Abstract:AIM:To establish a nomogram model to predict the effect of serum ferritin on diabetic retinopathy and evaluate the model.
METHODS:A total of 21 variables, including ferritin, were screened by univariate and multivariate regression analysis to determine the risk factors of diabetic retinopathy. A nomogram prediction model was established for evaluation and calibration.
RESULTS:Ferritin, duration of diabetes, hemoglobin, urine microalbumin, regularity of medication and body mass index were included in the nomogram model. The consistency index of the prediction model with serum ferritin was 0.813(95%CI: 0.748-0.879). The calibration curves of internal and external verification showed good performance, and the probability of the threshold suggested by the decision curve was in the range 10% to 90%. The model had a high net profit value.
CONCLUSIONS:Serum ferritin is an important risk factor for diabetic retinopathy. A new nomogram model, which includes body mass index, duration of diabetes, ferritin, hemoglobin, urine microalbumin and regularity of medication, has a high predictive accuracy and could provide early prediction for clinicians.