fundus photography 
in 2015, which provided a practical screening criterion for 
PM diagnosis and analysis[8]. According to this criterion, 
PM was defined as myopic maculopathy of a category equal 
to or more serious than diffuse choroidal atrophy or with at 
least one “Plus” lesion [lacquer crack (LC)/myopic choroidal 
neovascularization (mCNV)/Fuchs spot]. Among the “Plus” 
lesions, Fuchs spots are considered dry fibrovascular scars 
of mCNV and barely need treatment and LC, which may be 
accompanied by chorioretinal hemorrhage and may progress to 
mCNV or patchy atrophy[9-10], is often difficult to be observed 
on color fundus photographs[11]. The mCNV is the major cause 
of visual impairment in PM and may result in patchy choroidal 
or macular atrophy, leading to irreversible visual loss if without 
prompt intervention[9,12]. Recently, the intravitreal anti-vascular 
endothelial growth factor drugs showed definite therapeutic 
effects and is the first-line option for mCNV treatment[12-14]. 
Therefore, early detection and treatment of mCNV are of 
paramount importance. 
Of note, the large scale screening task for the aforementioned 
PM lesions in specialist eye clinic or medical care institutes 
is exhausting if completed by man power alone, especially in 
the nations with high prevalence of myopia/PM. In addition, 
primary care general ophthalmologists often lack the requisite 
expertise to identify PM and its complications, while there is 
always a serious shortage of ocular fundus specialists. 
With the rapid development of artificial intelligence (AI) 
technology, the AI-assisted medical diagnosis has started to 
play an important role in the clinical management. With the 
aid of AI technology, the mission with daunting working 
volume of PM screening become feasible. Among AI, the deep 
learning system is a sophisticated subclass that mimics the 
way of the human brain works and has excellent performance 
comparable to that of board-certified experts in the respect of 
massive medical image categorizing[15-16]. The deep learning 
related diagnosis systems have been successfully applied in 
the identification of diabetic retinopathy, glaucoma and other 
ocular diseases[17-21].
In previous studies, we developed a series of color fundus 
photograph based AI models (PM-AI), and finally achieved 
the following three tasks: 1) automatic identification of PM; 
2) automatic classification of myopic maculopathy categories; 
3) detection and localization of “Plus” lesions. The algorithms 
and AI-models achieved the robust performance in the external 
verification set[22-23].
The aim of this study is to further evaluate the feasibility and 
effectiveness of our in-house developed AI models for PM 
screening and mCNV detection by comparing the performance 

