The effect of single dose of brimonidine–purite 0.15% on choroidal thickness in healthy volunteers

Suleyman Demircan¹, Gökçen Göke², Mustafa Ataş³, Ahmet Gülhan¹, Burhan Başkan¹, Gokmen Zararsız²

¹Kayseri Training and Research Hospital, Eye Clinic, Kayseri 38010, Turkey
²Department of Ophthalmology, Kayseri Military Hospital, Kayseri 38010, Turkey
³Department of Biostatistics, Erciyes University, Kayseri 38010, Turkey

Correspondence to: Gokcen Goke. Kayseri Training and Research Hospital, Eye Clinic, Kayseri 38010, Turkey. dr. s. demircan@hotmail.com

Received: 2017–02–03 Accepted: 2017–08–21

Abstract

• AIM: To evaluate the potential posterior segment effects of topical application of brimonidine–purite 0.15% through measurement of choroidal thickness (CT) in healthy eyes using enhanced depth imaging spectral-domain optical coherence tomography (EDI–SD–OCT).

• METHODS: Thirty–two eyes of 32 healthy subjects were included in this prospective, placebo–controlled intervention clinical trial. They received one drop of topical preservative–free artificial tears as placebo for the first day and one drop of brimonidine–purite 0.15% for the second day. Intraocular pressure, ocular perfusion pressure (OPP), and EDI–SD–OCT were performed at baseline, at 1, 3 and 5h after the treatments.

• RESULTS: Compared to the measurements obtained at baseline, the CT measurements obtained after the topical application of brimonidine–purite 0.15% significantly increased at the sub–fovea (P=0.001), at temporal 1500 μm to the fovea (P=0.003) and at nasal 1500 μm to the fovea (P=0.003). Choroidal thickness was unchanged in placebo group during the study (P>0.05). There was no significant reduction in the OPP in both groups (P>0.05). There were no adverse events during the study.

• CONCLUSIONS: Contrary to expectations, topical administration of brimonidine–purite 0.15% resulted with thickening of sub–fovea, temporal and nasal CT. This might be related to altered auto–regulation mechanisms in choroidal vessels.

• KEYWORDS: brimonidine; choroidal thickness; enhanced depth imaging; intraocular pressure; optical coherence tomography

D01;10.3980/j. issn. 1672–5123. 2017.11.03

INTRODUCTION

Brimonidine, which is a selective α2–adrenergic agonist, effectively decrease intraocular pressure (IOP) via reduced aqueous humor production and expanded uveoscleral outflow[1–2]. Today, this is widely used as a topical anti–glaucoma drug as monotherapy, adjunctive therapy or replacement therapy for long–term treatment of glaucoma[3–6]. Brimonidine demonstrated good ocular distribution after topical application in experimental pharmacokinetic studies[7]. On topical application, brimonidine–purite easily penetrates the cornea and reduces the IOP within 1h. Peak concentration is
reached within 2 to 3h and the IOP lowering effect continues
10 to 14h after instillation3,6.

Brimonidine may be attractive due to its additional neuro-
protective properties. Anterior segment vasoconstriction
has been noted with topical brimonidine, presumably mediated via
local extra–junctional α_2–adrenergic receptors8–9. However,
there is a little knowledge about the potential vasoconstrictor
effects of brimonidine through the posterior pole of the
eyeball. Significant concentrations of brimonidine were found
to activate α_2–adrenergic receptors selectively in the posterior
segments of the eye ball10–13. These vasoconstrictor effects
have clinical significance due to the prelaminar structures of
the optic nerve receives the blood supply from the
peripapillary choroidal vessels12. A reduced choroidal
perfusion in the prelaminar optic nerve may a part of the
pathophysiological characteristics of glaucomatous optic
neuropathy11.

In light of the improvements in imaging modalities, our
knowledge about the choroid has been advancing and choroidal
changing in various diseases has been giving growing
awareness. Such proceedings may act an important role about
the knowledge of the pathophysiology of many retinopathies
and can make guide therapeutic options easier. The use of
enhanced depth imaging spectral – domain optical coherence
tomography (EDI–SD–OCT) has enabled better assessment of
posterior ocular anatomy and has been shown to detect changes
in choroidal thickness (CT) non–invasively.

