Abstract:AIM: To investigate and clarify the intervention mechanism of trigonelline(TRG)in preventing ferroptosis in ARPE-19 cells based on the Nrf2/HO-1/GPX4 pathway.
METHODS: The ARPE-19 cells were cultured and subsequently treated with varying concentrations of trigonelline to ascertain the most effective concentration for modulating the cells. Then the cells were categorized into distinct groups, including normal control(NC)group, high glucose(HG)group, Fer-1 group, TRG group based on the determined concentration. Samples from each group were then gathered to assess relevant indicators. The intracellular levels of glutathione(GSH), malondialdehyde(MDA), and Ferrion were quantified in accordance with the protocols provided by the GSH, MDA, and Ferrion detection kits. Flow cytometry was employed to measure the ROS levels within each group. Additionally, Western blot analysis was conducted to examine the expression of nuclear factor erythroid 2-related factor 2(Nrf2), heme oxygenase-1(HO-1), glutathione peroxidase(GPX4), and acyl-CoA synthetase long-chain family member 4(ACSL4)across the different groups.
RESULTS: The preconditioning intervention with 40 μg/mL TRG effectively mitigated the decline in cell activity induced by high glucose levels. The levels of reactive oxygen species(ROS)and MDA in the HG group were markedly elevated compared to the NC group; and the TRG group exhibited significantly reduced levels of ROS and MDA compared to those of the HG group, with the antioxidant stress index GSH showing opposite trends to those of ROS and MDA across all the groups. Whereas the Fer-1 and TRG groups showed decreased expression levels of ACSL4 protein and iron ions, and the expression levels of Nrf2, HO-1 and GPX4 in the Fer-1 and TRG groups were increased.
CONCLUSION: TRG protects ARPE-19 cells from the detrimental effects of high glucose by targeting the Nrf2/HO-1/GPX4 signaling pathway to counter ferroptosis.