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Abstract
● Glaucoma is a group of diseases characterized by 
progressive optic nerve degeneration, with the characteristic 
pathological change being death of retinal ganglion cells 
(RGCs), which ultimately causes visual field loss and 
irreversible blindness. Elevated intraocular pressure (IOP) 
remains the most important risk factor for glaucoma, but 
the exact mechanism responsible for the death of RGCs is 
currently unknown. Neurotrophic factor deficiency, impaired 
mitochondrial structure and function, disrupted axonal 
transport, disturbed Ca2+ homeostasis, and activation of 
apoptotic and autophagic pathways play important roles in 
RGC death in glaucoma. This review was conducted using 
Web of Science, PubMed, Project, and other databases to 
summarize the relevant mechanisms of death of RGCs in 
glaucoma, in addition to outlining protective treatments to 
improve the degradation of RGCs.
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INTRODUCTION

G laucoma is a group of diseases characterized by 
progressive optic nerve degeneration and is a leading 

cause of irreversible blindness worldwide. The characteristic 
pathological change is the death of retinal ganglion cells 

(RGCs), which ultimately causes visual field loss and 
irreversible blindness. RGCs are the neurons that transmit 
visual information from the retina to the brain and are 
permanently lost once dead. Loss of vision usually begins with 
the peripheral vision and progresses to the central vision, with 
devastating consequences for the patient’s quality of life.
In 2010, 2.1 million people worldwide were already blind 
owing to glaucoma; by 2020, glaucoma affected more than 
80 million people, with a prevalence of 2.93% in people aged 
40-80y according to the European Epidemiological Survey[1]. 
There are various subtypes of glaucoma, which are classified 
according to their respective structural changes in the anterior 
segment of the eye; however, the most common type is primary 
open-angle glaucoma (POAG). More than 74% of patients 
have POAG, with more than 5.9 million people permanently 
blind due to POAG[2].
The influencing factors associated with the development 
of glaucoma in humans include intraocular pressure (IOP), 
aging, genetic factors, and vascular disorders[3-5], but the exact 
detailed aetiology and pathogenesis remains elusive. The 
known pathogenesis of glaucoma includes 1) damage to the 
trabecular meshwork, leading to reduced aqueous outflow and 
elevated IOP; 2) damage to the optic nerve head which in turn 
damages the unmyelinated optic nerve axons; 3) progressive 
death of RGCs; 4) progressive loss of neurones in the visual 
center of the brain.
The progressive death of RGCs occurs as a typical pathological 
feature of glaucoma. Glaucoma is a complex multifactorial 
disease, and the molecular pathway causing progressive 
death of RGCs may result from the convergence of multiple 
pathways. The influential factors causing progressive death 
of RGCs include apoptosis[6-7], impaired mitochondrial 
structure and function[8-10], neurotrophin deprivation[11-12], 
ischemia, and hypoxia[13-14]. An increase in other risk factors 
can exacerbate the progressive death of RGCs in glaucoma, 
which, in turn, leads to the dysfunction and even death of the 
optic nerve. These research advances have not only increased 
our understanding of glaucoma pathogenesis but have also 
helped us to find new neuroprotective therapies. In this review, 
we aimed to provide an up-to-date description of the cellular 
and molecular mechanisms that are crucial in RGCs injury 
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and discuss novel neuroprotective approaches for RGCs in 
glaucoma (Figure 1).
The mechanisms implicated in RGC damage include 
neuronutrient deprivation, glutamate excitotoxicity, 
mitochondrial dysfunction, ischemia and hypoxia, oxidative 
stress, disruption of Ca2+ homeostasis, axonal transport 
disorders, apoptosis and other death mechanisms which can 
lead to premature senescence, and inflammation cascade which 
induce the activation of glial cells with consequent gliosis. 
The pathways, triggered by each risk factor, often result to be 
strictly interrelated, contributing to amplifying RGC distress in 
an irreversible way.
FACTORS INFLUENCING THE PROGRESSIVE 
DEATH OF RETINAL GANGLION CELLS
Apoptosis  Apoptosis is a type of programmed cell death 
that plays a vital role in physiological processes and is a 
feature of the pathophysiology of many diseases (Figure 2). 
During embryonic development, excess RGCs compete for 
a small number of neurotrophins simultaneously, and RGCs 
that are not nourished eventually die through apoptosis. 
The same phenomenon occurs in adulthood, and apoptosis 
and the subsequent death of RGCs are the main causes of 
progressive vision loss in patients with glaucoma. This 
mechanism of cell death is controlled by gene regulation, 
and pro-apoptotic factors can be produced in the retina 
through a variety of mechanisms such as oxidative stress[15], 
immune dysfunction[16], impaired mitochondrial structure 
and function[8], and neurotrophin deficiency[17]. Endoplasmic 
reticulum stress induced by aberrant protein aggregation may 
lead to reactions involving unfolded proteins[18]. In addition, 
some endoplasmic reticulum stress signalling proteins control 
cell fate by activating pro-apoptotic Bcl2 or anti-apoptotic Bax 
molecules in response to cellular loads[19].
Neurotrophin Deprivation  Neurotrophins play key roles 
in nerve cell survival. Under healthy or normal conditions, 
RGCs can receive neurotrophic support from Müller cells[20] 
or directly from retrograde axonal transport in the brain. This 
process regulates the growth, function, and survival of neuronal 
cells, with neurotrophic factors binding to the Trk receptor at 
the end of the axon, which are then retrogradely transported 
to the cell body[21-22]. In patients with glaucoma, retrograde 
transport may be blocked in the optic nerve head owing to high 
IOP; consequently, RGCs are unable to receive trophic support 
from brain-derived neurotrophic factor (BDNF) and TrkB[23-24]. 
The fact that RGCs remain viable in the absence of exogenous 
BDNF has also been confirmed, suggesting that exogenous 
BDNF deprivation due to the disruption of retrograde transport 
is not responsible for the growth and functioning of RGCs; 
hence, BDNF deprivation is not the only cause of death in 
glaucomatous RGCs.

