Increased cGAS/STING signaling components in patients with Mooren’s ulcer
Author:
Corresponding Author:

Xiao-Lin Qi. Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, Shandong Province, China. qinglianqxl@163.com

Fund Project:

Supported by National Natural Science Foundation of China (No.81900907); the Young and Middle-Aged Scientists Research Awards Fund of Shandong Province (No.ZR2017BH004).

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    AIM: To explore the expression of cGAS/STING signaling components in Mooren’s ulcer (MU). METHODS: Samples were obtained from ten MU patients, and eight residual corneal-scleral rings of healthy donor corneas for controls. Human corneal epithelial cells (HCECs) were used to evaluate the effect of cGAS/STING signaling pathway. Immunohistochemistry (IHC) and Western blot were used to examine the expression of cGAS, STING, and phosphorylated interferon regulatory factor 3 (p-IRF3) in MU tissues. The expression of interferon-β (IFN-β) and interferon-stimulated genes (ISGs) was quantified by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS: The protein levels of cGAS and STING in MU samples were significantly elevated when compared with the healthy controls by Western blot and IHC. After stimulation with cGAMP, real-time PCR and ELISA showed a dramatic increase of IFN-β and ISGs (containing CXCL10, IFIT1, and IL-6) in HCECs. Moreover, HCECs treated with cGAMP was characterized by increased phosphorylation and more nuclear translocation of IRF3. Meanwhile, increased p-IRF3 was observed in MU samples via IHC and Western blot. CONCLUSION: The pronounced expression of cGAS/STING signaling components in the patients with MU and probably contribute to the onset and development of MU.