of PM-AI models with retinal specialists and senior primary 
ophthalmologists in a real world clinical scenario.
SUBJECTS AND METHODS 
Ethical Approval  The study was approved by the Ethics 
Committee of the First Affiliated Hospital, School of Medicine, 
Zhejiang University (approval ID: No.2020–693), and adhered 
to the tenets of the Declaration of Helsinki. Informed consent 
was waived by the ethics committee due to the retrospective 
and fully anonymized nature of the data.
Dataset  A total of 1265 color fundus photographs were 
collected from the eye center of the First Affiliated Hospital 
of School of Medicine, Zhejiang University, between January 
2021 and December 2021. Among them, 965 color fundus 
photographs were from the patients with high myopia 
(spherical equivalent less than -6.00 D or axial length longer 
than 26.0 mm), and 300 color fundus photographs were from 
the patients without high myopia. The desktop nonmydriatic 
retinal cameras and digital retinography systems (Canon, 
Japan) were used to capture the color fundus photographs, 
which were maculalutea-centered 45° color fundus 
photographs. 
Annotation  The quality of the included color fundus 
photographs was assessed by one ophthalmic technician 
to exclude ungradable images caused by the factors of 
underexposure, false focus, or clouding of the refractive 
media. The criteria to determine a gradable image includes: 1) 
Images should be the standard 45° field with entire optic nerve 
head and macula included; 2) Images should have perfect 
exposure without dark and washed-out areas; 3) Images should 
with fewer artifacts, avoiding dust spots, arc defects due to 
eyelid blocking and eyelash images; 4) The image focus 
should be good for small retinal lesions identification. The 
gradable images were then assigned to three retinal specialists 
for independent annotation: PM or non-PM, mCNV or no 
mCNV. The diagnosis of PM was made according to the 
Meta-PM (2015) criteria as described above. The unanimous 
results agreed by all three retinal specialists were used as the 
reference standard for the subsequent study. A senior retinal 
specialist was required to arbitrate the results to make the final 
annotation decision, if any inconsistent results among the three 
specialist annotators existed.
Artificial Intelligence Identification  The deep learning 
system (PM-AI) was used to identify the relevant lesions in the 
color fundus photographs. This PM-AI system was previously 
developed based on ResNet18 and the Faster Region-based 
Convolution Neural Network (R-CNN) algorithm, and was 
trained using a dataset of 32 010 color fundus photographs[22]. 
The PM-AI system automatically analyzed and identified 
fundus signs in the input images. It then generated the PM 
screening report including the results of PM or non-PM, the 
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category of myopic maculopathy, and the presence of Plus 
lesions, if any. The results of whether these images had PM or 
mCNV were recorded.
Human Identification  Two retinal specialists with more than 
10y clinical experience from the tertiary hospitals (specialists 
1 and 2) and two senior ophthalmologists from the district 
hospitals (ophthalmologists 1 and 2), who were not taught with 
the Meta-PM (2015) diagnose criteria or participated in the 
previous work of the algorithm development, independently 
annotated the images based on their own clinical expertise. The 
judgement of PM/non-PM and presence/absence of mCNV 
were then made by the two specialists and ophthalmologists 
respectively.
Statistical Analysis  SPSS Statistics 25.0 (IBM, Armonk, NY) 
was used for the statistical analyses. The statistical indicators 
included sensitivity, specificity, and diagnostic test consistency 
(Kappa value). 
According to the reference standard, Kappa values <0.40 
were considered to indicate poor consistency, values between 
0.41-0.75 were considered to indicate good consistency, 
and values between 0.75-1.0 were considered to indicate 
perfect consistency. The 95% confidence intervals (CIs) were 
calculated using the modified Wald method. The McNemar 
test was performed to compare the performances of PM-
AI and different doctors, with a P value of <0.05 considered 
statistically significant. The detailed calculation formulae 
were as follows: Accuracy=(TP+TN)/(TP+FN+FP+TN), 
Sensitivity=TP/(TP+TN), Specificity=TN/(TN+FP). TP: 
true positive, FN: false negative, FP: false positive, TN: true 
negative.
RESULTS
A total of 1265 color fundus photographs were collected and 
109 unreadable images were excluded. The remaining 1156 

images (including 877 with high myopia and 279 without high 
myopia) were all considered as readable after being uploaded 
to the PM-AI software. The characteristics of the color fundus 
photograph dataset were shown in Table 1.
For PM/non-PM identification, sensitivity of the PM-AI 
system was 98.17%, which was not statistically significantly 
different from specialist 1 (96.96%), but was higher than that 
of specialist 2 and ophthalmologists 1 and 2 (P<0.05). The 
specificity of the PM-AI system was 93.06%, which was lower 
than that of specialists 1 and 2 (both 99.55%), but higher than 
that of ophthalmologists 1 and 2 (89.59% and 84.16%), and 
the differences were all statistically significant. Compared with 
the reference standard, the Kappa value of the PM-AI system 
was 0.904, indicating the perfect consistency (Table 2). 
For the identification of mCNV, the PM-AI system showed 
the sensitivity level of 84.06%. There was no statistically 
significant difference in sensitivity level between the PM-
AI system and specialists 1, 2 or ophthalmologist 2 (81.16%, 
86.96%, and 92.75%, respectively), while the PM-AI system 
showed significantly higher sensitivity than ophthalmologist 
1 (63.77%). The specificity of the PM-AI system was 
95.31%, which was lower than specialists 1 and 2 (99.45% 
and 97.15%), but was higher than ophthalmologists 1 and 2 
(88.13% and 74.61%), and the differences were statistically 
significant. Compared with the reference standard, the Kappa 
value of the PM-AI system was 0.624, indicating good 
consistency (Table 3). 
The false positive of our AI model for PM detection were 
mainly due to the confounding factors like inflammatory 
atrophic lesions (e.g. multifocal choroiditis), laser scars with 
depigmented atrophy, and misclassification of “tessellated 
fundus (C1)” images as “diffuse atrophy (C2)”. The false 
negatives for PM detection mostly occurred in images where 

Table 1 Demography of the color fundus photograph dataset

Items No. of images No. of participants Mean age (y) Spherical equivalent (diopters)
Total 1265 1073 53.3 -3.89±5.90
Ungradable images 109 105 NA NA
Non-PM 663 596 55.9 -1.25±3.04
PM 493 477 56.2 -12.5±7.83
mCNV 69 69 47.4 -9.31±4.26

PM: Pathologic myopia; NA: Not available; mCNV: Myopic choroidal neovascularization.

