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Abstract
● AIM: To investigate a pioneering framework for the 
segmentation of meibomian glands (MGs), using limited 
annotations to reduce the workload on ophthalmologists 
and enhance the efficiency of clinical diagnosis.
● METHODS: Totally 203 infrared meibomian images 
from 138 patients with dry eye disease, accompanied by 
corresponding annotations, were gathered for the study. A 
rectified scribble-supervised gland segmentation (RSSGS) 
model, incorporating temporal ensemble prediction, 
uncertainty estimation, and a transformation equivariance 
constraint, was introduced to address constraints imposed 
by limited supervision information inherent in scribble 
annotations. The viability and efficacy of the proposed 
model were assessed based on accuracy, intersection over 
union (IoU), and dice coefficient.
● RESULTS: Using manual labels as the gold standard, 
RSSGS demonstrated outcomes with an accuracy of 
93.54%, a dice coefficient of 78.02%, and an IoU of 
64.18%. Notably, these performance metrics exceed the 
current weakly supervised state-of-the-art methods by 
0.76%, 2.06%, and 2.69%, respectively. Furthermore, 
despite achieving a substantial 80% reduction in annotation 

costs, it only lags behind fully annotated methods by 0.72%, 
1.51%, and 2.04%.
● CONCLUSION: An innovative automatic segmentation 
model is developed for MGs in infrared eyelid images, using 
scribble annotation for training. This model maintains an 
exceptionally high level of segmentation accuracy while 
substantially reducing training costs. It holds substantial 
utility for calculating clinical parameters, thereby greatly 
enhancing the diagnostic efficiency of ophthalmologists in 
evaluating meibomian gland dysfunction.
● KEYWORDS: infrared meibomian glands images; 
meibomian gland dysfunction; meibomian glands 
segmentation; weak supervision; scribbled annotation
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INTRODUCTION

T he meibomian glands (MGs) are a series of large 
sebaceous glands that extend along the eyelid margin 

behind the eyelashes. They are responsible for producing and 
secreting lipids called blepharoplasts, which constitute the lipid 
layer of the tear film. This lipid layer is crucial for maintaining 
the health and integrity of the ocular surface and is an essential 
component of the tear film functional unit[1]. Meibomian gland 
dysfunction (MGD) is a chronic and diffuse condition affecting 
MGs and is considered the primary cause of various ocular 
diseases, including dry eye and blepharitis[2]. Epidemiological 
studies have demonstrated a global prevalence of MGD 
exceeding 35.9%, with variations among different racial 
groups ranging from 21.2% to 71.0%[3]. Infrared imaging has 
emerged as an effective clinical technique for assessing the 
morphological characteristics of the MGs[4]. Ophthalmologists 
employ these images to observe and analyze various 
MGs features, providing valuable insights for diagnosing 
MGD[5]. However, relying solely on visual observation and 
clinical experience is subjective and yields relatively low 
reproducibility.
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In response to the challenges mentioned above, Koh et al[6] 
and Liang et al[7] investigated methods for distinguishing 
healthy images from unhealthy ones, while Fu et al[8] proposes 
a classification model based on color deconvolution and 
transformer structure. Furthermore, leveraging advancements 
in deep learning and medical image processing[9] , Prabhu 
et al[10] used the U-Net architecture for MG segmentation, 
while Khan et al[11] introduced an adversarial learning-
based approach to enhance segmentation accuracy. Lin 
et al[12] introduced an improved U-Net++ model for MGs 
segmentation, yielding remarkable results. However, despite 
these advancements, many existing MGs segmentation 
approaches face limitations in clinical application due to their 
heavy reliance on a substantial amount of fully annotated label 
data. Manual annotation can be exceedingly time-consuming 
and labor-intensive, considering the considerable number 
and close arrangement of glands. Even for experienced 
ophthalmologists, the process can take an average of 5 to 8min 
per image[13].
To overcome the constraints associated with fully annotated 
training datasets, researchers have embraced the concept of 
weakly supervised learning, aiming to alleviate challenges 
by leveraging sparsely annotated forms such as scribble 
annotation, box-level annotation, or image-level annotation. 
Notably, among these, scribble annotation has gained 
increasing popularity. An annotated scribble comprises a set of 
pixels with corresponding category labels, with unannotated 
pixels treated as unknown. Lin et al[14] achieved the first 
successful scribble application in image segmentation. Lee 
et al[15] proposed a method for generating pseudo-labels for 
cell segmentation with scribble annotation, demonstrating the 
significant supportive role of pseudo-labels in segmentation. 
Cao et al[16] identified that unreliable pixels can substantially 
perturb the scribble network, emphasizing the necessity of 
distinguishing between reliable and unreliable pixels.
Building upon these approaches, this study investigates the 
use of scribble annotation to achieve satisfactory automatic 
segmentation of MGs in infrared images. The proposed model 
is anticipated to substantially alleviate the manual labeling 
burden while simultaneously maintaining segmentation 
performance. This advancement is expected to enhance the 
diagnostic efficiency of MGD and facilitate the broader 
application of medical image processing.
MATERIALS AND METHODS
Ethical Approval  This study received approval from the 
Ethics Committee of Fujian Provincial Hospital (K2020-03-
124) and adhered to the principles outlined in the Declaration 
of Helsinki. All subjects were duly informed and consented to 
participate in this study.

