Analysis of the influence of night-wear aspheric orthokeratology lens on ocular surface microenvironment
Author:
Fund Project:

National Natural Science Foundation of China(No.81860172); Key Research and Development Project of Hainan Provincial Department of Science and Technology(No.ZDYF2019184)

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Night-wear aspheric orthokeratology lens(refers to OK lens)is used to correct vision while sleeping at night, which is one of the few ways to prevent myopic children from wearing glasses during the day, so often recommended as the first choice in clinical practice for the myopic population of 8-16 years old. The main effect of OK lens is producing reasonable compression on the surface of the eye to reduce the curvature of the cornea. At present, as a recognized non-surgical method for the treatment of juvenile myopia, the lens material and the optometry level of OK lens have been continuously innovated and upgraded. Meanwhile,because OK lens directly cover the ocular surface, so long-term wearing definitely affects the ocular surface microenvironment, including meibomian glands, tear film, conjunctiva, cornea, ocular surface microorganisms and so on, and even causes the imbalance of these ocular surface microenvironments, thereby leading to the occurrence and development of ocular surface diseases. In order to expect clinicians to give comprehensive consideration when wearing OK lens for teenagers and increase the safety and effectiveness of wearing OK lens, this article analyzed the effects of wearing OK lens on ocular surface meibomian gland morphology, tear film morphology and function, conjunctival microcirculation, corneal cell morphology, ocular surface microorganisms and other factors.