We designed this study to evaluate the potential
vasoconstrictor effects of topical application of brimonidine –
prurite 0.15% through posterior segment of the eyeball by
measuring CT in healthy subjects using EDI–SD–OCT.

\section*{SUBJECTS AND METHODS}

\subsection*{Study Population and Design} This prospective, placebo
controlled interventional study was conducted at the Kayseri
Training and Research Hospital between May and October
2015. Thirty – two eyes of 32 healthy volunteers were
recruited. The study protocol was approved by the Institutional
Ethical Review Board and performed according to the
Declaration of Helsinki.

Written informed consent to participate in the study was obtained from each subject.

Assessments were performed in only one eye (right) of each subject.

After baseline measurements, all subjects received
preservative – free artificial tears (one drop for each eye) as
the placebo group for the first day of the study. One, three
and five hours later, all measurements were repeated. For
the second day of the study, after baseline measurements,
brimonidine – prurite 0.15% (alphagan–P 0.15%, Allergan
Pharmaceuticals Ltd., Westport, Ireland) was administered
to the same eyes (one drop for each eye). One, three and
five hours later, all measurements were repeated. Baseline
measurements were taken at 08:00 am to 09:00 am for
minimizing the diurnal variations.

\subsection*{Examination Protocol and Study Measurements} A
detailed medical history with complete physical and
ophthalmic examination including, best corrected visual acuity
(BCVA) with Snellen chart or logarithm of the minimum
angle resolution (logMAR) equivalent, refraction, slit–lamp
biomicroscopy, IOP, gonioscopy and funduscopic examination
using a 90 – diopter lens were performed as pre – study
screening.

\subsection*{Inclusion Criteria} Inclusion criteria were defined as
normal ophthalmic findings, refractive errors of less than 3D and an
IOP less than 21 mmHg measured using Goldmann tonometry.

A normal optic disc was defined as cup/disc area ratio less
than 0.5, a neuro – retinal rim with no glaucomatous changes
such as localized rim defects or peripapillary atrophy.

\subsection*{Exclusion Criteria} Exclusion criteria were defined as
history of previous ocular trauma or surgery, presence of
cataract, glaucoma, strabismus, eccentric fixation, laser
Treatment, retinal or optic nerve disorders, smoking or
pregnancy.

\subsection*{Systemic Hemodynamics} An automated oscillometric
device was used to measure systolic, diastolic and mean
arterial blood pressures (SBP, DBP and MAP, respectively)
on the upper arm.

\subsection*{Measurement of IOP} A Goldmann tonometer (AT900;
Haag–Streit, Köniz, Switzerland) was used to measure IOP
after one drop of fluorescein with Proparacaine–HCI.

\subsection*{Ocular Perfusion Pressure} The 2/3 MAP – IOP
formulation, which is based on the evidence that the pressure
in choroidal veins is almost equal to the IOP, used for the
calculation of ocular perfusion pressure14–16.

\subsection*{OCT Imaging} The CT was measured by EDI–SD–OCT.

Each section, consisting of 30 average scans, was obtained in
a 15 x 30 degree rectangle centered at the macula. The
horizontal section passing directly through the center of the
fovea was selected. The resulting images were viewed and
measured using the Heidelberg software (Version 5.6.4.0;
Spectralis OCT Heidelberg Engineering, Dossenheim,
Germany) (Figure 1).

Choroidal thickness was determined as the distance from the
outer surface of the hyper–reflective line, referred to as the
“retinal pigment epithelium” layer, to the hyper–reflective
line of the inner sceral border. Choroidal thickness was
measured at the fovea, 1500 μm nasal and 1500 μm temporal
to the fovea in a horizontal section. The axial resolution was
3.9 mm digital, which is the same as routine OCT images
obtained by Spectralis OCT. Measurements were evaluated by
two independent ophthalmologists (Demircan S, Ataş M)
and, the mean value was generated for analysis. The
measurements were performed at the same time of the day
in order to avoid diurnal fluctuations. Spectralis OCT uses a
signal–to–noise estimate (SNR in dB) for the quality score.
After all exposures, uncentered scans or scans with SNR $<$
dB were excluded from the study.

