Optical coherence tomography evaluation of retinal nerve fiber layer thickness in non-arteritic anterior ischemic optic neuropathy and primary open angle glaucoma: a systematic review and Meta-analysis
Author:
Corresponding Author:

Bing Jiang. Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China. drjiangb@csu.edu.cn

Fund Project:

Supported by National Natural Science Foundation of China (No.82070967; No.81770930); National Natural Science Foundation of Hunan Province Grant (No.2020jj4788); China Hunan Provincial Science and Technology Department (No.2020SK2086).

  • Article
  • | |
  • Metrics
  • |
  • Reference [60]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    AIM: To assess the differences in average and sectoral peripapillary retinal nerve fiber layer (pRNFL) thickness using spectral domain optical coherence tomography (SD-OCT) in patients with non-arteritic anterior ischemic neuropathy (NAION) compared with those with primary open angle glaucoma (POAG). METHODS: A comprehensive literature search of the PubMed, Cochrane Library, and Embase databases were performed prior to October, 2021. Studies that compared the pRNFL thickness in NAION eyes with that in POAG eyes with matched mean deviation of the visual fields were included. The weighted mean difference (WMD) with 95% confidence interval (CI) was used to pool continuous outcomes. RESULTS: Ten cross-sectional studies (11 datasets) comprising a total of 625 eyes (278 NAION eyes, 347 POAG eyes) were included in the qualitative and quantitative analyses. The pooled results demonstrated that the superior pRNFL was significantly thinner in NAION eyes than in POAG eyes (WMD=-6.40, 95%CI: -12.22 to -0.58, P=0.031), whereas the inferior pRNFL was significant thinner in POAG eyes than in NAION eyes (WMD=11.10, 95%CI: 7.06 to 15.14, P≤0.001). No difference was noted concerning the average, nasal, and temporal pRNFL thickness (average: WMD=1.45, 95%CI: -0.75 to 3.66, P=0.196; nasal: WMD= -2.12, 95%CI: -4.43 to 0.19, P=0.072; temporal: WMD= -1.24, 95%CI: -3.96 to 1.47, P=0.370). CONCLUSION: SD-OCT based evaluation of inferior and superior pRNFL thickness can be potentially utilized to differentiate NAION from POAG, and help to understand the different pathophysiological mechanisms between these two diseases. Further longitudinal studies and studies using eight-quadrant or clock-hour classification method are required to validate the obtained findings.

