Optic nerve functions and visual evoked potential after acute optic neuritis

Evelyn Tai Li Min1,2, Ng Seok Hui1,2, Jakiyah Daud1,2, Raja Azmi Mohd Noor1,2, Wan–Hazabbah Wan Hitam1,2,3

1Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
2Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
3Center for Neuroscience Services and Research, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia

Correspondence to: Evelyn Tai Li Min and Wan Hazabbah Wan Hitam. Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia. daileid @ yahoo.com; hazabhah@ yahoo.com

Received: 2016–06–12 Accepted: 2017–02–22

急性视神经炎后视神经功能与视觉诱发电位的研究

Evelyn Tai Li Min1,2, Ng Seok Hui1,2, Jakiyah Daud1,2, Raja Azmi Mohd Noor1,2, Wan–Hazabbah Wan Hitam1,2,3

Abstract

 AIM: To compare the optic nerve function and visual evoked potential (VEP) between optic neuritis patients and normal individuals.

 METHODS: A cross-sectional study was conducted at the Eye Clinic of Hospital Universiti Sains Malaysia (HUSM) between September 2011 and February 2013. We recruited twenty optic neuritis patients with a single episode of idiopathic optic neuritis occurring between 3 mo and 2 y prior to examination, and twenty control subjects. Ocular examination included visual acuity, colour vision, contrast sensitivity, visual field and pattern VEP. Independent t–test was conducted to compare the differences in the means of optic nerve function and VEP parameters between the optic neuritis group and control group. In parameters that were not normally distributed, Mann–Whitney test was used to compare the medians between the two groups.

 RESULTS: In the optic neuritis group, the mean age was 30.8 y. The mean duration between the episode of optic neuritis and the time of evaluation was 6.6 mo. The visual acuity was poorer in the group with optic neuritis, with the mean LogMAR score (0.52) being significantly higher in this group than in controls ($P=0.001$). Colour vision was likewise decreased, with a mean score of 63.0% in the optic neuritis group ($P=0.001$). Contrast sensitivity was reduced in all four spatial frequencies: 3CPD ($P=0.029$), 6CPD ($P=0.026$), 12CPD ($P=0.002$) and 18CPD ($P=0.006$) in patients with optic neuritis. There was also a statistically significant loss of visual field in this group ($P<0.001$). Although subjects with optic neuritis had a slightly prolonged VEP P100 latency compared to normal subjects, this difference in VEP
latency was not significant using checkerboard pattern 1 or 2. Higher VEP amplitude was observed in optic neuritis subjects, but the difference between groups was not statistically significant.

CONCLUSION: There were significant reductions in optic nerve functions *(i.e.* visual acuity, colour vision, contrast sensitivity and visual field) at a mean of 6mo after an acute attack of optic neuritis. However, no significant differences in VEP amplitude and latency were noted between patients with optic neuritis and the control group. VEP may not be the ideal test to diagnose a previous attack of optic neuritis, as VEP parameters tend to normalize after a variable interval.

KEYWORDS: optic neuritis; visual evoked potential; optic nerve function

DOI:10.3980/j.issn.1672–5123.2017.5.04

Citation: Tai ELM, Ng SH, Daud J, Raja–Azmi MN, Wan–Hazabah WH. Optic nerve functions and visual evoked potential after acute optic neuritis. *Goiji Yanke Zazhi *(Int Eye Sci) 2017;17 (5):814–818

INTRODUCTION

Optic neuritis (ON) is an inflammation of the optic nerve.[1] It is not always specific to any systemic disease, but it is considered idiopathic.[2-3] It usually affects patients 15–45y of age, with women predominantly involved.[1] The most common pathologic basis for optic neuritis is inflammatory demyelination of the optic nerve, which has been postulated to be related to pro-inflammatory cytokines *e.g.* interleukin-8, which may trigger myelin destruction, neural cell death and axonal degeneration.[4]

After an attack of ON, visual recovery may recover spontaneously, but there are often residual abnormalities, such as decreased contrast sensitivity, color vision, and visual field.[5-7] Methods to quantify the impairment in optic nerve function include visual field testing and electrophysiological tests like visual evoked potentials (VEP).[8] VEPs measure the cortical activity in response to a flash or pattern stimuli. They are abnormal in the presence of any lesion along the anterior visual pathway. The purpose of this study was to compare the optic nerve functions and VEP between optic neuritis patients and normal individuals.

