Advances of IOL Master 700 in cataract
Author:
Fund Project:

Key Project of Sichuan Health and Family Planning Commission(No.18ZD022); Key Project of Nanchong City and University Cooperation(No.18SXHZ0492)

  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In recent years, ocular biometers based on swept-source optical coherence tomography(SS-OCT)technology have emerged in ophthalmic practice. Compared with the earlier ocular biometers such as the partially coherent interference(PCI)based ones, the SS-OCT based devices have a higher signal-to-noise ratio, greater swept light wavelength, better tissue penetration, faster scanning speed, and better axial length(AL)detection rate for cataract patients. This review aims to summarize the advances of a widely used SS-OCT based device-IOL Master 700 in cataract.

    Reference
    1 Goebels S, Pattmoller M, Eppig T, et al. Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg 2015; 41(11):2387-2393
    2 Mandal P, Berrow EJ, Naroo SA, et al. Validity and repeatability of the Aladdin ocular biometer. Br J Ophthalmol 2014; 98(2):256-258
    3 Kunert KS, Peter M, Blum M, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg 2016; 42(1):76-83
    4柏全豪, 苗雨晴, 王翠丽, 等. IOL Master与接触性A超测量的精确度和可重复性比较. 国际眼科杂志2015; 15(6):1057-1060
    5 Huber R, Wojtkowski M, Fujimoto JG. Fourier Domain Mode Locking(FDML):A new laser operating regime and applications for optical coherence tomography. Opt Express 2006; 14(8):3225-3237
    6兰长骏, 彭悦, 廖萱. 扫频光相干断层扫描生物测量仪在白内障中的应用. 中华实验眼科杂志2019; 37(2):123-128
    7 Grulkowski I, Liu JJ, Zhang JY, et al. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology 2013; 120(11):2184-2190
    8 Huang J, Savini G, Hoffer KJ, et al. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOL Master. Br J Ophthalmol 2017; 101(4):493-498
    9 Shammas HJ, Ortiz S, Shammas MC, et al. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. J Cataract Refract Surg 2016; 42(1):50-61
    10 Martinez-Albert N, Esteve-Taboada JJ, Montes-Mico R, et al. Repeatability assessment of biometric measurements with different refractive states and age using a swept-source biometer. Expert Rev Med Devices 2019; 16(1):63-69
    11 Ferrer-Blasco T, Dominguez-Vicent A, Esteve-Taboada JJ, et al. Evaluation of the repeatability of a swept-source ocular biometer for measuring ocular biometric parameters. Graefes Arch Clin Exp Ophthalmol 2017; 255(2):343-349
    12 Sel S, Stange J, Kaiser D, et al. Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements. Cont Lens Anterior Eye 2017; 40(5):318-322
    13 Kiraly L, Stange J, Kunert KS, et al. Repeatability and Agreement of Central Corneal Thickness and Keratometry Measurements between Four Different Devices. J Ophthalmol 2017; 2017:1-8
    14 Garza-Leon M, Fuentes-de LFH, Garcia-Trevino AV. Repeatability of ocular biometry with IOLMaster 700 in subjects with clear lens. Int Ophthalmol 2017; 37(5):1133-1138
    15 Liao X, Peng Y, Liu B, et al. Agreement of ocular biometric measurements in young healthy eyes between IOLMaster 700 and OA-2000. Sci Rep 2020; 10(1):3134
    16 Momeni-Moghaddam H, Maddah N, Wolffsohn JS, et al. The Effect of Cycloplegia on the Ocular Biometric and Anterior Segment Parameters:A Cross-Sectional Study. Ophthalmol Ther 2019; 8(3):387-395
    17 Grzybowski A, Schachar RA, Gaca-Wysocka M, et al. Mechanism of accommodation assessed by change in precisely registered ocular images associated with concurrent change in auto-refraction. Graefes Arch Clin Exp Ophthalmol 2018; 256(2):395-402
    18 Ferrer-Blasco T, Esteve-Taboada JJ, Monsalvez-Romin D, et al. Ocular biometric changes with different accommodative stimuli using swept-source optical coherence tomography. Int Ophthalmol 2019; 39(2):303-310
    19 Esteve-Taboada JJ, Ferrer-Blasco T, Aloy MA, et al. Ocular anatomic changes for different accommodative demands using swept-source optical coherence tomography: a pilot study. Graefes Arch Clin Exp Ophthalmol 2017; 255(12):2399-2406
    20 Schachar RA, Mani M, Schachar IH. Image registration reveals central lens thickness minimally increases during accommodation. Clin Ophthalmol 2017; 11:1625-1636
    21 Jung S, Chin HS, Kim NR, et al. Comparison of Repeatability and Agreement between Swept-Source Optical Biometry and Dual-Scheimpflug Topography. J Ophthalmol 2017; 2017:1516395
    22 Kurian M, Negalur N, Das S, et al. Biometry with a new swept-source optical coherence tomography biometer: Repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg 2016; 42(4):577-581
