Characterization of the geometric properties of the sclero-conjunctival structure: a review
Author:
Corresponding Author:

David P Pi?ero. Department of Optics, Pharmacology and Anatomy, University of Alicante, Crta San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Alicante, Spain. david.pinyero@ua.es; Laurent Bataille. Vissum Innovation, C/Caba?al, 1, Alicante 03016, Spain. lbataille@vissum.com

Fund Project:

Supported by the Project UAIND18-06B of the University of Alicante within the program “Ayudas destinadas a la formación predoctoral en colaboración con empresas 2018” supported by the Vicerrectorado de Investigación y Transferencia de Conocimiento. Pi?ero DP has been also supported by the Ministry of Economy, Industry and Competitiveness of Spain within the program Ramón y Cajal, RYC-2016-20471.

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    To revise the peer-reviewed literature on geometric properties of the scleral-conjunctival structure in order to define their clinical relevance and the potential relationship between their changes and myopia development or progression. A bibliographic search focused on the study of the geometry of conjunctiva and/or sclera as well as those studies evaluating the relationship between geometric changes in the scleral-conjunctival structure and myopia was carried out. Several studies have been performed with different diagnostic technologies, including optical coherence tomography, profilometry and Scheimpflug imaging, to detect geometric changes of the scleral-conjunctival tissue in different physiological conditions of the eye, after use of contact lenses and in different ocular pathologies. Likewise, these technologies have been shown to be a valuable clinical tool to optimize scleral contact lens fitting. Future studies should investigate new potential clinical applications of such technologies, including the evaluation of anterior scleral changes related to myopia, as well as to define standardized clinical standard operating procedures for obtaining accurate and reproducible clinical measurement of the scleral-conjunctival morphology.