Mitochondrial Dysfunction  Mitochondria are important 
autonomous dynamic organelles in the central nervous system 
(CNS), and their structural and functional dynamics play 
crucial roles in cellular and animal physiology. Structurally 
reflecting the precise balance between ongoing mitochondrial 
fission and fusion, mitochondrial dynamics regulate the 
mitochondrial network and intracellular function, and 
alterations in mitochondrial dynamics help follow disease 
progression in optic neuropathy[25-26]. As the most common 
type of glaucoma, patients with POAG exhibit structural 
and functional mitochondrial abnormalities associated with 
oxidative stress, reduced mitochondrial respiratory activity, 
and mitochondrial DNA (mtDNA)[27-28] Maternally inherited 
mtDNA is highly susceptible to damage owing to a lack 
of protection from related proteins, its proximity to the 
mitochondrial respiratory chain, and ROS production, which 
in turn leads to the development of many diseases[29]. Variants 
in specific genes may lead to alterations in the stability 
of complexes I and III, thereby leading to mitochondrial 
alterations in patients with POAG[30-32].
Ischaemia, Hypoxia and Oxidative Stress  The structural and 
functional integrity of the retina depends on a normal supply 
of oxygen. As one of the most metabolically active tissues, the 
retina consumes oxygen at a much faster rate than the other 
tissues. Retinal ischaemia occurs when acute vascular occlusion 
results in insufficient retinal circulation to meet the metabolic 

Figure 1 Risk factors contributing to RGC distress in glaucoma  RGC: 

Retinal ganglion cells.

Figure 2 The mechanism of cell apoptosis under glaucoma conditions.
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demands of the retina, which may be caused by systemic 
circulatory failure[33], such as severe left ventricular failure and 
hypovolemic shock or by local circulatory failure. In contrast, 
the presence of double circulation in the retina makes it more 
sensitive to ischaemia and hypoxia[34-35]. A study on retinal 
structure and function in mice[36] revealed that a high-fat diet 
leads to retinal ischaemia and hypoxia and that apolipoprotein 
E (ApoE) deficiency increases the susceptibility to ischaemia in 
mice. These changes trigger neuroinflammation, exacerbating 
apoptosis in RGCs. Reperfusion following ischaemia renders 
the retina more susceptible to oxidative damage. RGCs are 
particularly sensitive to acute, transient, and mild systemic 
postischemic hypoxic stress[37]. The loss of RGCs and their 
axonal fibres following retinal hypoxia has been demonstrated 
in experimental studies.
Disruption of Ca2+ Homeostasis  Similar to neurodegenerative 
diseases, such as Alzheimer’s disease and Parkinson’s 
disease, disruption of intracellular Ca2+ homeostasis in RGCs 
in glaucoma also plays a key role in the pathogenesis of 
glaucoma[38]. Disruption of Ca2+ homeostasis leads to various 
intracellular events, which in turn promote apoptosis and 
RGC death[39]. Excessive intracellular Ca2+ levels can trigger 
cytoskeletal degradation by enhancing the activity of specific 
enzymes such as phospholipases, proteases, and protein 
kinases. Moreover, Ca2+ channels play a key role in maintaining 
the physiological functions of RGCs. For example, voltage-
gated Ca2+ channel (VGCC) blockers attenuate the damage of 
RGCs in the retinal ischemia/hypoxia model, demonstrating 
that VGCC is involved in the process of RGC damage[40]; 
additionally, VGCC blockers exhibit neuroprotective effects. 
In a rat model of experimental glaucoma with chronic ocular 
hypertension, T-type Ca2+ channels were shown to be involved 
in Ca2+ homeostasis and apoptosis of glaucomatous RGCs[41].
Impaired Axonal Transport  Axonal transport is the active 
bidirectional transport of various substances via motor 
proteins along microtubules. This process is fundamental for 
neuronal function and survival[42]. In both primate glaucoma 
animal models and human glaucoma studies, it was found that 
disruption of axonal transport preceded RGC death and was 
predominantly manifested as retrograde transport[42-43]. The 
presence of axonal transport disorders has been confirmed in 
rodent models. One such model is the DBA/2J, a POAG mouse 
model that mimics elevated IOP in the human eye, in which 
intracranial labelling with fluorescently labelled cholera toxin 
B revealed the presence of impaired axonal transport in the 
blood-brain barrier of DBA/2J mice[44-45]. Similarly, in another 
glucocorticoid-induced POAG mouse model injected with 
cholera toxin B, transmission electron microscopy analysis 
showed complete disruption of axonal transport at week 8[46] 
Interestingly, impaired axonal transport was also confirmed in 