\subsection*{Statistical Analysis} A pilot study was conducted with 10
subjects (10 eyes) and CT variables were measured. Based
on the summary statistics of the obtained data, we applied
power analysis with $\alpha = 0.05$ and $\beta = 0.20$ ($\text{power} = 0.80$).
The minimum sample size was calculated as 31 eyes. Thus,
we collected the data of 32 patients (32 eyes). Power
analyses were performed using PASS 11.0 (Power analysis
statistical system) software. Shapiro–Wilks’ test was applied.
Figure 1 Choroidal thickness was measured at the sub-fovea, 1500 μm nasal and 1500 μm temporal to the fovea in a horizontal section using enhanced depth imaging in spectral domain optical coherence tomography A; Baseline measurements; B; Measurements at 2h after the application of brimonidine–purite 0.15%.

Table 1 Comparison of brimonidine and placebo groups of choroid thickness over time

<table>
<thead>
<tr>
<th>Variable</th>
<th>Time (h)</th>
<th></th>
<th></th>
<th></th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal choroid thickness (μm)</td>
<td>Baseline</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>326.94±131.80</td>
<td>327.44±132.45</td>
<td>324.56±124.13</td>
<td>321.00±136.12</td>
<td>0.246</td>
</tr>
<tr>
<td>Brimonidine</td>
<td>326.00±130.41</td>
<td>351.25±143.20</td>
<td>346.00±146.01</td>
<td>337.13±132.66</td>
<td>0.003</td>
</tr>
<tr>
<td>P</td>
<td>0.417</td>
<td>0.006</td>
<td>0.046</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Central choroid thickness (μm)</td>
<td>Baseline</td>
<td>381.06±131.22</td>
<td>374.06±118.06</td>
<td>371.25±127.14</td>
<td>0.139</td>
</tr>
<tr>
<td>Placebo</td>
<td>381.75±131.48</td>
<td>410.25±142.06</td>
<td>400.63±137.97</td>
<td>401.81±140.95</td>
<td>0.001</td>
</tr>
<tr>
<td>Brimonidine</td>
<td>0.462</td>
<td>0.003</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal choroid thickness (μm)</td>
<td>Baseline</td>
<td>361.38±116.96</td>
<td>363.56±116.41</td>
<td>359.25±99.56</td>
<td>360.75±99.74</td>
</tr>
<tr>
<td>Placebo</td>
<td>362.63±114.41</td>
<td>393.63±130.23</td>
<td>382.63±109.64</td>
<td>383.75±103.79</td>
<td>0.003</td>
</tr>
<tr>
<td>Brimonidine</td>
<td>0.391</td>
<td><0.001</td>
<td>0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.203</td>
<td>0.346</td>
<td>0.248</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>OPP (mmHg)</td>
<td>Baseline</td>
<td>43.49±4.45</td>
<td>43.31±5.14</td>
<td>40.78±6.54</td>
<td>42.21±3.88</td>
</tr>
<tr>
<td>Placebo</td>
<td>43.32±4.41</td>
<td>41.65±7.28</td>
<td>43.26±6.75</td>
<td>43.57±5.90</td>
<td></td>
</tr>
<tr>
<td>Brimonidine</td>
<td>0.203</td>
<td>0.346</td>
<td>0.248</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.164</td>
<td>0.048</td>
<td><0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>IOP (mmHg Appl.)</td>
<td>Placebo</td>
<td>13.13±2.13</td>
<td>13.19±2.10</td>
<td>13.75±2.11</td>
<td>12.88±1.67</td>
</tr>
<tr>
<td>Brimonidine</td>
<td>13.25±1.98</td>
<td>12.19±2.20</td>
<td>10.94±1.39</td>
<td>11.13±1.78</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SD; OPP; Ocular perfusion pressure; IOP; Intraocular pressure; Different superscripts in a row indicate a statistical significant difference among measures.

histogram and q–q plots were examined to assess the data normality. To compare the differences between groups, a two-sided paired t-test or one-way repeated measures analysis of variance were applied. Bonferroni test was used for multiple comparisons. Analyses were applied using R 3.2.2. (www.r-project.org). P value less than 5% was considered as statistically significant.