SUBJECTS AND METHODS

A cross-sectional study was conducted at Hospital Universiti Sains Malaysia (HUSM) Eye Clinic from September 2011 to February 2013. The study was approved by the Human Research Ethics Committee (HREC) USM and the conduct of the study followed the tenets of the Declaration of Helsinki. Twenty patients with a history of ON who fulfilled the inclusion and exclusion criteria were recruited, as well as twenty normal individuals to form the control group. The inclusion criteria was patients aged 12 to 55y old with a single episode of idiopathic ON occurring between 3mo and 2y prior to examination. Patients with glaucoma, optic neuropathies, dense ocular media, posterior segment pathologies, known abnormalities of colour vision, demyelinating nerve disease and poor vision prior to the attack of ON were excluded from the study.

Ocular examination including visual acuity, colour vision, contrast sensitivity, visual field and pattern VEP was performed. Visual acuity was assessed using LogMAR visual acuity charts while colour vision was tested with the Ishihara colour vision plates. Contrast sensitivity was tested using vector vision CSV 1000E chart and visual field was performed with automated Humphrey’s visual field analyzer using SITA Fast 30–2 analysis.

We performed pattern visual evoked potentials (PVEP) based on the standard ISCEV PVEP protocol 2009. The type of VEP device was Granfield PVEP Roland–Consult, RETI–port 32, Germany. A standard silver–silver chloride skin electrode was used. The skin was cleaned and an adequate amount of gel (Nu – Prep) was used to ensure good, stable electrical connection. The placement of electrode was based on the “10–20 International System”. The electrode impedance was kept below 5 kΩ, measured between 10 and 100 Hz and was not more than 20% between electrode sites to reduce electrical interference. Patient was asked to sit at 1.5 m from the video monitor. PVEP was tested monocularly, in the affected eye, with appropriate refractive correction. The test was elicited by checkerboard stimuli with large 1° *(i.e. 60min of arc)* and small 0.25° *(15min of arc)* checks.

Independent *t*-test was conducted to compare the differences in the means of optic nerve function and VEP parameters between the optic neuritis group and control group. In parameters that were not normally distributed, Mann–Whitney test was used to compare the medians between the two groups. Independent *t*-test with Welch correction for unequal variance was performed when parameters did not fulfill normality and equal variance. Simple linear regression was performed to screen potential variables that would be included and used in the multivariable model–building procedures at the multiple linear regression stage.

RESULTS

Twenty patients post–acute idiopathic ON and 20 subjects forming a control group were studied. In the ON group, the mean age was 30.8y *(12–53y of age).* Sixty five percent of patients were female. There was no significant difference of age or gender between the groups.

The mean duration between the episode of ON and the time of evaluation was 6.6mo, while the median was 9.5mo. The mean logMAR visual acuity during an acute attack of ON was 0.78. There was a variable improvement in the visual acuity during the months following the attack, but the mean logMAR score was still significantly higher in the group with ON than the control group *(P = 0.001)* *(Table 1).* Colour vision was likewise significantly decreased, with a mean score of 63.3% in the ON group *(P = 0.001).* Contrast sensitivity was reduced in all four spatial frequencies; 3CPD *(P = 0.029)*, 6CPD *(P = 0.026)*, 12CPD *(P = 0.002)* and 18CPD *(P =
Table 1 Comparison of optic nerve function between optic neuritis and controls

<table>
<thead>
<tr>
<th>Optic nerve function</th>
<th>Control (n=20)</th>
<th>ON (n=20)</th>
<th>Mean difference (95% CI)</th>
<th>*P</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA (LogMAR score)</td>
<td>0.04 (0.08)</td>
<td>0.52 (0.55)</td>
<td>-0.48 (0.22,0.73)</td>
<td>0.001</td>
</tr>
<tr>
<td>Colour vision (%)</td>
<td>100 (0)</td>
<td>63.3 (43.3)</td>
<td>-36.7 (-56.3,-17.0)</td>
<td>0.001</td>
</tr>
<tr>
<td>Contrast sensitivity (CS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3CPD</td>
<td>1.71 (0.12)</td>
<td>1.45 (0.48)</td>
<td>-0.26 (-0.49,-0.03)</td>
<td>0.029</td>
</tr>
<tr>
<td>6CPD</td>
<td>2.03 (0.56)</td>
<td>1.72 (0.12)</td>
<td>-0.31 (-0.57,-0.04)</td>
<td>0.026</td>
</tr>
<tr>
<td>12CPD</td>
<td>1.71 (0.12)</td>
<td>1.45 (0.48)</td>
<td>-0.48 (-0.75,-0.21)</td>
<td>0.002</td>
</tr>
<tr>
<td>18CPD</td>
<td>2.03 (0.56)</td>
<td>1.72 (0.12)</td>
<td>-0.43 (-0.73,-0.14)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

