Multimodal imaging in acute retinal ischemia: spectral domain OCT, OCT-angiography and fundus autofluorescence
Author:
Corresponding Author:

Nikolaus Feucht. Department of Ophthalmology, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany. Nikolaus.Feucht@mri.tum.de

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    AIM: To describe retinal findings of various imaging modalities in acute retinal ischemia. METHODS: Fluorescein angiography (FA), spectral domain optical coherence tomography (SD-OCT), OCT-angiography (OCT-A) and fundus autofluorescence (FAF) images of 13 patients (mean age 64y, range 28-86y) with acute retinal ischemia were evaluated. Six suffered from branch arterial occlusion, 2 had a central retinal artery occlusion, 2 had a combined arteriovenous occlusions, 1 patient had a retrobulbar arterial compression by an orbital haemangioma and 2 patients showed an ocular ischemic syndrome. RESULTS: All patients showed increased reflectivity and thickening of the ischemic retinal tissue. In 10 out of 13 patients SD-OCT revealed an additional highly reflective band located within or above the outer plexiform layer. Morphological characteristics were a decreasing intensity with distance from the fovea, partially segmental occurrence and manifestation limited in time. OCT-A showed a loss of flow signal in the superficial and deep capillary plexus at the affected areas. Reduced flow signal was detected underneath the regions with retinal edema. FAF showed areas of altered signal intensity at the posterior pole. The regions of decreased FAF signal corresponded to peri-venous regions. CONCLUSION: Multimodal imaging modalities in retinal ischemia yield characteristic findings and valuable diagnostic information. Conventional OCT identifies hyperreflectivity and thickening and a mid-retinal hyperreflective band is frequently observed. OCT-A examination reveals demarcation of the ischemic retinal area on the vascular level. FAF shows decreased fluorescence signal in areas of retinal edema often corresponding to peri-venous regions.

    Reference
    1 Abraham S, Feucht N, Lohmann CP, Maier M. Ocular ischemic syndrome. Ophthalmologe 2015;112(8):679-681.
    2 Hayreh SS, Zimmerman MB. Ocular arterial occlusive disorders and carotid arterydisease. Ophthalmol Retina 2017;1(1):12-18.
    3 Cochard-Marianowski C, Lamirel C, Biousse V. Vascular transient monocular visual loss. J Fr Ophtalmol 2009;32(10):765-769.
    4 Rehak J, Rehak M. Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities. Curr Eye Res 2008;33(2):111-131.
    5 Hayreh SS, Zimmerman MB. Fundus changes in branch retinal arteriolar occlusion. Retina 2015;35(10):2060-2066.
    6 Pula JH, Kwan K, Yuen CA, Kattah JC. Update on the evaluation of transient vision loss. Clin Ophthalmol 2016;10:297-303.
    7 Goldenberg-Cohen N, Dadon S, Avraham BC, Kramer M, Hasanreisoglu M, Eldar I, Weinberger D, Bahar I. Molecular and histological changes following central retinal artery occlusion in a mouse model. Exp Eye Res 2008;87(4):327-333.
    8 Murthy RK, Grover S, Chalam KV. Sequential spectral domain OCT documentation of retinal changes after branch retinal artery occlusion. Clin Ophthalmol 2010;4:327-329.
    9 Feucht N, Heine F, Lohmann CP, Mayer C, Maier MM. Morphological characteristics in sd-oct and fundus autofluorescence in different ischaemic retinopathies - characterisation of a new, temporary hyperreflective band. Klin Monbl Augenheilkd 2015;232(9):1054-1060.
    10 Falkenberry SM, Ip MS, Blodi BA, Gunther JB. Optical coherence tomography findings in central retinal artery occlusion. Ophthalmic Surg Lasers Imaging 2006;37(6):502-505.
    11 Ghazi NG, Tilton EP, Patel B, Knape RM, Newman SA. Comparison of macular optical coherence tomography findings between postacute retinal artery occlusion and nonacute optic neuropathy. Retina 2010;30(4): 578-585.
    12 Feucht N, Maier M, Lohmann CP, Reznicek L. OCT angiography findings in acute central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina 2016;47(4):322-327.
    13 Ko J, Kwon OW, Byeon SH. Optical coherence tomography predicts visual outcome in acute central retinal vein occlusion. Retina 2014;34(6): 1132-1141.
    14 Moein HR, Novais EA, Rebhun CB, Cole ED, Louzada RN, Witkin AJ, Baumal CR, Duker JS, Waheed NK. Optical coherence tomography angiography to detect macular capillaryischemia in patients with inner retinal changes after resolved diabeticmacular edema. Retina 2017.
    15 Browning DJ, Punjabi OS, Lee C. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography. Clin Ophthalmol 2017;11:71-79.
    16 de Castro-Abeger AH, de Carlo TE, Duker JS, Baumal CR. Optical coherence tomography angiography compared to fluorescein angiography in branch retinal artery occlusion. Ophthalmic Surg Lasers Imaging Retina 2015;46(10):1052-1054.
    17 Yu S, Pang CE, Gong Y, Freund KB, Yannuzzi LA, Rahimy E, Lujan BJ, Tabandeh H, Cooney MJ, Sarraf D. The spectrum of superficial and deep capillary ischemia in retinal artery occlusion. Am J Ophthalmol 2015;159(1):53-63.e1-2.
    18 Chu YK, Hong YT, Byeon SH, Kwon OW. In vivo detection of acute ischemic damages in retinal arterialocclusion with optical coherence tomography: a "prominent middle limiting membrane sign". Retina 2013;33(10):2110-2117.
    19 Zheng L, Gong B, Hatala DA, Kern TS. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 2007;48(1):361-367.
    20 Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 2004;18(12):1450-1452.
    21 Fine BS, Zimmerman LE. Müller’s cells and the “middle limiting membrane” of the human retina. an electron microscopic study. Invest Ophthalmol 1962;1:304-326.
    22 Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA. Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol 2007;212(4):429-439.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Feucht N, Zapp D, Reznicek L,/et al.Multimodal imaging in acute retinal ischemia: spectral domain OCT, OCT-angiography and fundus autofluorescence. Int J Ophthalmol 2018;11(9):1521-1527

Copy
Share
Article Metrics
  • Abstract:1640
  • PDF: 726
  • HTML: 301
  • Cited by: 0
Publication History
  • Received:December 31,2017
  • Revised:July 23,2018
  • Online: August 06,2018