TGF-β2特异性siRNA载体干扰人结膜囊成纤维细胞表达的研究

乔芳, 张芳婷, 傅培, 李明华

Foundation item: Shenzhen Municipal Science and Technology Program, China (No. 2009036)
Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
Correspondence to: Fang-Ting Zhang, Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China. Fangtingzhang@126.com
Received: 2011-09-15 Accepted: 2011-11-28

Abstract
• AIM: To investigate the effects of siRNA for transforming growth factor β2 (TGF-β2) on the expression of TGF-β2 mRNA in human Tenon’s capsule fibroblasts.
• METHODS: Human Tenon’s fibroblasts were transfected by TGF-β2 siRNAs vector after separated, cultured and passed three in vitro. RT-PCR was performed to evaluate the levels of TGF-β2 mRNA at 24, 48 and 72 hours after transfected in transferred cells, and untransferred cells were as the controls.
• RESULTS: Separated human Tenon’s fibroblasts attached in 4 hours and confluent monolayer cells formed in 36 hours. The adherent cells displayed fibroblast-like or spindle shape by microscope observation. The expression of TGF-β2 mRNA of transferred group was reduced significantly in comparison with the control group, expression inhibition rates were 17.40%, 52.80% and 79.20% respectively in 24, 48 and 72 hours after transfected, and this interference function was strengthened with the time extending.
• CONCLUSION: The vector of siRNA specific for TGF-β2 is of potent interference ability for TGF-β2 mRNA expression in human Tenon’s capsule fibroblasts.
• KEYWORDS: Tenon’s capsule fibroblasts; transforming growth factor-β2; siRNA


摘 要
目的:探讨人转化生长因子 TGF-β2特异性siRNA 真核表达载体人结膜囊成纤维细胞对其 TGF-β2 mRNA 表达的影响。
方法:体外分离并培养人结膜囊成纤维细胞,在培养后传代2次的细胞以TGF-β2特异性siRNA 真核表达载体进行转化,并与未转染细胞作为对照。转染后分别于24,48和72h收集细胞,采用RT-PCR技术检测TGF-β2特异性siRNA真核表达载体对 TGF-β2 mRNA 表达的影响。
结果:分离的人结膜囊成纤维细胞于接种4h左右开始贴壁,同时细胞变长成为梭形,表现出明显的成纤维细胞特性,约36h后达到融合状态;RT-PCR 结果示:与对照组相比,转染24,48和72h后的细胞TGF-β2表达抑制率分别为17.40%,52.80%和79.20%,抑制效率呈现随时间延长而有所加强的趋势。
结论:TGF-β2特异性siRNA真核表达载体能抑制人结膜囊成纤维细胞表达的研究。国际眼科杂志2012;12(1):30-32

0 引言
滤过泡的瘢痕化是青光眼滤过手术失败的主要原因,而瘢痕化是由成纤维细胞的异常增殖造成的,研究表明转化生长因子β2(transforming growth factor-beta 2, TGF-β2)在这一过程中起关键作用1。目前,临床上通常采用药物处理的方法来抑制成纤维细胞的增殖2,3,但是所使用的药物,如5-氟尿嘧啶(5-fluorouracil, 5-FU),丝裂霉素 C (mitomycin C, MMC),环孢霉素 A (cyclosporin A, CsA)均是非特异性药物,可能带来严重的副作用。因此寻找一种特异性阻断瘢痕化形成的方法是当前的一个研究热点。RNAi是近年来发展起来的一套研究手段,由于其可以特异性地抑制某个基因的表达,已被广泛应用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗中4。本实验利用已经构建用于干扰人 TGF-β2 表达的 siRNA 质粒转染人结膜囊成纤维细胞并观察其干扰效果,为研究抑制青光眼术后滤过泡的瘢痕化和利用基因治疗提高青光眼滤过手术成功率奠定实验基础。
1 材料和方法
1.1 材料
胰蛋白酶、胎牛血清、DMEM 培养基、Opti-MEM 培养基、100 x 青霉素 (Gibco)；LipofectamineTM 2000 (Invitrogen)；引物 (南京金斯瑞)；逆转录试剂盒，PCR 试剂盒 (Fermentas)；细胞培养板，细胞培养瓶 (Corning)；CO₂ 恒温培养箱 (Thermo)；超净工作台 (苏净)；台式冷冻离心机 (Eppendorf)；倒置相差显微镜及照相系统 (Leica)；PCR 仪，水平电泳系统，凝胶成像系统 (Bio-Rad)。