    23 Arriola-Villalobos P, Almendral-Gomez J, Garzon N, et al. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye(Lond) 2017; 31(3):437-442
    24 Passi SF, Thompson AC, Gupta PK. Comparison of agreement and efficiency of a swept source-optical coherence tomography device and an optical low-coherence reflectometry device for biometry measurements during cataract evaluation. Clin Ophthalmol 2018; 12:2245-2251
    25 Srivannaboon S, Chirapapaisan C, Chonpimai P, et al. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg 2015; 41(10):2224-2232
    26 Jesus DA, Kedzia R, Iskander DR. Precise measurement of scleral radius using anterior eye profilometry. Cont Lens Anterior Eye 2017; 40(1):47-52
    27 Huang J, Chen H, Li Y, et al. Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry. J Refract Surg 2019; 35(2):115-120
    28 Tamaoki A, Kojima T, Hasegawa A, et al. Clinical Evaluation of a New Swept-Source Optical Coherence Biometer That Uses Individual Refractive Indices to Measure Axial Length in Cataract Patients. Ophthalmic Res 2019; 62(1):11-23
    29 Calvo-Sanz JA, Portero-Benito A, Arias-Puente A. Efficiency and measurements agreement between swept-source OCT and low-coherence interferometry biometry systems. Graefes Arch Clin Exp Ophthalmol 2018; 256(3):559-566
    30王子杨, 杨文利, 李栋军, 等. 新型生物测量仪Pentacam AXL、IOLMaster 700与IOLMaster 500对白内障眼部生物学参数测量的比较. 中华眼科杂志 2019; 55(7):515-521
    31崔蕊, 杨文利, 李栋军, 等. IOLMaster700与IOLMaster500测量白内障术前眼轴长度的一致性及检出率比较. 中华眼视光学与视觉科学杂志2018; 20(11):659-662
    32 Akman A, Asena L, Gungor SG. Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol 2016; 100(9):1201-1205
    33 Lee HK, Kim MK. Comparison of a new swept-source optical biometer with a partial coherence interferometry. BMC Ophthalmol 2018; 18(1):269
    34 Kim SY, Lee SH, Kim NR, et al. Accuracy of intraocular lens power calculation formulas using a swept-source optical biometer. PLoS One 2020; 15(1):e227638
    35 Cheng H, Li J, Cheng B, et al. Refractive predictability using two optical biometers and refraction types for intraocular lens power calculation in cataract surgery. Int Ophthalmol 2020; 40(7):1849-1856
    36 Panthier C, Burgos J, Rouger H, et al. New objective lens density quantification method using swept-source optical coherence tomography technology: Comparison with existing methods. J Cataract Refract Surg 2017; 43(12):1575-1581
    37 Panthier C, de Wazieres A, Rouger H, et al. Average lens density quantification with swept-source optical coherence tomography:optimized, automated cataract grading technique. J Cataract Refract Surg 2019; 45(12):1746-1752
    38 Tognetto D, Pastore MR, De Giacinto C, et al. Swept-Source Optical Coherence Tomography Biometer as Screening Strategy for Macular Disease in Patients Scheduled for Cataract Surgery. Sci Rep 2019; 9(1):9912
    39 Hirnschall N, Leisser C, Radda S, et al. Macular disease detection with a swept-source optical coherence tomography-based biometry device in patients scheduled for cataract surgery. J Cataract Refract Surg 2016; 42(4):530-536
    40 Zafar S, Siddiqui M, Shahzad R, et al. Swept-source optical coherence tomography to screen for macular pathology in eyes having routine cataract surgery. J Cataract Refract Surg 2017; 43(3):324-327
    41 Bertelmann T, Blum M, Kunert K, et al. Foveal pit morphology evaluation during optical biometry measurements using a full-eye-length swept-source OCT scan biometer prototype. Eur J Ophthalmol 2015; 25(6):552-558
    42 Hirnschall N, Buehren T, Bajramovic F, et al. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J Cataract Refract Surg 2017; 43(6):732-736
    43 Wang L, Guimaraes DSR, Weikert MP, et al. Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer. J Cataract Refract Surg 2019; 45(1):35-40
    44 Goggin M, Zamora-Alejo K, Esterman A, et al. Adjustment of anterior corneal astigmatism values to incorporate the likely effect of posterior corneal curvature for toric intraocular lens calculation. J Refract Surg 2015; 31(2):98-102
    45 LaHood BR, Goggin M. Measurement of Posterior Corneal Astigmatism by the IOLMaster 700. J Refract Surg 2018; 34(5):331-336
    46 Srivannaboon S, Chirapapaisan C. Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery. Graefes Arch Clin Exp Ophthalmol 2019; 257(12):2677-2682
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Yue Peng, Xuan Liao, Chang-Jun Lan. ,/et al.Advances of IOL Master 700 in cataract. Guoji Yanke Zazhi( Int Eye Sci) 2021;21(1):80-84

Copy
Share
Article Metrics
  • Abstract:1212
  • PDF: 1119
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:April 08,2020
  • Revised:December 07,2020
  • Online: December 22,2020