*Independent t-test with welch’s correction for degree of freedom was applied; **Independent t–test was applied; VA: Visual acuity; ON: Optic neuritis; SD: Standard deviation.

Table 2 Comparison of VEP latency and amplitude between optic neuritis and controls

<table>
<thead>
<tr>
<th>VEP parameters</th>
<th>Control (n=20)</th>
<th>ON (n=20)</th>
<th>Mean difference (95% CI)</th>
<th>*P</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEP–P100C1</td>
<td>112.85 (3.68)</td>
<td>114.65 (11.39)</td>
<td>-1.8 (-3.62,7.22)</td>
<td>0.508</td>
</tr>
<tr>
<td>VEP–P100C2</td>
<td>118.70 (4.22)</td>
<td>117.95 (12.45)</td>
<td>-0.75 (-0.67,5.20)</td>
<td>0.808</td>
</tr>
<tr>
<td>VEP–P100AC1</td>
<td>10.1 (6.5)</td>
<td>12.5 (6.5)</td>
<td>-2.4 (-1.8,6.6)</td>
<td>0.254</td>
</tr>
<tr>
<td>VEP–P100AC2</td>
<td>9.7 (7.5)</td>
<td>14.1 (8.7)</td>
<td>4.42 (-0.77,9.61)</td>
<td>0.092</td>
</tr>
</tbody>
</table>

*Independent t–test was applied; VEP: Visual evoked potential; ON: Optic neuritis; SD: Standard deviation.

0.006) in patients with ON. There was also a statistically significant loss of visual field in this group (P<0.001).

Although subjects with ON had a slightly prolonged VEP P100 latency compared to normal subjects, this difference in VEP latency was not found to be significant using checkerboard pattern 1 or 2. Higher VEP amplitude was observed in ON subjects, but the difference between groups was not statistically significant (Table 2).

DISCUSSION

VEP is a non–invasive test to detect functional loss in the visual pathway from retina to the visual cortex9–10. It is based on electrical potential differences recorded from the scalp in response to light or pattern stimulation to the eye11. VEP waveforms are affected by physiologic (e.g. age, gender, pupil size, refractive error), non–physiologic (e.g. pattern size, pattern contrast, mean luminance) and pharmacologic factors (e.g. alcohol intake)11–18. Pattern VEP was used to measure VEP parameters due to its relatively low variability of waveform and peak latency, not only intra–subject and inter–subject, but also in repeated measurements over time19–21. The pattern reversal VEP has a prominent positive component at 100ms (P100), preceded and followed by negative components, N75 and N13522. Patients with ON traditionally have prolonged P100 latency and reduced P100 amplitude23–25. Prolonged latency on VEP is used as a proxy measure of demyelination, while the reduced amplitude has been attributed to axonal damage26.

Clinically, ON is recognized by a triad of unilateral loss of vision, impaired optic nerve function tests (especially colour vision), and pericentral pain, all of which usually improve spontaneously in a few weeks, even in the absence of treatment27–29. In our study, all optic nerve functions (visual acuity, colour vision, contrast sensitivity and visual field) were poorer in the group with ON than the control group. Our study parallels the results of Brusa et al30, in which among thirty one patients who had an episode of ON, there was no significant improvement in optic nerve function, despite an improvement in VEP latency. The findings of Celesia et al31 differ, as among twenty patients with acute ON followed up for a year, visual function recovered completely in 65% of cases.

The likelihood is that the recovery process, which may involve remyelination or ion channel reorganization, masks the concurrent insidious demyelination and/or axonal degeneration24,30.