1.2 方法
1.2.1 人结膜囊成纤维细胞的分离及培养 将新鲜手术标本置于无菌培养皿中，以含有青霉素和的无菌 D-Hank’s 冲洗3 遍，加入 1 mL DMEM 培养基，仔细分离并剪下结膜囊组织，用眼科剪将标本剪成 1~2 mm³小块；加入 2.5 g/L 胰蛋白酶 5 mL，500 μL CO₂，37℃孵箱消化 20min；用枪头轻吹打匀后，用 200 μL 滤网去除组织块，10 mL D-Hank’s 液冲洗漏网，1000 个/min 离心 5min，弃上清，以含有青霉素和的无菌 D-Hank’s 液重悬细胞，细胞稀释倍数至 1×10⁶个/mL，转种于细胞培养皿中，500 μL CO₂，37℃孵箱中培养。每日观察细胞生长状态，每2d 换 1 次液，当细胞融合度达到 80% 时传代。

1.2.2 人结膜囊成纤维细胞的转染 选择 1 代的人结膜囊成纤维细胞按 1×10⁶个/mL 的密度接种于 6 孔板，培养过夜，待融合度达到 90% 时吸去培养基，加入 1.5 mL /孔的无血清的 Opti-MEM，按每孔 4 μg siRNA（载体和 10 μL LipofectamineTM 2000）转染细胞，将二者分别稀释倍数至 250 μL Opti-MEM 中，室温孵育 5min 后混合稀释液，室温孵育 20min，将混合物滴加到培养孔内，混匀后 50 mL CO₂，37℃孵箱中培养，4h 后更换为含有 100 mL /孔的 DMEM 培养基继续培养。

1.2.3 RT-PCR 检测人结膜囊成纤维细胞 TGF-β2 mRNA 效果检测 分别于转染后 24，48 和 72h 收集细胞，未转染对照组以 Trizol 法提取总 RNA。按逆转录试剂盒说明书将 2 μg 总 RNA 反转录为 cDNA，以 cDNA 为模板，以 TGF-β2 上游引物 5'-CATCCTCGGCGGATCTTCTA-3' 下游引物 5'-ATCGTGTTTACCAGCCGTA-3' 进行 PCR 反应，产物 148bp; GAPDH 上游引物 5'-CTCAAGACGGGAACCTTGT-3' 下游引物 5'-ATGGTTTAGACCCATGACT-3' 为内参，扩增产物 228bp; 反应条件：94℃变性 30s、60℃退火 30s、72℃延伸 30s，30 个循环; PCR 产物经 10 g/L 琼脂糖凝胶电泳鉴定并利用灰度分析软件对表达情况进行分析。

统计学分析：采用 SPSS 13.0 统计软件包，转染实验重复 3 次行单因素方差分析，P<0.05 为差异有统计学意义。

2 结果
2.1 人结膜囊成纤维细胞的体外培养 分离的人结膜囊成纤维细胞于接种约 4h 左右开始贴壁，同时细胞变长成为梭形，表现出明显的成纤维细胞特性，约 36h 后达到融合状态，细胞生长状态良好，并表现出明显的成纤维细胞特性 (图 1)，表明人结膜囊成纤维细胞得到了正确的分离和培养成功。

2.2 TGF-β2 mRNA 的结果 与对照组相比，转染 24，48，72h 后的细胞 TGF-β2 mRNA 表达抑制率分别为 17.40%，52.80% 和 79.20% (P<0.01)，且抑制效率呈现随时间延长有所加强的趋势 (图 2，3)。

3 讨论
青光眼是视功能减退及致盲的重要原因之一，其造成视功能损害是不可逆的，后果极为严重。虽然近年来抗青光眼的显微手术和药物治疗取得了很大进展，但青光眼的治疗仍是世界性难题，疗效仍不理想。