Table 2 Performances of AI and ophthalmologists in PM identification

Items Sensitivities, (95%CI), % P Specificities, (95%CI), % P Kappa
AI 98.17 (96.51-99.09) 93.06 (90.85-94.77) 0.904
Specialist 1 96.96 (95.00-98.19) 0.307 99.55 (98.61-99.91) <0.001a 0.968
Specialist 2 91.08 (88.21-93.30) <0.001a 99.55 (98.61-99.91) <0.001a 0.916
Ophthalmologist 1 87.83 (84.63-90.44) <0.001a 89.59 (87.02-91.70) <0.001a 0.772
Ophthalmologist 2 89.86 (86.86-92.24) <0.001a 84.16 (81.18-86.75) <0.001a 0.730

AI: Artificial intelligence; PM: Pathologic myopia; CI: Confidence interval. aP<0.05 compared to AI. 
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C2 was misclassified as C1, or in images with atypical 
LCs (Figure 1). On the other hand, the false positives for 
mCNV detection were mainly due to the factors of macular 
hemorrhages caused by other diseases, small macular atrophy, 
and photographic reflective artifacts. while the false negatives 

for mCNV detection were mostly due to occult CNVs, which 
were relatively small in size or with only trace hemorrhages 
(Figure 2).
DISCUSSION
In previous work, we developed the algorithms to 

Table 3 Performances of AI and ophthalmologists in mCNV identification

Items Sensitivities, (95%CI), % P Specificities, (95%CI), % P Kappa
AI 84.06 (73.49-91.03) 95.31 (93.87-96.42) 0.624
Specialist 1 81.16 (70.25-88.78) 0.815 99.45 (98.77-99.78) <0.001a 0.864
Specialist 2 86.96 (76.81-93.21) 0.791 97.15 (95.97-98.00) 0.024a 0.732
Ophthalmologist 1 63.77 (51.96-74.13) 0.009a 88.13 (86.07-89.93) <0.001a 0.304
Ophthalmologist 2 92.75 (83.77-97.23) 0.180 74.61 (71.94-77.11) <0.001a 0.238

AI: Artificial intelligence; mCNV: Myopic choroidal neovascularization; CI: Confidence interval. aP<0.05 compared to AI. 

Figure 1 Typical false positive or negative images of AI model for PM detection  A-C: False positive; A: Age-related macular degeneration; 

B: Multifocal choroiditis; C: Vitreous opacity; D-F: False negative (C2 was misclassified as C1). AI: Artificial intelligence; PM: Pathologic myopia.

Figure 2 Typical false positive or negative images of AI model for mCNV detection  A-C: False positive; A: Macular atrophy; B: Fuchs spot; 

C: Diabetic retinopathy; D-F: False negative (occult mCNVs). AI: Artificial intelligence; mCNV: Myopic choroidal neovascularization.

AI for screening PM
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automatically identify the PM lesions based on a large image 
dataset consisting of 37 659 color fundus photographs. 
ResNet18 was used as the basic architecture, and the Faster 
R-CNN+FPN was used for the localization algorithm. ResNet 
has shown excellent performace in the ImageNet competition 
classification task[24-25]. Meanwhile, the Faster R-CNN is 
also one of the most advanced object detection networks[26]. 
The algorithms and AI models developed based on the two 
advanced neural network architectures achieved precise and 
efficient detection for PM[22].
Tan et al[27] introduced an approach of PAMELA to detect PM 
according to the peripapillary atrophy feature in 2009. With the 
establishment of the Meta-PM classification system in 2015, 
the Meta-PM (2015) criterion was broadly adopted for color 
fundus photograph annotation and machine learning training in 
the recent years. Based on the Meta-PM, Du et al[28] developed 
an AI model showing an overall accuracy of 92.08% in 
identifying PM, and accuracy of 37.07% in detecting mCNV. 
Another deep learning system developed by a multi-center 
study showed a sensitivity of 94.2%-98.4%, a specificity of 
85.5%-95.9%, and area under the curves (AUCs) of 0.969 
or higher for PM identification in the multiple validation 
dataset[29]. 
The dual-stream deep convolutional neural networks (DCNN-
DS) model developed by Li et al[30] achieved sensitivities 
of 93.3% and 91.0%, specificities of 99.6% and 98.7%, and 
AUCs of 0.998 and 0.994 for detecting PM. Recently, Tang 
et al[31] developed a co-decision model combined with the 
ResNet-50 network and DeepLabv3+ network and achieved 
a sensitivity of 96.67%, a specificity of 99.15%, and an AUC 
of 99.80% for PM diagnosis. This model can identify different 
levels of chorioretinal atrophies and LCs, but cannot identify 
mCNV and Fuchs spots. The authors ascribed the weakness 
to the small sample size of CNV and Fuchs spots recruited in 
their dataset.
Besides the good capability in PM identification (sensitivity 
0.939, specificity 0.981, AUC 0.995), the PM-AI system 
previously developed by our team also had excellent 
performance in the identification of different chorioretinal 
atrophies and “Plus” lesions, with the sensitivity and specificity 
of mCNV detection being over 97%[22]. In this extended study, 
the performance of the PM-AI system for the identification 
of PM and mCNV was basically comparable to the level of 
ocular fundus specialists, and was significantly better than 
that of senior ophthalmologists. The results from the human-
machine comparison test suggested that our PM-AI system is 
promising in assisting the diagnosis of PM and mCNV in real 
world settings of either clinical or healthcare setting.
In particular, our PM-AI model performed well in identifying 
PM, showing better sensitivity than one specialist participant 