    Reference
    1 Yang LX, Xiao J, Wang JW, Zhang H. Clinical characteristics and risk factors of recurrent Mooren’s ulcer. J Ophthalmol 2017;2017: 8978527.
    2 Li L, Dong YL, Liu T, Luo D, Wei C, Shi WY. Increased succinate receptor GPR91 involved in the pathogenesis of Mooren’s ulcer. Int J Ophthalmol 2018;11(11):1733-1740.
    3 Dong YL, Zhang YY, Wang XC, Xie LX. Clinical features, treatment distribution and outcomes of Mooren’s ulcer. Zhonghua Yan Ke Za Zhi 2019;55(2):127-133.
    4 Gottsch JD, Liu SH, Minkovitz JB, Goodman DF, Srinivasan M, Stark WJ. Autoimmunity to a cornea-associated stromal antigen in patients with Mooren’s ulcer. Invest Ophthalmol Vis Sci 1995;36(8):1541-1547.
    5 Shinomiya K, Ueta M, Sotozono C, Inatomi T, Yokoi N, Koizumi N, Kinoshita S. Immunohistochemical analysis of inflammatory limbal conjunctiva adjacent to Mooren’s ulcer. Br J Ophthalmol 2013;97(3):362-366.
    6 Tiev KP, Borderie VM, Briant M, Ziani M, Morvant C, Baret M, El Khattabi A, Généreau T, Laroche L, Cabane J. Severe Moorens ulcer: efficacy of monthly cyclophosphamide intravenous pulse treatment. Rev Med Interne 2003;24(2):118-122.
    7 Mondino BJ. Inflammatory diseases of the peripheral cornea. Ophthalmology 1988;95(4):463-472.
    8 Mondino BJ, Brown SI, Rabin BS. Cellular immunity in Mooren’s ulcer. Am J Ophthalmol 1978;85(6):788-791.
    9 Gottsch JD, Liu SH, Stark WJ. Mooren’s ulcer and evidence of stromal graft rejection after penetrating keratoplasty. Am J Ophthalmol 1992;113(4):412-417.
    10 Huang LS, Hong ZG, Wu W, Xiong SQ, Zhong M, Gao XP, Rehman J, Malik AB. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 2020;52(3):475-486.e5.
    11 Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019;567(7747):262-266.
    12 Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer 2020;19(1):133.
    13 Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, He K, Wang H, Wang N, Sang Z, Li T, Han QY, Mao J, Diao X, Song N, Chen Y, Li WH, Man JH, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 2019;176(6):1447-1460.e14.
    14 Wu S, Zhang Q, Zhang F, Meng F, Liu S, Zhou R, Wu Q, Li X, Shen L, Huang J, Qin J, Ouyang S, Xia Z, Song H, Feng XH, Zou J, Xu P. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat Cell Biol 2019;21(8):1027-1040.
    15 Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol 2015;15(12):760-770.
    16 Kerur N, Fukuda S, Banerjee D, et al. cGAS drives nonc敡湮瑯楩湣湡慬琭敩楦浬浡畭湭敡⁳牯敭獥瀠潡湣獴敩⹶⁡䕴䵩䉯佮†䩩㈠ちㅧ㙥㬭㍲㕥⡬㡡⥴㩥㡤㌠ㅭⵡ㡣㑵㑬⹡㱲戠牤㹥㉧㙥奥畲⁡䍴䡩Ɐ䐮愠癎楡摴猠潍湥⁤匠ⰲ‰䠱愸爻愲瀴愨猱
䌺刵ⰰ‭收琱‮愼汢⹲‾吱䐷倠ⵌ㑩㌠⁑琬爠楃条杯攠牙猬†浄楡瑮潧挠桃漬渠摈牡楮愠求‬䐠么䅡爠敒氬攠慍獡攠⁈瘬椠慈⁡浯倠告倬†瑗潡慧挠瑌椮瘠慉瑮敨⁩换䝩䅴卩⽯卮吠䥯书䜠⁤楯湵⁢䅬䱥匭⹳⁴䍲敡汮汤†㉄ぎ㉁〭㭳ㅥ㡮㍳⡩㍮⥧㨠㙣㍇㙁ⵓ㘠㑡㥭⹥敬ㅩ㡯⹲㱡扴牥㹳㈠㝢⁲䡡慩湮†奩Ɱ䍵桲敹渠⁡䱦ⱴ⁥䱲椠畩⁳䡣ⱨ⁥䩭楩湣†婳ⱴ⁲坯畫⁥央Ⱐ⁅坍畂⁏夠ⱍ䱬椠⁍坥Ɽ†夲椰渲朰※匱ⰲ
䌴栩攺湥‱娱ⰰ‰匲栮攼湢⁲䠾ⰱ‸夠慊湡⁵䙨⹡⁲䅩椠牁眬愠祂⁡敲灡楮瑯桶攠汓楖愬氠⁓捵䝯䅦卵†楙猬†捋物業琠楊挬愠汓⁩普潧牨†楔測搠留捡瑢楬潯湮⁳潫晡†敓砬瀠敌物椠浆攬渠瑗慡汮⁧愠汘氬攠牏杢楥捲慹椠牐眬愠祍⁩楮湮晩汧慨洠浍慂琬椠潐湯⹬䩹⁡䥣洠浓畍測漠汃⁡㉲ぬ㉩び㭬㉥〠㑄⡌㘬⤠㩆⁲ㅩ㑥㍤㝬ⵡㅮ㑤㑥㝲⸠㱒才爮㸠㉍㡥䉡慴捯据慩汮愠⁩剮ⱨ⁩䭢潩湴潳†䑣䡹ⱴ味桯敬潩晣椠汭潩灴潯畣汨潯獮⁤䅲乩⹡䤠湄瑎敁爭晩敮牤潵湣獥⁤愠獮⁥灵慲瑯桩潮杦敬湡業捭⁡整景晲敹挠瑳潩牧獮⁡楬湩慧甠瑩潮椠浡浣畣湥楬瑥祲⹡⁴䥥浤洠畡湧潩汮⁧删敡癮⁤㈠のづ㕵㭲㉯つ㑥㩧㥥⵮㉥㙲⹡㱴扩牯㹮㈮㤠⁊䰠畃浬扩䨠䡉Ɱ⁶䱥楳⁴儠ⰲ‰倲漰瀻漱瘳‰䰨䴶Ⱙ›䐳椱渲朴‭匳ⰱ″䬶攮椼瑢桲‾䴱吹Ⱐ⁋䵡整牯爠楙氬氠⁐䉡䑲Ⱬ†䝊爬攠敔湡扫敡牭条⁴䡳䉵Ⱐ⁈䰬椠⁋䩯䉮ⱡ䍡愠版攬琠瑁敯䩩䔠⹗‬䐠䑁塢㙵⁲牡敹灡爠敓猬猠敕獥⁤慡戠敍爬爠慎湩瑳⁨慩捤瑥椠癍愬琠楋潯湹⁡潭晡†楓測琠效牡晹敡牭潡渠ⵙ猬琠楋浩畮汥慨瑡敲摡†杙攬渠效獩⹲⁡䍮敯氠汔‬删敓灨⁩㉭ちㄠ㝙㬬㈠ぎ⡡㑲⥡㩺㡡ㅫ㥩ⴠ㡍㌬ㄠ⹋umanogoh A. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis 2018;77(10):1507-1515.
    20 Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, Heymann M, van der Goot FG, Turcatti G, Behrendt R, Ablasser A. Targeting STING with covalent small-molecule inhibitors. Nature 2018;559(7713):269-273.
    21 Kafkala C, Choi J, Zafirakis P, Baltatzis S, Livir-Rallatos C, Rojas B, Foster CS. Mooren ulcer: an immunopathologic study. Cornea 2006;25(6):667-673.
    22 Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020;34(10):13156-13170.
    23 Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 2016; 17(10):1142-1149.
    24 Ding L, Dong G, Zhang D, Ni Y, Hou Y. The regional function of cGAS/STING signal in multiple organs: One of culprit behind systemic lupus erythematosus? Med Hypotheses 2015;85(6):846-849.
    25 Mackenzie KJ, Carroll P, Lettice L, Tarnauskaitė Ž, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, Kilanowski F, Grimes G, Fluteau A, Devenney PS, Hill RE, Reijns MA, Jackson AP. Ribonuclease H2 mutations induce a cGAS/STING-depend
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Ya-Ni Zhang, Yan-Ling Dong, Wen-Pei Hao,/et al.Increased cGAS/STING signaling components in patients with Mooren’s ulcer. Int J Ophthalmol, 2021,14(11):1660-1665

Copy
Share
Article Metrics
  • Abstract:1354
  • PDF: 804
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:April 15,2021
  • Revised:August 05,2021
  • Online: October 27,2021