Acquisition and Pretreatment of Infrared MG Images  
The infrared MG images used in this study were graciously 
provided by the Department of Ophthalmology, Fujian 
Provincial Hospital. These images were captured using an 
ocular surface comprehensive analyzer (Keratograph 5 M). The 
dataset comprised 138 patients with dry eyes (276 eyes) from 
January 2020 to June 2021. Given the technical challenges 
associated with everting the lower eyelid, particularly because 
of the absence of a substantial tarsal plate compared with 
the upper eyelid, MGs images of the lower lid often exhibit 
uneven focus and partial exposure. Consequently, in alignment 
with established research practices[17], our study concentrates 
exclusively on upper eyelid images. A batch cropping process 
was executed to eliminate potential confounding information, 
resulting in images with dimensions of 740×350 pixels 
(Figure 1A). The contrast enhancement mode was employed 
to accentuate the visualization of the MGs. After meticulous 
selection, images presenting issues such as eyelash occlusion, 
incomplete coverage, excessive blurriness, and substantial 
glare were excluded. Consequently, 203 images were retained.
Construction of Dataset  Two datasets were meticulously 
developed for model training and validation: an MGs scribbled 
dataset and a fully annotated dataset. Preprocessed images 
underwent annotation by three experienced ophthalmologists, 
each possessing over one year of clinical experience. 
Annotation procedures were conducted using the polygon 
tool in the Labelme software, facilitating comprehensive 
delineation of the meibomian region and individual structures 
of the eyelid glands. In instances of annotation discrepancies, 
a fourth senior ophthalmologist was consulted to make the 
final adjudication. The fully annotated results are illustrated 
in Figure 1B. The meibomian region mask was multiplied 
with the cropped original image to eliminate interference, 
such as eyelashes, resulting in the final input image (Figure 
1C). We processed the fully annotated dataset to construct 
the scribbled dataset to alleviate annotation pressure and 
draw inspiration from the skeletonization algorithm. The 
morphological skeletonization algorithm was employed to 
extract intermediate lines representing the foreground and 
background regions, simulating manually generated scribble 
annotations (Figure 1D). After thorough expert verification, the 
generated scribble annotations from our method exhibited no 
discernible difference from the manually annotated scribbles 
by experts. The dataset used in this study comprises 203 sets of 
images, partitioned into training, validation, and test sets with a 
ratio of 7:1:2. The training and validation sets were employed 
for model training and parameter tuning. In contrast, the test 
set was used to validate the proposed method.
Model for MGs Segmentation in Eyelids  Within the 
framework of weakly supervised learning, we introduce an 
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rectified scribble-supervised gland segmentation (RSSGS) 
model (Figure 2). This model uses the U-Net architecture as 
the segmentation network and integrates three key strategies: 
temporal ensemble prediction (TEP), uncertainty estimation, 
and transformation consistency constraint. Each image x, 
paired with its corresponding scribble label, serves as input to 
the model. The proposed network is trained with cross-entropy 
loss for scribble pixels as follows:

                            Lsp=
M

c=1 i∈Ωs
Sc,ilogPc,i                              (1)