and two ophthalmologist participants, and higher specificity 
than two ophthalmologist participants, with strong agreement 
with the reference standard (Kappa value 0.904). However, 
the performance of mCNV detection, especially the sensitivity, 
was slightly inferior to the data in our previous work. This 
might be due to the relatively small dataset in the present 
study. The mCNV lesions in PM patients are typically small, 
dark in color (mostly gray-green or gray-black), with little 
hemorrhage, but often difficult to be detect in a tessellated 
fundus with diffuse or patchy choroidal atrophy. Nevertheless, 
our PM-AI model still exhibited the comparable sensitivity 
of mCNV identification when compared with the specialists, 
demonstrating its robust performance. 
According to our data, similar misclassification might occur by 
both human and AI in the cases with lesions of classification 
boundary. For example, “tessellated fundus (C1)” and 
“diffuse atrophy (C2)” could be misdiagnosed as each other. 
Besides, some other small and uncertain lesions also can be 
misclassified. Human’s mistake occurs mainly due to the 
factors of distraction, fatigue or clinical experience, while AI 
can make the mistakes, such as misclassifying the hemorrhage 
of diabetic retinopathy as mCNV and misclassifying the small 
vitreous opacity artifact as patchy atrophy, etc. The reason can 
be ascribed to the limited disease contents of training dataset 
for AI system development. Therefore, to reduce the false 
diagnosis of AI, the more training contents for AI regarding 
the disease/lesions category are always the effective way. 
This is also the part of our ongoing work for AI algorithm 
development in the future. It is noticeable that ophthalmologist 
2 showed the highest sensitivity (92.75%) in identifying 
mCNV, but the dramatically low specificity (74.61%). The 
overall diagnostic agreement was also significantly lower 
than the other three doctors and the PM-AI model. This might 
indicate the fluctuation of performance of manpower caused 
by the variation of working status or expertise of human, while 
the AI system ought to be more stable and superior especially 
in heavy and repetitive task. 
It should be noted that the four human participants are all high 
standard ophthalmologists with two retinal specialists and 
two senior ophthalmologists, who are all from the hospitals 
with advanced medical system and high clinical level. After 
validation, the PM-AI model outperformed the two senior 
ophthalmologists in PM diagnosis and mCNV detection. This 
result highlighted the great potential of PM-AI to assisting the 
eye clinicians to screen PM and its lesions.
PM is a comprehensive diagnosis based on the grade of 
chororetinal atrophies and “Plus” lesions, of which mCNV is 
one of the most critical macular lesions affecting central vision. 
Therefore, the present study mainly focused on the diagnosis 
of PM and only mCNV of three “Plus” lesions, considering 
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their clinical priority. After all, the larger volume of dataset of 
mCNV images is always desirable to draw a more convincing 
conclusion.
Taken together, our in-house developed PM-AI system 
based on deep learning showed the excellent performance of 
identifying PM and mCNV that was comparable to the retinal 
specialists in this human-machine comparison test study. 
When compared with the senior ophthalmologists, the PM-
AI system exhibited superior performance for PM and mCNV 
identification. In view of the shortage in current medical care 
resources, the AI-assisted diagnosis system should have wide 
application prospects in PM screening and many other ocular 
diseases.
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