上皮细胞型与混合型葡萄膜黑色素瘤的生物信息学分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Bioinformatic analysis between epithelioid and mixed uveal melanoma
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:通过生物信息学方法分析上皮细胞型和混合型葡萄膜黑色素瘤之间的差异表达基因及关键基因。

    方法:自GEO数据库中下载基因芯片数据集GSE22138,从中筛选出上皮细胞型和混合型葡萄膜黑色素瘤之间的差异基因,通过DAVID数据库对差异基因行功能富集分析; 通过STRING及Cytoscape构建蛋白-蛋白互作网络并从中找出关键基因; cBioportal构建关键基因的协作基因网络; 应用GEPIA数据库对关键基因进行生存分析。

    结果:本研究共筛选到符合条件的差异基因241个。其中下调的基因116个和上调的125个。差异基因功能主要富集于细胞粘附、药物反应、凋亡的调控以及内皮细胞的增殖等方面。共筛选出10个关键基因,生存分析显示这些关键基因与葡萄膜黑色素瘤的预后有关。

    结论:通过生物信息学方法对差异基因和关键基因进行分析,有助于阐释上皮细胞型和混合型葡萄膜黑色素瘤不同生物学特征及其机制。

    Abstract:

    AIM: To explore the differentially expressed genes and crucial genes between epithelioid and mixed uveal melanoma(UM)based on bioinformatics analysis.

    METHODS: Microarray datasets GSE22138 was extracted from gene expression omnibus database(GEO). The differentially expressed genes(DEGs)were screened out between epithelioid and mixed UM, and functional enrichment analysis were performed with DAVID database. STRING and cytoscape was applied to explore the protein-protein interaction(PPI)network and hub genes. Subsequently, cBioPortal was applied to explore the network of the hub genes, and GEPIA was adopted to study the survival analysis of hub genes.

    RESULTS: Overall, 241 DEGs including 125 upregulated and 116 down regulated genes were identified. The DEGs mainly enriched in cell adhesion, response to drug and Positive regulation of endothelial cell proliferation. A total of 10 hub genes were identified. Survival analysis revealed the hub genes was associated with the prognosis of UM.

    CONCLUSION: DEGs and hub genes identified by Bioinformatics analysis in the present study would be beneficial to understand mechanism and biological characteristics between epithelioid and mixed UM.

    参考文献
    相似文献
    引证文献
引用本文

陈源,黄正如.上皮细胞型与混合型葡萄膜黑色素瘤的生物信息学分析.国际眼科杂志, 2020,20(2):300-306.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-01
  • 最后修改日期:2020-01-07
  • 录用日期:
  • 在线发布日期: 2020-01-19
  • 出版日期:
文章二维码