We observed an insignificant trend towards prolongation of VEP P100 latency in our ON patients, compared to the control subjects. Likewise, there was no significant difference in the VEP P100 between ON patients and controls. In the acute stage of ON, VEP has been used to determine the degree of conduction block of the optic nerve fibers32–33. The lack of statistical significance which we observed in the differences of VEP P100 amplitude and latency between the group with ON and the control is attributed to resolution of that conduction block3. The relatively normal VEP P100 latency in our patients with ON may reflect the ongoing process of remyelination, which occurs for a variable time period after the acute attack23,30,34.

We found it interesting that despite similar VEP amplitude and latency among patients with ON and the control group, the optic nerve functions were still poorer in the group with ON. Trip et al35, who evaluated 25 patients with a history of ON, suggested that axonal loss contributes to optic nerve atrophy even after a single, unilateral attack. They found significant optic nerve atrophy, reduced retinal nerve fiber...
layer thickness and macula volume loss in the affected eyes of these patients. They also observed that these aforementioned parameters were correlated with each other, as well as with visual acuity. This suggests that the reduced visual acuity, colour vision and contrast sensitivity observed in our ON group is likely due to a combination of optic atrophy, retinal nerve fiber layer thinning and macula volume loss. Keeping this in mind, optical coherence tomography may be a complementary tool in the evaluation of patients with ON, as the average RNFL thickness in these patients has been found to correlate well with visual function scores even in patients with an average Snellen visual acuity of 6/6 (logMAR 0)\(^{36}\).

A potential limitation of our study is related to the use of computer monitor stimulators. The sensitivity of VEP varies depending on the method used to display the checkerboard pattern; the original figures which attributed a sensitivity of approximately 90% to VEP in the diagnosis of ON were based on VEPs performed using fast optomechanical stimulators\(^{37}\). Currently, the stimulators used are computer monitors, and although the difference in the speed of pattern reversal may appear negligible, its raster scan takes up to 18 ms to draw the checkerboard, resulting in a pattern reversal which is distributed in time. This produces a P100 with a variable latency.

The main limitation of our study was its cross – sectional nature, because our patients were sampled at varying time periods post their acute attack of ON. The use of VEP in ON, however, is restricted by the fact that both the amplitude and latency of VEP vary depending on the time after onset\(^{38}\). Naturally, those sampled at 3mo post attack would have more prolonged P100 latency and reduced P100 amplitude than those sampled later, when remyelination is well in progress. A prospective approach would be ideal, with the initial VEP performed during the attack, and then again at 3, 6, 12 and 24mo post attack. We also omitted to measure the visual acuity at the point of performing VEP, which may be useful to demonstrate the correlation of VEP and clinical function. We are aware that performing VEP in both the normal and affected eyes will enable a greater comparison of the degree of impairment; these factors will be addressed in future studies. In conclusion, there were significant reductions in optic nerve functions (i.e. visual acuity, colour vision, contrast sensitivity and visual field) at a mean of 6mo after an acute attack of ON. However, no significant differences in VEP amplitude and latency were noted between patients with ON and the control group. VEP may not be the ideal test to diagnose a previous attack of ON, as VEP parameters tend to normalize after a variable interval. Clinical examination of optic nerve function tests is still invaluable in the diagnosis of a previous, subclinical attack of ON.

REFERENCES
21 Zhang ZM, Yin ZQ. How to use of visual evoked potential testing technology reasonable. Zhonghua Yan Ke Za Zhi 2013;49 (12):1061–1063
29 Bhatti MT, Schmitt NJ, Beatty RL. Acute inflammatory demyelinating optic neuritis; current concepts in diagnosis and management. Optometry 2005;76(9):526–535
32 Al–Ejailat SM, Al–Madani Senior MV. The role of magnetic resonance imaging and visual evoked potential in management of optic neuritis. Pan Afr Med J 2014;17:54
35 Trip SA, Schlottmann PG, Jones SJ, Li WY, Garway–Heath DF, Thompson AJ, Plant GT, Miller DH. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis; evidence that axonal loss is a substrate of MRI–detected atrophy. Neuroimage 2006;31(1):286–293
37 Halliday AM. Evoked potentials in clinical testing (Churchill Livingstone, Edinburgh, 1993)