Where Sc,i and Pc,i represent the scribbled pixel and the model’s 
predicted probability for the i pixel in the c class, respectively. 
Ωs denotes the set of scribble pixels. |Ωs| and M represent the 
total number of scribble pixels and classes, respectively.
For unlabeled pixels, we utilized the predicted exponential 
moving average (EMA) to generate pseudo-labels, offering 
initial segmentations for the unlabeled regions based on the 
model’s predictions.
Recognizing the potential disruption caused by unreliable 
labels, we integrate uncertainty estimation, quantifying 
the confidence level associated with each pseudo-label. 
Furthermore, we introduced a transformation consistency 
constraint strategy to enforce uniformity in the model’s 
predictions, resulting in more reliable and accurate segmentation.
For unlabeled pixels, we utilized the predicted EMA to generate 

pseudo-labels, offering initial segmentations for the unlabeled 
regions based on the model’s predictions. Recognizing the 
potential disruption caused by unreliable labels, we integrate 
uncertainty estimation, quantifying the confidence level 
associated with each pseudo-label. Furthermore, we introduced 
a transformation consistency constraint strategy to enforce 
uniformity in the model’s predictions, resulting in more 
reliable and accurate segmentation.
Temporal Ensemble Prediction  To address the lack of 
supervision for unlabeled pixels, we drew inspiration from 
Scribble2Label[15] and introduced the TEP strategy. We used 
EMA[18] technique to amalgamate historical and current 
predictions throughout our network training process. This 
process results in an ensemble prediction encompassing 
knowledge learned from previous iterations, as the formula 
equation (2) indicates.

                                 yn=αpi+(1-α)yn-1                                                 (2)

where y represents the average prediction value, yo=p1. α is 
the adaptive ensemble momentum (refer to equation 4), n 
denotes the number of average predictions. To ensure efficient 
integration and reduce computational expenses, we perform 
pseudo-label updates only every γ cycle and set the value of γ to 5.
Uncertainty Estimation  One limitation of the TEP strategy 
is that it treats reliable and unreliable predictions equally 

Figure 1 Dataset of infrared MGs images  A: Cropped image; B: Full annotation, meibomian (red) and the MGs (green); C: Input image; D: 

Scribble annotation, meibomian (red) and the MGs (green). MGs: Meibomian glands.

Figure 2 Framework of the proposed method.
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when generating pseudo-labels. However, the presence of 
unreliable predictions can have a negative impact on network 
optimization. Therefore, it is crucial to mitigate the effects of 
these unreliable predictions.
Inspired by uncertainty theory[19], we introduced an uncertainty 
graph that evaluates the uncertainty in the model predictions. 
The uncertainty graph can be represented as follows:

                           U =
2

k=1
pk

K
1 (pk)2- K

1
K

k=1

K

                   (3)

where K controls the number of times, the model processes 
each image during training and is set to two in our approach. 
Pk

 represents the model output for the k-th pass. Introducing 
random Gaussian noise to the input images induces variability 
in the model’s output for each pass, facilitating uncertainty 
graph estimation.
Subsequently, we introduce an adaptive ensemble momentum 
mapping that varies for each pixel on the basis of the 
uncertainty graph U to guide the generation of pseudo-labels. 
This momentum mapping α is defined as follows:

                                      α=λ (1-U)+U                                  (4)

where λ=0.6. By incorporating the adaptive weight α, we 
dynamically adjust the influence of each pixel’s prediction 
on the basis of its associated uncertainty. This enables us 
to prioritize certain predictions while down-weighting the 
contributions of uncertain predictions during pseudo-label 
update.
Additionally, we define a confidence threshold for label 
filtering. This threshold enables us to remove unreliable 
predictions and retain those deemed more reliable for network 
optimization. The label filtering function is represented by 
equation (5):

                             f (x) = z, max (z,1-z)> τ
δ, other

                     (5)

where τ represents the confidence threshold set at 0.8, δ denotes 
the grayscale value of unlabeled pixels, and z represents the 
grayscale value of scribbled pixels.
Having obtained with the reliable pseudo-labels in hand, we 
optimize the unlabeled pixels. The loss function for unlabeled 
pixels is defined in equation (6).

                 Lup=
M

c=1 i∈Ω
|Ω  |

1- f (zn    , τ) logPc,ic,i
u

u                  (6)

where Zc,i and Pc,i represent the pseudo-label and model 
prediction probability for the i-th pixel in the c-th class. Ωu 
denotes the set of unlabeled pixels, and |Ωu| represents the total 
number of unlabeled pixels. The Lup also excludes unlabeled 
pixels in the pseudo-labels. Due to the initially generated 
unreliable pseudo-labels, Lup is applied for model optimization 
after the E-th epoch, which is set to 100 in our approach.

