Abstract:AIM: To investigate the mechanism of pyrrolidine dithiocarbamate(PDTC)on transforming growth factor-beta 2(TGF-β2)-induced epithelial-mesenchymal transition(EMT)in human lens epithelial cells(LECs).METHODS: LECs were treated with various doses of PDTC chemicals following TGF-β2 caused EMT on these cells. Cell proliferation and lateral migration were discovered using the CCK-8 and cell scratch test. The markers of EMT, including E-cadherin, α-SMA and nuclear factor-κB(NF-κB)signaling pathway-related expression, were tested by Western Blot as well as the changes in the expression of the apoptosis-related proteins BAX, BCL-2, Caspase-3, and Cyclin D1.RESULTS: The proliferation and migration viability of cells in the TGF-β2 treated group was increased compared to the group without TGF-β2, and the expression of α-SMA increased whereas the E-cadherin expression decreased. With the effect of TGF-β2, NF-κB p65 and phosphorylated NF-κB p65 expression increased, the concentration of TGF-β2 that had the greatest capacity for proliferation and migration was 10 ng/mL(P<0.05). Mechanism study of PDTC-induced EMT reversal and apoptosis showed that cell viability and migratory capability were both significantly reduced after PDTC intervention; PDTC prevents IκB phosphorylation, thus inhibiting NF-κB nuclear translocation. Protein associated to the NF-κB signaling pathway, and protein expression of NF-κB/IκBα/p-IκBα/Iκκ-α/p-Iκκ-α was decreased(P<0.05), PDTC increased the expression of the pro-apoptotic protein BAX/Caspase-3, expression of the inhibitor of apoptosis protein BCL-2 and the cell cycle protein Cyclin D1 was reduced. The expression of NF-κB/IκB mRNA was reduced, expression of the apoptosis-related mRNA BAX increased, while BCL-2 reduced.CONCLUSION: The EMT in LECs cells induced by TGF-β2 can be significantly reversed by PDTC, which may be related to the decreased expression of NF-κB p65/IκB/Iκκ-α and activation of apoptosis-related protein. PDTC can reverse EMT by inhibiting NF-κB signaling pathway and induce apoptosis of abnormally proliferated cells, which will provide new potential therapeutic agents for posterior capsular opacification(PCO)treatment.