Abstract:AIM: To design and construct recombinant epitope nucleotides vaccine of glycoprotein B(gB)and glycoprotein D(gD)of herpes simplex virus type 1(HSV-1), and to investigate its immunoprotective effects and tissue expression in animal models.
METHODS: The HSV-1 gB and gD epitope genes were selected and tandem assembled to construct the recombinant protein-coding gene X, which was transducted into the prokaryotic expression vector pET28(a). The recombinant protein was synthesized and utilized to generate monoclonal antibodies, which were subsequently used to immunize New Zealand white rabbits. The immunogenicity of the purified protein and the presence of polyclonal antibodies in the serum were tested through separating serum from cardiac blood, and the serum antibody titers were determined. The pcDNA3.1-X was successfully constructed as a eukaryotic expression vector and immunized the female BALB/c mice aged 4 to 6 wk via intramuscular injection. Serum antibodies and immune-related cytokines were quantified using enzyme-linked immunosorbent assay(ELISA). The expression of the X protein in the ocular, trigeminal ganglion, and brain tissues of the mice was assessed.
RESULTS: The target polyclonal antibody was identified with a serum antibody titer of 1:3200 in the rabbit serum after immunized by recombinant protein X. Upon immunizing mice with the eukaryotic recombinant plasmid pcDNA3.1-X, the concentration of HSV-1 serum IgM antibodies of the experimental group was 12.13±0.85 ng/L, which was significantly higher than that of the vector control group(0.49±0.44 ng/L; t=21.07, P<0.001). The concentrations of cytokines interleukin IL-2, IL-4, IL-10, and IFN-γ in the experimental group were 11.63±0.60, 22.65±1.47, 85.75±14.12, and 114.90±6.39 ng/L, respectively, all of which were significantly higher than those in the vector control group and the blank control group(all P<0.05). Immunohistochemical staining revealed the presence of target protein X in the eyeball, trigeminal ganglion, and brain tissue.
CONCLUSION: The HSV-1 gB and gD tandem epitope nucleotides vaccine pcDNA3.1-X was successfully constructed, which activates a remarkable immune response and is stably expressed in the eyeball, trigeminal ganglion, and brain tissue. This study provides a foundation for further research of an HSV-1 recombinant antigen epitope tandem vaccine.