RESULTS

Thirty two eyes of 32 subjects (18 male, 14 female) were investigated. The mean age of the subjects was 34.10±6.43 (range 26–42y). All eyes had a BCVA of 20/20 or its logMAR equivalent. In the study eyes, compared to the
measurements obtained at baseline, the CT measurements obtained after the topical application of brimonidine–purite 0.15% significantly increased at the sub-fovea, at temporal 1500 μm to the fovea and at nasal 1500 μm to the fovea (Table 1). At the sub-fovea, the CT measured at baseline was 381.75 ± 131.48 μm which increased to 410.25 ± 142.06 μm at 1 h, 400.63 ± 137.97 μm at 3 h and 401.81 ± 140.95 μm at 5 h after the application of brimonidine–purite 0.15% (P = 0.001).

At the nasal part, the CT measured at baseline was 326.00 ± 130.41 μm which increased to 351.25 ± 143.20 μm at 1 h, 346.00 ± 146.01 μm at 3 h and 337.13 ± 132.66 μm at 5 h after the application of brimonidine–purite 0.15% (P = 0.003).

At the temporal part, the CT measured at baseline was 362.63 ± 114.41 μm which increased to 393.63 ± 130.23 μm at 1 h, 382.63 ± 109.64 μm at 3 h and 383.75 ± 103.79 μm at 5 h after the application of brimonidine–purite 0.15% (P = 0.003).

Choroidal Thickness was unchanged in placebo group during the study (P > 0.05).

The mean IOP significantly decreased from 13.25 ± 1.98 mmHg to 12.19 ± 2.20 mmHg at 1 h, 10.94 ± 1.39 mmHg at 3 h and 11.13 ± 1.78 mmHg at 5 h after the application of brimonidine–purite 0.15% (P < 0.001). In placebo control eyes, the mean IOP was not changed during the study (P > 0.05). There were no significant reductions in the OPP in both groups (P > 0.05). There were no adverse events during the study. Brimonidine–purite 0.15% was well tolerated by all the participants.

DISCUSSION

In this study, EDI – SD – OCT measurement of sub-fovea, nasal and temporal CT showed that administration of brimonidine–purite 0.15% to healthy eyes resulted in significantly thicker CT than those of the baseline measurements.

Although little is known about the regulation of CT and its role in different diseases, it is well-known that CT can be altered by at least 3 mechanisms; 1) local signaling that either stimulates or inhibits the fluid-pumping capacity of the RPE thereby altering the amount of fluid flux from the retina into the choroid; 2) an increase or decrease in vascular permeability of the choriocapillaris that affects the amount of protein that leaks out of these vessels, which in turn changes the oncotic pressure in the choroid; 3) dilation or constriction of both the vascular and nonvascular smooth muscles.

There are both endogenous and exogenous vasoactive substances that have been shown to alter CT.

Brimonidine has complex vasoactive properties. Rosa et al. found that brimonidine caused dose-dependent dilation of all larger retinal arterioles and mild dilation of some smaller retinal arterioles at low concentrations (< 10 - 100nM). It should be noted that this vasodilatory response was evident at therapeutic concentrations of brimonidine (i.e. vitreous concentrations < 10 - 100nM after topical administration). Clinical studies indicated that the effect of this complex vasoactive behavior of retinal blood flow remained unchanged with brimonidine treatment. We suggest that increased CT may be related to the vasoactive properties of brimonidine via dilation of choroidal vessels. Brimonidine may induce vessel dilation through its interaction with the nitric oxide (NO) signaling cascade. Some studies have shown that α2 mediated NO release plays a role in increasing CT locally by relaxing both vascular and nonvascular smooth muscles. The beneficial effect of brimonidine in terms of vasodilation and flow enhancement may be dependent on the local concentration of brimonidine, distribution and function of α2, endothelial NO synthase activity, endothelin - 1 level and the local metabolic environment. There is a dense network of sympathetic innervations of the choroid that suggests a mechanism of choroidal blood flow regulation.