TGF-β 是一组具有多种生物学功能的蛋白家族，广泛参与细胞分裂和分化过程的调节。目前在哺乳动物中已经证实的 TGF-β 有 3 种亚型：β₁ 和 β₂。在损伤的组织中，作为组蛋白纤维的主要调节者，β₁ 的表达量在上皮细胞中明显增加，β₂ 的表达量在间充质细胞中明显增加。大量的研究表明，TGF-β 不仅对人结膜囊成纤维细胞的增生和移行以及成纤维细胞介导的胶原沉积具有促进作用，而且可使结膜炎性细胞获得高度抗原性，促进免疫反应，形成瘢痕。Esson 等进一步研究表明，TGF-β2 可以促进瘢痕的形成。
有学者应用重组 TGF-β，单克隆抗体可以显著延缓术后
结膜囊过泡沫的存活期，其在 I / II，期的临床实验中也显
示了较为满意的眼前段效果。所以认为抑制 TGF-β 活
性将是有效抗瘢痕形成的途径之一。因此，如何阻
断 TGF-β，表达以达到有效抑制囊过泡瘢痕形成，提高
手术的成功率?是目前研究的热点。RNAi 是近年来发
展起来的一种研究手段，已被广泛应用于探索基因功能和
传染性疾病及恶性肿瘤的基因治疗中。这一技术可以非
常特异地降解与之序列相关的单个内源基因的 mRNA，并
且相对少量的 dsRNA 就可以使相应的基因表达受抑制。
因此我们拟利用针对 TGF-β 的 siRNA 来阻断 TGF-β 表
达，以期达到有效抑制囊过泡瘢痕形成，提高手术成功率
的目的。相对于抗体和反义寡核苷酸，siRNA 真核表达
载体有其明显的优越性。重组 TGF-β，单克隆抗体术后需
要反复注射，增加患者痛苦，并且获得耗时长，花费大。反
义寡核苷酸持续性差，其数量抑制浓度是相应 siRNA 的
100-1000 倍，会产生较大的毒性作用。本实验
在体外分离并培养人结膜囊成纤维细胞，在培养传代次
后以 TGF-β，特异性 siRNA 真核表达载体进行转染，并以
未转染细胞作为对照。转染后分别于 24, 48 和 72h 收集
细胞，采用 RT-PCR 技术检测 TGF-β，特异性 siRNA 真核表
达载体对 TGF-β mRNA 表达的影响。与对照组相比，转
染 24, 48 和 72h 后的细胞 TGF-β 表达抑制率分别为 17.40%
52.80% 和 79.20%，抑制效率随时间延长
有所加强的趋势。

TGF-β，特异性 siRNA 真核表达载体成功转染并抑制
人结膜囊成纤维细胞 TGF-β，mRNA 的表达，为下一步利
用 RNAi 技术来阻断 TGF-β 表达奠定了方法学基础，同时
为利用基因治疗方法提高青光眼手术成功率奠定了实
验基础。

参考文献
2 张德秀，李文杰，刘思为，小梁切除联合丝裂霉素术后晚期滤泡
相关并发症的临床分析。国际眼科杂志 2005；5(6)：1186-1189
3 Ameyar-Zaana M, Vu Thui L, Vite-Si-Ali S. siRNA as a route to new
4 萧民，赵家良。转化因子 β 及其在青光眼术后滤泡瘢痕化中作
用的研究进展。国外医学眼科学分册 2004;28(5)：320-323
5 洪余，郑树恒。成纤维细胞与创伤修复的生物学过程。中华临床康
复 2002;6(4):470
antibody as a new postoperative Anti-scarring agent in glaucoma surgery.
8 Laura B. RNAi: stasencing never sounded better. Nat Methods 2004;
1:79-86
9 Buze B, Cavin C. RNAI in a postmodern, postgenomic era. Oncogene
2004;23(1):8336-8339
growth factor-beta (TGF-beta) receptor subsets as determinants of
265(3):20533-20538
11 Huh MI, Chang Y, Jung JC. Temporal and spatial distribution of
TGF-beta isoforms and signaling intermediates in corneal regenerative
wound repair. Histol Histopathol 2009;24(11):1405-1416
12 Cordeiro MF, Bhattacharya SS, Schultz GS, et al. TGF-beta1, -beta2, and
-beta3 in vitro: biophysical effects on Tenon's fibroblast contraction,
756-763
tissue growth factor after glaucoma filtration surgery in a rabbit model. Invest
14 Cordeiro MF, Gay JA, Khaw PT. Human anti-TGFβ1, monoclonal
antibody: a new anti-scarring agent for glaucoma filtration surgery. Invest
15 Mead AL, Wong TTL, Cordeiro MF. Evaluation of anti-
TGFβ2 antibody as a postoperative anti-scarring agent in glaucoma surgery.
16 Fan RKK, Szczeklik G. The activity of siRNA in mammalian cells is
related to structural target accessibility in comparison with antisense