Transformation Equivariance Constraint  In weakly 
supervised learning, it is expected that applying specific 
transformations such as flip, rotate, and scale to an input image 
will yield an equivariant segmentation outcome. This property, 
known as transformation consistency, is shown in equation (7). 
This consistency is crucial for maintaining spatial coherence 
and stability in the model’s predictions, even with limited 
annotated data.

                               F (T (I ))=T (F(I ))                              (7)

where I is the input image, T is the transform function, and F is 
the segmentation network.
We impose constraints on these transformations through cosine 
similarity loss Ltc as follows:

                 
F (T (I )) * T (F(I ))

|F (T (I ))|   *   |T (F(I ))|
Ltc =

2 2
               (8)

where ||·|| denotes the L2 paradigm.
The RSSGS framework optimizes the model using a weighted 
sum of three losses: the scribble pixel loss (Lsp), the unlabeled 
pixel loss (Lup), and the transformation consistency constraint 
(Ltc), as shown in equation (9):

                               Ltotal =Lsp+λu Lup+λt Ltc                          (9)

Here, λu=0.5, and the parameter λt represents a weight 
function, as illustrated in equation (10). This weight 
function dynamically adjusts the magnitude of the transform 
consistency loss based on the number of training cycles. 
This adaptive approach serves the purpose of alleviating the 
premature impact of transform consistency on the network.

                                 λt=1.0*e-5 (1-         )t
tmax

2

                             (10)

where t denotes the current number of training cycles, while 
tmax represents the maximum number of training cycles.
RESULTS
Adhering to the criteria outlined in pertinent literature[20], we 
employ accuracy (Acc), dice coefficient (Dice), and intersection 
over union (IoU) as evaluation metrics for our model. The 
training regimen spans 300 epochs across all datasets, using 
a batch size of eight. The RAdam optimizer is employed with 
an initial learning rate of 0.0003. To bolster the credibility of 
our experimental outcomes, a 5-fold cross-validation approach 
was implemented. Our comparative analysis assesses our 
method against state-of-the-art techniques for medical image 
segmentation. This evaluation compares models trained with 
either full annotation or scribble annotation.
Segmentation Results  Figure 3 displays the segmentation 
outcomes of our method (Figure 3D) and the U-Net (full 
annotation) approach (Figure 3C) on MGs in infrared images. 
Both methods accurately segment MGs within non-edge 
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regions, effectively capturing their irregular shapes. However, 
in edge regions, particularly in ambiguous areas, the U-Net[21] 
exhibits some segmentation errors, whereas our approach 
maintains a commendable performance, possibly attributed to 
the reliable pseudo-label.
Outperformance Compared with Other Methods  We 
conducted a comparative analysis of our method against 
mainstream medical image segmentation approaches 
employing scribble labels. The methods considered include 
the minimization of the regularized loss method (PCE)[22], the 
Gated CRF loss-based method (Gated CRF)[23], the Mumford-
Shah loss-based method (M-S)[24], an efficient method for deep 
neural network (Pseudo-Label)[25] dual-branch network method 
(Dual-branch Net)[26], and Scribble2Label[15].
In Table 1[21-28], our method excels with Acc, Dice, and IoU at 
93.54%, 78.02%, and 64.18%, respectively. Outperforming 
other weak-supervised methods across all metrics, our method 
demonstrates improvements of 0.76% in Acc, 2.06% in Dice, 
and 2.69% in IoU compared with the leading Scribble2Label.
In a broader comparison with models trained using full labels, 
including U-Net, skip-connections-based U-Net++[27], and 
full-scale connected U-Net3+[28], our approach, while slightly 
less effective than U-Net++, demonstrates reductions of 0.8% 
in Acc, 1.9% in Dice, and 3.1% in IoU. Importantly, our 
method achieves a significant 80% reduction in annotation 
costs, highlighting its capacity to minimize performance 
loss even with substantial cost cutting. In summary, our 
method consistently exhibits exceptional MG segmentation 
performance.
Ablation Study  In this section, we conduct an ablation 
study to analyze the roles of uncertainty estimation (Lup) and 

transformation equivariance constraint (Ltc). All experiments 
were conducted on scribble datasets, with U-Net used for 
evaluating the results. Table 2 presents the improvements 
associated with each component. The results indicate that the 
proposed method effectively enhance model performance 
when applied individually. Moreover, there is a synergistic 
effect when these methods are employed together. Specifically, 
the combined use resulted in an improvement of 1.58% in Acc, 
3.54% in Dice, and 4.54% in IoU.
DISCUSSION
The quality of the scribble annotations substantially influences 
the model’s performance. To assess the robustness of our 
method, we conducted experiments using scribble annotations 
with varying quality levels. Specifically, we randomly retained 
10%, 30%, 50%, 70%, and 90% of the scribble pixels and used 
them as input for the experiment. As depicted in Table 3, a 

Figure 3 MGs segmentation results  A: Input images; B: Ground-truth; C: U-Net (full supervision); D: Our method. MGs: Meibomian glands.