Our study is the first to present evidence of the regulation of blood flow in the choroidal circulation in vivo, as measured by thickness measurements using SD-OCT. In addition, this investigation demonstrated significant change in the thickness of the choroid, despite no significant change in OPP. Thus, these results suggest some type of blood flow regulation in the choroid. The mechanism of this regulation is probably mediated by the intricate sympathetic innervations or auto-regulation in the choroidal vessels. The effect of brimonidine on CT is interesting because altered auto-regulation appears to be a contributing factor in the pathophysiology of glaucoma. On the other hand, Weigert et al. reported that topical administration of brimonidine showed a decrease in choroidal blood flow, most probably due to a direct vasoconstrictor effect. Because brimonidine decreased the IOP under baseline conditions, it is unlikely that the reduction in blood flow is caused by an indirect effect on perfusion pressure. Their results are compatible with previous findings in animal models showing pronounced vasoconstrictor effects of brimonidine in the rabbit ciliary body with in vitro data showing vasoconstrictor effects in isolated porcine ciliary arteries.

When investigating the effects of a topical anti-glaucoma drug on ocular blood flow in the posterior pole of the eye in vivo, one has to consider that a decrease in the IOP may lead to a concomitant increase in the OPP making any blood flow data difficult to interpret. Based on the data in the literature, the effects of brimonidine on arterial BP are controversial. Quaranta et al. found that brimonidine 0.2% induces a statistically significant reduction of the SBP and DBP on the 24 – hour BP profile. In a short term randomized clinical trial, Derick et al. showed that brimonidine 0.2% induces a statistically significant change in mean SBP at 1, 2, 6, and 8h after its most recent instillation and 21d after the beginning of the treatment. The mean changes in diurnal DBP were significantly different from baseline. In addition, Stewart et al. found a significant reduction in BP after administration of brimonidine alone or in association with timolol. Other randomized clinical studies on brimonidine showed that long-term results did not express any significant reduction in the
SBP and DBP^{3-6}. Our study demonstrated that brimonidine was not able to affect the OPP significantly compared to baseline. A limitation of this study is that brimonidine could have undergone systemic absorption by the nasolacrimal pathway. However, Acheampong et al^{33} found that experiments with unilateral topical dosing showed high drug levels in the treated eye compared to the contralateral untreated eye and plasma, suggesting that brimonidine penetrates into the posterior tissues by a local route instead of systemic absorption. Systemic absorption of topical brimonidine may occur, peak plasma concentrations occurring within 1–4h with a half-life of approximately 2.5h after administration^{29}. In addition the study design as such addresses the very short term effects of brimonidine on the ocular circulation, the effect of a single dose in other words. This does not reflect on the real situation of chronic use of brimonidine by glaucoma and ocular hypertension patients. In conclusion, we found that CT significantly increased in healthy subjects after the topical application of brimonidine – purite 0.15% drops into the eye when compared to baseline levels. This result also suggests that topical brimonidine – purite 0.15% would reach beyond the retina in sufficient concentrations for biological activity such as vasodilatory response at choroidal levels. As our study is a preliminary report, further larger studies are needed to provide further insights into the complex vasoactive properties of brimonidine.

REFERENCES

1 Fan S, Agrawal A, Glati V, Neely DG, Toris CB. Daytime and night-time effects of brimonidine on IOP and aqueous humor dynamics in participants with ocular hypertension. J Glaucoma 2014;23(5):276–281
2 Aug T, Sharma S, Trikha S, Perera S. Clinical effectiveness of brinzolamide 1% – brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension. Clin Ophthalmol 2015; 24:9;2201–7
3 Greig SL, Deeks ED. Brinzolamide/brimonidine: a review of its use in patients with open-angle glaucoma or ocular hypertension. Drugs Aging 2015;32 (3):251–260
9 Mayama C, Arai M. Effects of antiglaucoma drugs on blood flow of optic nerve heads and related structures. Jpn J Ophthalmol 2013;57 (2); 133–149
29 Bowman RJ, Cope J, Nischal KK. Ocular and systemic side effects of brimonidine 0.2% eye drops (Alphagam) in children. Eye (Lond) 2004;18 (1):24–26