    Reference
    1 Rocher N. Anatomy and physiology of the human eye. Soins 2010;55(744):30-31.
    2 Shumway CL, Wade M. Anatomy, head and neck, eye conjunctiva. StatPearls. Treasure Island (FL): StatPearls Publishing; Jan-2019 Feb 7. https://pubmed.ncbi.nlm.nih.gov/30137787/.
    3 Gipson IK. Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res 2016;54:49-63.
    4 Takahashi Y, Watanabe A, Matsuda H, Nakamura Y, Nakano T, Asamoto K, Ikeda H, Kakizaki H. Anatomy of secretory glands in the eyelid and conjunctiva: a photographic review. Ophthalmic Plast Reconstr Surg 1900;29(3):215-219.
    5 McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 2003;22(3):307-338.
    6 Norman RE, Flanagan JG, Rausch SMK, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR. Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Exp Eye Res 2010;90(2):277-284.
    7 Tiffany JM, Grande EF, Todd BS. Measurement of scleral curvature by scheimpflug photography. Investig Ophthalmol Vis Sci 2004; 45(13):2389.
    8 Bandlitz S, Bäumer J, Conrad U, Wolffsohn J. Scleral topography analysed by optical coherence tomography. Cont Lens Anterior Eye 2017;40(4):242-247.
    9 Choi HJ, Lee SM, Lee JY, Lee SY, Kim MK, Wee WR. Measurement of anterior scleral curvature using anterior segment OCT. Optom Vis Sci 2014;91(7):793-802.
    10 Kasahara M, Shoji N, Morita T, Shimizu K. Comparative optical coherence tomography study of differences in scleral shape between the superonasal and superotemporal quadrants. Jpn J Ophthalmol 2014;58(5):396-401.
    11 Vincent SJ, Alonso-Caneiro D, Collins MJ. Optical coherence tomography and scleral contact lenses: clinical and research applications. Clin Exp Optom 2019;102(3):224-241.
    12 DeNaeyer G, Sanders DR, Farajian TS. Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses. Cont Lens Anterior Eye 2017;40(3):162-169.
    13 DeNaeyer G, Sanders DR. sMap3D corneo-scleral topographer repeatability in scleral lens patients. Eye Contact Lens 2018;44: S259-S264.
    14 Macedo-De-araújo RJ, van der Worp E, González-Méijome JM. In vivo assessment of the anterior scleral contour assisted by automatic profilometry and changes in conjunctival shape after miniscleral contact lens fitting. J Optom 2019;12(2):131-140.
    15 Piñero DP, Martínez-Abad A, Soto-Negro R, Ariza-Gracia MA, Carracedo G. Characterization of corneoscleral geometry using Fourier transform profilometry in the healthy eye. Eye Contact Lens 2019;45(3):201-207.
    16 Jesus DA, Iskander DR. On the methods for estimating the corneoscleral limbus. IEEE Trans Biomed Eng 2017;64(8): 1826-1833.
    17 Iskander DR, Wachel P, Simpson PND, Consejo A, Jesus DA. Principles of operation, accuracy and precision of an Eye Surface Profiler. Ophthalmic Physiol Opt 2016;36(3):266-278.
    18 Consejo A, Llorens-Quintana C, Bartuzel MM, Iskander DR, Rozema JJ. Rotation asymmetry of the human sclera. Acta Ophthalmol 2019;97(2):1-5.
    19 Jesus DA, Kedzia R, Iskander DR. Precise measurement of scleral radius using anterior eye profilometry. Cont Lens Anterior Eye 2017;40(1):47-52.
    20 Consejo A, Iskander DR. Corneo-scleral limbus demarcation from 3D height data. Cont Lens Anterior Eye 2016;39(6):450-457.
    21 Consejo A, Llorens-Quintana C, Radhakrishnan H, Iskander RD. Mean shape of the human limbus. J Cataract Refract Surg 2017;43(5):667-672.
    22 Fadel D. The influence of limbal and scleral shape on scleral lens design. Cont Lens Anterior Eye 2018;41(4):321-328.
    23 Shen L, You QS, Xu XL, Gao F, Zhang ZB, Li B, Jonas JB. Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults with malignant melanomas or end-stage glaucoma. Graefes Arch Clin Exp Ophthalmol 2016;254(9):1779-1786.
    24 Hall LA, Hunt C, Young G, Wolffsohn J. Factors affecting corneoscleral topography. Invest Ophthalmol Vis Sci 2013;54(5):3691.
    25 Seguí-Crespo M, Ariza-Gracia Má, Sixpene NDLD, Piñero DP. Geometrical characterization of the corneo-scleral transition in normal patients with Fourier domain optical coherence tomography. Int Ophthalmol 2019;39(11):2603-2609.
    26 Wang CC, Xie YF, Wang GH. The elastic modulus and collagen of sclera increase during the early growth process. J Mech Behav Biomed Mater 2018;77:566-571.
    27 Read SA, Alonso-Caneiro D, Vincent SJ, Bremner A, Fothergill A, Ismail B, McGraw R, Quirk CJ, Wrigley E. Anterior eye tissue morphology: scleral and conjunctival thickness in children and young adults. Sci Rep 2016;6:33796.
    28 Tan B, Graham AD, Tsechpenakis G, Lin MC. A novel analytical method using OCT to describe the corneoscleral junction. Optom Vis Sci 2014;91(6):650-657.
    29 Hall LA, Young G, Wolffsohn JS, Riley C. The influence of corneoscleral topography on soft contact lens fit. Investig Ophthalmol Vis Sci 2011;52(9):6801-6806.
    30 Woodman-Pieterse EC, Read SA, Collins MJ, Alonso-Caneiro D. Anterior scleral thickness changes with accommodation in myopes and emmetropes. Exp Eye Res 2018;177:96-103.
    31 Consejo A, Radhakrishnan H, Iskander DR. Scleral changes with accommodation. Ophthalmic Physiol Opt 2017;37(3):263-274.
    32 Read SA, Alonso-Caneiro D, Free KA, Labuc-Spoors E, Leigh JK, Quirk CJ, Yang ZYL, Vincent SJ. Diurnal variation of anterior scleral and conjunctival thickness. Ophthalmic Physiol Opt 2016;36(3):279-289.
    33 McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci 2009;86(1):E23-E30.
    34 Consejo A, Rozema JJ. Scleral shape and its correlations with corneal astigmatism. Cornea 2018;37(8):1047-1052.
    35 Piñero DP, Martínez-Abad A, Soto-Negro R, Ruiz-Fortes P, Pérez-Cambrodí RJ, Ariza-Gracia MA, Carracedo G. Differences in corneo-scleral topographic profile between healthy and keratoconus corneas. Cont Lens Anterior Eye 2019;42(1):75-84.
    36 Kuroda Y, Uji A, Morooka S, Nishijima K, Yoshimura N. Morphological features in anterior scleral inflammation using swept-source optical coherence tomography with multiple B-scan averaging. Br J Ophthalmol 2017;101(4):411-417.
    37 Mohamed-Noor J, Bochmann F, Siddiqui MAR, Atta HR, Leslie T, Maharajan P, Wong YM, Azuara-Blanco A. Correlation between corneal and scleral thickness in glaucoma. J Glaucoma 2009;18(1):32-36.
    38 Oliveira C, Tello C, Liebmann J, Ritch R. Central corneal thickness is not related to anterior scleral thickness or axial length. J Glaucoma 2006;15(3):190-194.
    39 Rada JAS, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res 2006;82(2):185-200.
    40 Metlapally R, Wildsoet CF. Scleral mechanisms underlying ocular growth and myopia. Prog Mol Transl Sci 2015;134:241-248.
    41 Harper AR, Summers JA. The dynamic sclera: Extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res 2015;133:100-111.
    42 Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A 2018;115(30):E7091-E7100.
    43 Hu HL, Zhao GY, Wu RF, Zhong HH, Fang M, Deng HW. Axial length/corneal radius of curvature ratio assessment of posterior sclera reinforcement for pathologic myopia. Ophthalmologica 2018;239(2-3): 128-132.
    Cited by
Get Citation

Laurent Bataille, David P Pinero. ,/et al.Characterization of the geometric properties of the sclero-conjunctival structure: a review. Int J Ophthalmol, 2020,13(9):1484-1492

Copy
Share
Article Metrics
  • Abstract:1122
  • PDF: 699
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:December 04,2019
  • Revised:July 06,2020
  • Online: July 21,2020