Table 1 Performance comparisons with other state-of-the-art 

methods
Label Method Acc (%) Dice (%) IoU (%)
Full U-Net[21] 94.26 79.53 66.22

U-Net++[27] 94.41 79.76 66.47
U-Net3+[28] 93.85 78.67 65.89

Scribble (100%) PCE[22] 91.96 74.48 59.64
Gated CRF[23] 92.32 75.64 61.12

M-S[24] 84.34 60.27 43.94
Pseudo-Label[25] 92.34 75.35 60.70

Dual-branch Net[26] 92.14 75.30 60.68
Scribble2Label[15] 92.78 75.96 61.49

RSSGS 93.54 78.02 64.18

RSSGS: Rectified scribble-supervised gland segmentation; M-S: 

Mumford-Shah loss-based; PCE: Minimization of the regularized loss; 

Acc: Accuracy; Dice: Dice coefficient; IoU: Intersection of union.
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diminishing trend in the model’s performance was observed as 
the proportion of scribble annotations decreased. For instance, 
at a 10% proportion, the model achieved Acc, Dice, and IoU 
of 92.61%, 75.76%, and 61.23%, respectively. These values 
surpassed those of many methods employing 100% proportion, 
with only marginal decreases of 0.93%, 2.26%, and 2.88% 
compared with the results obtained with 100% proportion. 
This observation underscores the effectiveness of the proposed 
method in maintaining high performance even with reduced 
scribble annotation proportions.
Our method demonstrates exceptional performance in 
addressing the challenging task of MGs segmentation with 
sparse annotation. Outperforming the latest weakly supervised 
segmentation method, it achieves segmentation results 
comparable with those of fully supervised methods while 
substantially reducing annotation costs. Notably, our method 
even surpasses in specific details. Its robustness is evident 
when faced with varying levels of scribble annotation; even 
under a 10% setting, the achieved Acc, Dice, and IoU metrics 
only marginally decreased by 0.93%, 2.26%, and 2.88%, 
respectively, compared to the 100% setting. Confronted with 
the limited supervision challenge arising from a scarcity of 
labeled data, we meticulously address the unique aspects of 
infrared MG images, such as the glands’ elongated and densely 
distributed characteristics. We introduce a temporal ensemble-
based approach for generating pseudo-labels to augment 
label information, incorporating uncertainty estimation and 
consistency constraints to enhance label reliability. Our method 
effectively compensates for the limited information provided 
by scribble annotation, facilitating the automation of infrared 
MGs image analysis. This, in turn, provides valuable assistance 
to ophthalmologists in making accurate diagnoses.

Furthermore, a time efficiency test was conducted, engaging 
three experts to annotate 100 MG images using the scribble 
annotation method. The results revealed that the average 
time spent on scribble annotation (100%) for one image was 
approximately 1.2min. This starkly contrasts with the average 
5–8min required to thoroughly label each image, indicating a 
substantial reduction in annotation burden.
Despite the promising outcomes, our study does have some 
limitations. First, our investigation was exclusive to the 
infrared MGs dataset. It is essential to recognize that the 
applicability of our approach extends beyond this dataset 
alone. In future research, we aim to explore the performance of 
our approach on a more diverse range of datasets, evaluating 
its effectiveness in clinical practice and fostering a deeper 
integration of deep learning and medical imaging, ultimately 
enhancing artificial intelligence’s capacity to serve humanity 
more effectively. Second, concerning segmentation results, 
morphological parameters can be computed to derive various 
characteristics of individual glands, such as gland drop, 
tortuosity, and total gland count. Using these morphological 
parameters can offer valuable support to ophthalmologists in 
making accurate clinical diagnoses and designing appropriate 
treatment plans.
In conclusion, this study successfully addressed the 
segmentation task with limited labeled data, demonstrating 
remarkable performance. It promises substantial benefits for 
both physicians and patients.
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