a rat glaucoma model, and it was found that the accumulation 
of tau protein disrupted axonal transport[47-48].
Immune Dysfunction  The eyes are an immunologically 
privileged part of the body[40]. The vasculature of the eye 
is located outside the central light pathway, as its presence 
impairs vision. Therefore, many regions of the eye have 
evolved responses that deliver immune cells to sites of 
dysplasia or damage. Although the purpose of these immune 
responses is repair or protection, the cytokines released by 
immune cells impair vision by inducing inflammation and 
fibrosis[40]. Resistance to RGC death correlates with immune 
potency[49], suggesting that immune dysfunction contributes to 
the onset and progression of glaucoma. Similarly, the transfer 
of found to impair the RGCs of the healthy mice[50]. Studies 
related to the rat glaucoma model confirmed that elevated 
levels of heat shock proteins cause progressive death of 
RGCs[51-52]. The introduction of heat shock proteins into rats by 
immunisation induces glaucoma[53-55].
Microbial Action  Microbes (Figure 3) play a vital role in the 
homeostasis and health of the host, and are involved in nerve 
signaling, immune system maturation, and more[56]. A healthy 
eye microbiome has been shown to act as a barrier against 
pathogen entry into the body[57]. The study of the interaction 
between human ocular surface microbiome and lacrimal 
proteome provides a new direction for the targeted treatment 
of glaucoma[58]. Along with the concept of the gut-eye axis, the 
researchers proposed that patients with irritable bowel disease 
are at a higher risk of developing glaucoma[59-61].
PROTECTION AND TREATMENT OF RETINAL 
GANGLION CELLS
To date, no medical or surgical treatments can inhibit or 
reverse optic nerve damage in patients with glaucoma. The 
traditional treatment for glaucoma involves lowering the IOP 
of these patients using drugs, lasers, and surgical procedures. 
Only a few drugs have been found to be neuroprotective 
in pharmacological studies, and regarding laser treatment, 
adverse events such as a transient increase in IOP and low-
grade iritis can occur. Although surgical treatment is the 
most effective traditional treatment, surgical intervention 
can aggravate the decline of cell number and morphological 
damage, and postoperative follow-up has found that more than 
50% of patients have postoperative recurrence. The appearance 
of Descemet membrane endothelial keratoplasty can reduce 
the loss of endothelial cells, but it has little effect[62]. Therefore, 
new protection and treatment methods have emerged to solve 
the disadvantages of these traditional methods (Figure 4).
Gene Therapy  Many neurodegenerative diseases have 
genetic characteristics, and most genetic diseases[63] are caused 
by genetic alterations. This is similar to mutations, insertions, 
deletions, or even mutations in the mtDNA of a gene[64], which 
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alters the structure and function of its corresponding proteins 
and ultimately lead to the development of related diseases[65-67]. 
Therefore, the emergence of gene therapy has disrupted 
existing, more limited, traditional treatment methods. Gene 
therapy, which is based on the development of sequencing 
technology, is an approach that addresses incurable genetic 
diseases by adding, suppressing, replacing[68], or editing[69] 
disease-causing genes. Gene therapy using adeno-associated 
viruses (AAV)[70] is now generally preferred because of its high 
safety[71] and persistence[72], especially in ophthalmic diseases, 
where it achieves long-term stable transgene expression. 
In recent years, 12 AAV serotypes have been identified[73] 
and intravitreal injection of AAV2, followed by AAV9, can 
transduce RGCs[74-76]. In particular, the common serotype 
AAV2 has been successfully used in clinical trials for ocular 
diseases[77-79], and other serotypes-mediated gene therapies 
are also being tested in clinical trials, which will open new 
milestones for the cure of genetic diseases such as glaucoma.
Stem Cell Therapy  Differences in RGC damage in glaucoma 
make treatment particularly challenging[80-81]. Although surgical 
interventions can be effective in controlling the IOP, a subset of 