    Reference
    1 Si JK, Tang K, Bi HS, et al. Orthokeratology for myopia control: a meta-analysis. Optom Vis Sci 2015; 92(3):252-257
    2 Zhang XB, Vimalin JM, Qu Y, et al. Dry eye management: targeting the ocular surface microenvironment. Int J Mol Sci 2017; 18(7):1398
    3 Na KS, Yoo YS, Hwang HS, et al. The influence of overnight orthokeratology on ocular surface and meibomian glands in children and adolescents. Eye Contact Lens Sci Clin Pract 2016; 42(1):68-73
    4 Li WW, Sun XG, Wang ZQ, et al. A survey of contact lens-related complications in a tertiary hospital in China. Contact Lens Anterior Eye 2018; 41(2):201-204
    5 Gupta PK, Stevens MN, Kashyap N, et al. Prevalence of meibomian gland atrophy in a pediatric population. Cornea 2018; 37(4):426-430
    6徐曼,马丽娜,牛晓光,等. 配戴夜戴型角膜塑形镜对睑板腺及蠕形螨检出率的影响. 国际眼科杂志 2020; 20(9):169-172
    7罗铭, 周惠慈, 孙弋钫, 等. Oculus Keratograph分析角膜塑形术对青少年眼表的影响. 黑龙江医学 2018; 42(10):943-945
    8 Gunay M, Celik G, Yildiz E, et al. Ocular surface characteristics in diabetic children. Curr Eye Res 2016; 41(12):1526-1531
    9 Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWSⅡ definition and classification report. Ocular Surf 2017; 15(3):276-283
    10 Wang X, Lu XX, Yang J, et al. Evaluation of dry eye and meibomian gland dysfunction in teenagers with myopia through noninvasive keratograph. J Ophthalmol 2016; 2016:6761206
    11 Efron N, Brennan NA, Morgan PB, et al. Lid wiper epitheliopathy. Prog Retin Eye Res 2016; 53:140-174
    12刘爽, 董红, 黄晓寒, 等. 眼睑刷上皮病变与干眼检查指标相关性分析. 眼科新进展 2018; 38(8):754-757
    13 Llorens-Quintana C, Mousavi M, Szczesna-Iskander D, et al. Non-invasive pre-lens tear film assessment with high-speed videokeratoscopy. Cont Lens Anterior Eye 2018; 41(1):18-22
    14杨立, 俞萍萍. 过夜配戴角膜塑形镜对儿童青少年眼表和睑板腺的影响. 中华眼视光学与视觉科学杂志 2020; 22(1):51-57
    15 Cheung ATW, Chen PCY, Wong KY, et al. Microvascular complications in orthokeratology(Ortho-K):a real-time study on the microvasculature of the bulbar conjunctiva in Ortho-K treatment. Clin Hemorheol Microcirc 2019; 72(2):119-128
    16 Hu L, Shu XP, Xu YY, et al. Clinical study on microcirculation changes of bulbar conjunctiva after contact lens wear. Zhonghua Yan Ke Za Zhi 2019; 55(2):98-104
    17 Li F, Jiang ZX, Hao P, et al. A meta-analysis of central corneal thickness changes with overnight orthokeratology. Eye Contact Lens 2016; 42(2):141-146
    18 Wen DZ, Huang JH, Chen H, et al. Efficacy and acceptability of orthokeratology for slowing myopic progression in children: a systematic review and meta-analysis. J Ophthalmol 2015; 2015:360806
    19陈耀华. 青少年近视足矫与欠矫配镜的临床观察. 国际眼科杂志 2014; 14(8):1553-1554
    20 Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, et al. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Eye Contact Lens 2014; 40(2):84-90
    21闫斌娴, 陈浩. 角膜塑形镜停戴3周后角膜前表面形态观察及其影响因素分析. 第三军医大学学报 2016; 38(16):1868-1871
    22 Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, et al. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Eye Contact Lens 2014; 40(2):84-90
    23 Lu FH, Simpson T, Sorbara L, et al. Malleability of the ocular surface in response to mechanical stress induced by orthokeratology contact lenses. Cornea 2008; 27(2):133-141
    24 Araki S, Koh S, Kabata D, et al. Effect of long-term rigid gas-permeable contact lens wear on keratoconus progression. Br J Ophthalmol 2021; 105(2):186-190
    25 Ahmed A, Donna LH, Swarbrick HA. Overnight orthokeratology lens wear can inhibit the central stromal edema response.Investig Ophthalmol Vis Sci 2005; 46(7):2334-2340
    26 Yang LN, Guo X, Xie PY. Observation of orthokeratology discontinuation. Zhonghua Yan Ke Za Zhi 2015; 51(3):178-182
    27吕燕云, 武晶晶, 迟蕙, 等. 低中度近视青少年配戴角膜塑形镜5年的眼轴及角膜内皮变化. 眼科 2018; 27(2):141-145
    28 Boost M, Cho P, Wang ZR. Disturbing the balance: effect of contact lens use on the ocular proteome and microbiome. Clin Exp Optom 2017; 100(5):459-472
    29 Kim YH, Tan B, Lin MC, et al. Central corneal edema with scleral-lens wear. Curr Eye Res 2018; 43(11):1305-1315
    30 Liu YM, Xie PY. The safety of orthokeratology—A systematic review. Eye Contact Lens 2016; 42(1):35-42
    31 Kam KW, Yung W, Li GKH, et al. Infectious keratitis and orthokeratology lens use: a systematic review. Infection 2017; 45(6):727-735
    32王星宇, 刘陇黔. 角膜塑形镜使用中镜盒微生物污染的危险因素. 眼科学报 2020; 35(1):22-27
    33 Shen EP, Tsay RY, Chia JS, et al. The role of typeⅡI secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses. Invest Ophthalmol Vis Sci 2012; 53(10):6416-6426
    34 Lo J, Kuo MT, Chien CC, et al. Microbial bioburden of orthokeratology contact lens care system. Eye Contact Lens 2016; 42(1):61-67
    35 Lo J, Fang PC, Chien CC, et al. PCR analysis for assessment of bacterial bioburden in orthokeratology lens cases. Mol Vis 2016; 22:1-8
    36 Jiang J, Bian ZW, Wang FF, et al. Level of compliance in orthokeratology. Eye Contact Lens 2018; 44(5):330-334
    37 Khan MA, Gupta A, Ahluwalia TS, et al. A prospective interventional study of effect of accelerated orthokeratology on the corneal curvature and refraction among young adults with myopia. Med J Armed Forces India 2016; 72(2):125-130
    38赵宏伟, 朱雅娟, 刘怡, 等. 角膜塑形镜对泪膜及角膜生物学特性的影响. 国际眼科杂志 2017; 17(3):532-534
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Yan-Yun Fan, Xiong-Gao Huang, Nan-Nan Zhao. ,/et al.Analysis of the influence of night-wear aspheric orthokeratology lens on ocular surface microenvironment. Guoji Yanke Zazhi( Int Eye Sci) 2022;22(4):570-573

Copy
Share
Article Metrics
  • Abstract:704
  • PDF: 1131
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:June 28,2021
  • Revised:February 28,2022
  • Online: March 24,2022