Research progress of artificial intelligence in glaucoma
Author:
Fund Project:

National Natural Science Foundation of China(No.81960176)

  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Currently, the early diagnosis of glaucoma and monitoring of disease progression is difficult and requires assessment of structural(fundus photo/ optical coherence tomography scan)and functional damage(visual fields)of the optic nerve head(ONH). It requires the clinical knowledge of glaucoma experts and is highly labor intensive. Artificial intelligence(AI)applications have been proposed to improve the understanding of glaucoma and help to reduce the time and manpower required for such clinical tasks. With the advent of deep learning(DL), many tools for ophthalmological image enhancement, segmentation and classification have also emerged. Especially in the last three years, a large number of algorithms suitable for analyzing the ONH structure and/or function, which have been proposed to help in glaucoma detection. AI tools have also been developed to predict the early progression of the disease. Bring the possibility of personalized precision treatment. However, these algorithms are yet to be tested in the real world. This review summarizes the diverse landscape of AI algorithms developed for glaucoma. We also discuss the current limitations and challenges that we need to overcome.

    Reference
    1 Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090
    2 Osborne NN, Wood JP, Chidlow G, et al. Ganglion cell death in glaucoma: what do we really know? Br J Ophthalmol 1999; 83(8):980-986
    3 Tatham AJ, Weinreb RN, Medeiros FA. Strategies for improving early detection of glaucoma: the combined structure-function index. Clin Ophthalmol 2014; 8:611-621
    4 Nelson P, Aspinall P, Papasouliotis O, et al. Quality of life in glaucoma and its relationship with visual function. J Glaucoma 2003; 12(2):139-150
    5 Jampel HD, Friedman D, Quigley H, et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol 2009; 147(1):39-44,e1
    6 Liu YN, Simavli H, Que CJ, et al. Patient characteristics associated with artifacts in spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma. Am J Ophthalmol 2015; 159(3):565-576,e2
    7 Harwerth RS, Carter-Dawson L, Smith EL, et al. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004; 45(9):3152-3160\
    8 Hemelings R, Elen B, Barbosa-Breda J, et al. Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Acta Ophthalmol 2020; 98(1):e94-e100
    9 Phene S, Dunn RC, Hammel N, et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmology 2019; 126(12):1627-1639
    10 Rogers TW, Jaccard N, Carbonaro F, et al. Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study. Eye (Lond)2019; 33(11):1791-1797
    11 Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. J Glaucoma 2017; 26(12):1086-1094
    12 Shigueoka LS, Vasconcellos JPC, Schimiti RB, et al. Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma. PLoS One 2018; 13(12):e0207784
    13 Asaoka R, Murata H, Hirasawa K, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am J Ophthalmol 2019; 198:136-145
    14 Li F, Wang Z, Qu GX, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging 2018; 18(1):1-7
    15 Yousefi S, Kiwaki T, Zheng Y, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol 2018; 193:71-79
    16 Lu W, Tong Y, Yu Y, et al. Applications of artificial intelligence in ophthalmology: general overview. J Ophthalmol 2018; 2018:5278196
    17 Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations. Prog Retin Eye Res 2019; 72:100759
    18 Mayro EL, Wang M, Elze T, et al. The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye (Lond)2020; 34(1):1-11
    19 Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639):115-118
    20 van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol 2017; 10(1):23-32
    21 Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017; 12(4):e0174944
    22 Hoffmann EM, Zangwill LM, Crowston JG, et al. Optic disk size and glaucoma. Surv Ophthalmol 2007; 52(1):32-49
    23 Sinthanayothin C, Boyce JF, Cook HL, et al. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 1999; 83(8):902-910
    24 Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017; 318(22):2211-2223\
    25 Hood DC, De Moraes CG. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018; 125(8):1207-1208
    26 Tan NYQ, Friedman DS, Stalmans I, et al. Glaucoma screening: where are we and where do we need to go? Curr Opin Ophthalmol 2020; 31(2):91-100
    27 Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(11):4121-4129
    28 Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci 2005; 46(11):4147-4152\
    29 Barella KA, Costa VP, Gonçalves Vidotti V, et al. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophthalmol 2013; 2013:789129
    30 Vidotti VG, Costa VP, Silva FR, et al. Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma. Eur J Ophthalmol 2012 \〖Published online ahead of print\〗
    31 Ran AR, Cheung CY, Wang X, et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. Lancet Digit Health 2019; 1(4):e172-e182
    32 Park K, Kim J, Lee J. Macular vessel density and ganglion cell/inner plexiform layer thickness and their combinational index using artificial intelligence. J Glaucoma 2018; 27(9):750-760
    33 Christopher M, Belghith A, Weinreb RN, et al. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest Ophthalmol Vis Sci 2018; 59(7):2748-2756
    34 Devalla SK, Chin KS, Mari JM, et al. A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head. Invest Ophthalmol Vis Sci 2018; 59(1):63-74
    35 Devalla SK, Renukanand PK, Sreedhar BK, et al. DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed Opt Express 2018; 9(7):3244-3265
    36 Thompson AC, Jammal AA, Berchuck SI, et al. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol 2020; 138(4):333-339
    37 Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 1994; 35(9):3362-3373
    38 Chan K, Lee TW, Sample PA, et al. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng 2002; 49(9):963-974
    39 Goldbaum MH, Sample PA, Chan K, et al. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 2002; 43(1):162-169
    40 Asaoka R, Iwase A, Hirasawa K, et al. Identifying “preperimetric” glaucoma in standard automated perimetry visual fields. Invest Ophthalmol Vis Sci 2014; 55(12):7814-7820
    41 Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 2016; 123(9):1974-1980
    42 Brigatti L, Nouri-Mahdavi K, Weitzman M, et al. Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol 1997; 115(6):725-728
    43 Garcia GP, Nitta K, Lavieri MS, et al. Using Kalman filtering to forecast disease trajectory for patients with normal tension glaucoma. Am J Ophthalmol 2019; 199:111-119
    44 Wen JC, Lee CS, Keane PA, et al. Forecasting future Humphrey visual fields using deep learning. PLoS One 2019; 14(4):e0214875
    45 Brigatti L, Hoffman D, Caprioli J. Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol 1996; 121(5):511-521
    46 Christopher M, Bowd C, Belghith A, et al. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head en face images and retinal nerve fiber layer thickness maps. Ophthalmology 2020; 127(3):346-356
    47 Thompson AC, Jammal AA, Medeiros FA. A deep learning algorithm to quantify neuroretinal rim loss from optic disc photographs. Am J Ophthalmol 2019; 201:9-18
    48 Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology 2019; 126(4):513-521
    49 Lee J, Kim YK, Ha A, et al. Macular ganglion cell-inner plexiform layer thickness prediction from red-free fundus photography using hybrid deep learning model. Sci Rep 2020; 10(1):3280
    50 Medeiros FA, Jammal AA, Mariottoni EB. Detection of progressive glaucomatous optic nerve damage on fundus photographs with deep learning. Ophthalmology 2021; 128(3):383-392
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Chao-Xu Qian, Hua Zhong. ,/et al.Research progress of artificial intelligence in glaucoma. Guoji Yanke Zazhi( Int Eye Sci) 2021;21(12):2081-2085

Copy
Share
Article Metrics
  • Abstract:698
  • PDF: 2846
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:February 12,2021
  • Revised:November 01,2021
  • Online: November 22,2021