patients still experience persistent RGC death and optic nerve 
damage. Because adult mammalian RGCs lack the ability to 
regenerate themselves, the unlimited proliferative capacity 
and multidirectional differentiation potential of stem cells 
could allow them to differentiate into RGCs. This potential 
transformation could alter the difficulty of treating glaucoma. 
The feasibility of stem cell therapy has been demonstrated 
in several animal models. For example, mouse embryonic 
stem cell-derived RGCs injected into the retinal surface of 
RGC-injured mice have been found to establish cellular 
connections between donor RGCs and the host retina[82]. When 
mesenchymal stem cells were injected into an animal model of 
glaucoma, the survival rate of RGCs significantly increased[83] 
Transplantation of pluripotent stem cell-derived optic nerves 
into an animal model of retinal defects resulted in a greater 
improvement in visual behaviour[84-85].
Electrical Stimulation Therapy  Electrical stimulation 
therapy involves using low electrical currents to elicit nerve 
impulses externally. This stimulation prompts nerve cells to 
release neurotransmitters, which then act on the target organ. 
The protective effects of electrical stimulation therapy on the 
optic nerve[86], particularly corneal electrical stimulation (TES), 
have been extensively studied. After using corneal electrical 
stimulation in a rat model of optic nerve transection, a decrease 
in the mortality rate of RGCs was observed. Additionally, there 
was a reduction in the production of TNF-α by glial cells[87]. 
In the same rat model, TES delayed optic nerve degeneration 
without the use of exogenous trophic factors[88]. DBA/2J, a 
typical mouse model of glaucoma, was subjected to TES and 
found to preserve axons, reduce inflammation, and increase 
neurotrophic factors[89]. By contrast, early use of TES in a 
rat model of traumatic optic neuropathy restored optic nerve 
dysfunction[90].
CONCLUSIONS AND OUTLOOK
Glaucoma, a neurodegenerative disease, has garnered 
significant interest over the years. The progressive death of 
RGCs stands out as a major pathological feature, although the 
exact mechanism remains unclear. Substantial progress has 
been achieved in identifying and characterizing the molecular 
pathways implicated in the progressive death of RGCs in 
animal models of acute and chronic optic nerve injury. Because 
of the diversity of molecular signaling, it is possible for 
different molecular pathways to be impaired at different stages 
of glaucoma onset and progression, as well as in different 
forms of glaucoma. For example, at the molecular level, some 
patients exhibit impaired axonal transport and neurotrophic 
factor deficiencies, while others show increased oxidative 
or excitotoxic stress. The specific mechanisms of action of 
autoantibodies and heat shock proteins in glaucoma, whether 
they are damaging or protective, remain unresolved. An in-

Figure 3 The conception atlas of the gut-eye-axis.

Figure 4 Protection and treatment of RGCs  Traditional treatment 

with drugs, laser and surgery, as well as new treatment with gene 

therapy, stem cell therapy and electrical stimulation therapy.
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depth understanding of the molecular changes occurring during 
various stages of glaucoma progression is therefore crucial for 
developing targeted treatments with minimal adverse effects.
Although novel therapeutic approaches have been shown to 
be safe and efficient for use in animal models of glaucoma, 
animal models do not fully reflect human disease. Therefore, 
preclinical data must be validated in in vivo experimental 
paradigms and ideally should be confirmed by different 
research groups prior to clinical studies. Once the feasibility of 
the treatment is confirmed, it should be implemented in clinical 
practice following assessment of its effective dose range 
and duration of intervention. Comprehensive evaluation and 
documentation of key points during clinical will be essential. 
Despite the challenges, advancements in new treatments to 
prevent vision loss in glaucoma are progressing, bolstered 
by improvements in animal models and the development of 
imaging and molecular diagnostic tools.
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