    Reference
    1 Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening, diagnosis, and management: a review. JAMA 2021;325(2):164-174.
    2 Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020;77:100840.
    3 Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004;363(9422):1711-1720.
    4 Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet 2017;390(10108):2183-2193.
    5 Danesh-Meyer HV, Boland MV, Savino PJ, Miller NR, Subramanian PS, Girkin CA, Quigley HA. Optic disc morphology in open-angle glaucoma compared with anterior ischemic optic neuropathies. Invest Ophthalmol Vis Sci 2010;51(4):2003-2010.
    6 Bajpai V, Madan S, Beri S. Arteritic anterior ischaemic optic neuropathy: an update. Eur J Ophthalmol 2021;31(6):2818-2827.
    7. Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res 2009;28(1):34-62.
    8 Kalyani VK, Bharucha KM, Goyal N, Deshpande MM. Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma. Indian J Ophthalmol 2021;69(5):1108-1112.
    9 Brusini P. OCT Glaucoma Staging System: a new method for retinal nerve fiber layer damage classification using spectral-domain OCT. Eye (Lond) 2018;32(1):113-119.
    10 Toprak I, Yaylalı V, Yildirim C. Diagnostic consistency and relation between optical coherence tomography and standard automated perimetry in primary open-angle glaucoma. Semin Ophthalmol 2017;32(2):185-190.
    11 Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 2017;57:46-75.
    12 Alnawaiseh M, Hömberg L, Eter N, Prokosch V. Comparison between the correlations of retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography and visual field defects in standard automated white-on-white perimetry versus pulsar perimetry. J Ophthalmol 2017;2017:8014294.
    13 Seymenoğlu G, Başer E, Oztürk B. Comparison of spectral-domain optical coherence tomography and Heidelberg retina tomograph III optic nerve head parameters in glaucoma. Ophthalmologica 2013;229(2):101-105.
    14 Vazquez LE, Bye A, Aref AA. Recent developments in the use of optical coherence tomography for glaucoma. Curr Opin Ophthalmol 2021;32(2):98-104.
    15 Pazos M, Biarnés M, Blasco-Alberto A, Dyrda A, Luque-Fernández MÁ, Gómez A, Mora C, Milla E, Muniesa M, Antón A, Díaz-Alemán VT. SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis. Br J Ophthalmol 2021;105(4):496-501.
    16 Hou HY, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC, Akagi T, Manalastas PIC, Weinreb RN. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol 2019;199:120-132.
    17 Shin JW, Lee JY, Lee BJ, Lim HT, Kook MS. Clinical characteristics of choroidal microvasculature dropout in normal-tension glaucoma versus nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study. Sci Rep 2021;11:21391.
    18 Hondur G, Sen E, Budakoglu O. Microvascular and structural alterations in the optic nerve head of advanced primary open-angle glaucoma compared with atrophic non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2021;259(7):1945-1953.
    19 Fard MA, Fakhraee G, Ghahvechian H, Sahraian A, Moghimi S, Ritch R. Macular vascularity in ischemic optic neuropathy compared to glaucoma by projection-resolved optical coherence tomography angiography. Am J Ophthalmol 2020;209:27-34.
    20 Rebolleda G, Pérez-Sarriegui A, Díez-Álvarez L, De Juan V, Muñoz-Negrete FJ. Lamina cribrosa position and Bruch’s membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma. Eur J Ophthalmol 2019;29(2):202-209.
    21 Lee EJ, Han JC, Park DY, Kee C. Difference in topographic pattern of prelaminar and neuroretinal rim thinning between nonarteritic anterior ischemic optic neuropathy and glaucoma. Invest Ophthalmol Vis Sci 2019;60(7):2461-2467.
    22 Resch H, Mitsch C, Pereira I, Schwarzhans F, Wasserman L, Hommer A, Reitner A, Vass C. Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography. Acta Ophthalmol 2018;96(8):e1018-e1024.
    23 Mastropasqua R, Agnifili L, Borrelli E, Fasanella V, Brescia L, Di Antonio L, Mastropasqua L. Optical coherence tomography angiography of the peripapillary retina in normal-tension glaucoma and chronic nonarteritic anterior ischemic optic neuropathy. Curr Eye Res 2018;43(6):778-784.
    24 Fard MA, Suwan, Moghimi S, Geyman LS, Chui TY, Rosen RB, Ritch R. Pattern of peripapillary capillary density loss in ischemic optic neuropathy compared to that in primary open-angle glaucoma. PLoS One 2018;13(1):e0189237.
    25 Liu CH, Wu WC, Sun MH, Kao LY, Lee YS, Chen HSL. Comparison of the retinal microvascular density between open angle glaucoma and nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2017;58(9):3350-3356.
    26 Lee YH, Kim KN, Heo DW, Kang TS, Lee SB, Kim CS. Difference in patterns of retinal ganglion cell damage between primary open-angle glaucoma and non-arteritic anterior ischaemic optic neuropathy. PLoS One 2017;12(10):e0187093.
    27 Han M, Zhao C, Han QH, Xie SY, Li Y. Change of retinal nerve layer thickness in non-arteritic anterior ischemic optic neuropathy revealed by Fourier domain optical coherence tomography. Curr Eye Res 2016;41(8):1076-1081.
    28 Fard MA, Afzali M, Abdi P, Yasseri M, Ebrahimi KB, Moghimi S. Comparison of the pattern of macular ganglion cell-inner plexiform layer defect between ischemic optic neuropathy and open-angle glaucoma. Invest Ophthalmol Vis Sci 2016;57(3):1011-1016.
    29 Fard MA, Afzali M, Abdi P, Chen R, Yaseri M, Azaripour E, Moghimi S. Optic nerve head morphology in nonarteritic anterior ischemic optic neuropathy compared to open-angle glaucoma. Invest Ophthalmol Vis Sci 2016;57(11):4632-4640.
    30 Han S, Jung JJ, Kim US. Differences between non-arteritic anterior ischemic optic neuropathy and open angle glaucoma with altitudinal visual field defect. Korean J Ophthalmol 2015;29(6):418-423.
    31 Savini G, Carbonelli M, Barboni P. Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 2011;22(2):115-123.
    32 Horowitz J, Fishelzon-Arev T, Rath EZ, Segev E, Geyer O. Comparison of optic nerve head topography findings in eyes with non-arteritic anterior ischemic optic neuropathy and eyes with glaucoma. Graefes Arch Clin Exp Ophthalmol 2010;248(6):845-851.
    33 Saito H, Tomidokoro A, Sugimoto E, Aihara M, Tomita G, Fujie K, Wakakura M, Araie M. Optic disc topography and peripapillary retinal nerve fiber layer thickness in nonarteritic ischemic optic neuropathy and open-angle glaucoma. Ophthalmology 2006;113(8):1340-1344.
    34 Pasol J. Neuro-ophthalmic disease and optical coherence tomography: glaucoma look-alikes. Curr Opin Ophthalmol 2011;22(2):124-132.
    35 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009;62(10):e1-e34.
    36 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283(15):2008-2012.
    37 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557-560.
    38 Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315(7109):629-634.
    39 Begg CB, Maz HT, Xu GH, Fan N, Huang LN, Pang CP, Lam DSC. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. Ophthalmology 2009;116(7):1257-1263.e2.
    61 Chen TC, Hoguet A, Junk AK, Nouri-Mahdavi K, Radhakrishnan S, Takusagawa HL, Chen PP. Spectral-domain OCT: helping the clinician diagnose glaucoma. Ophthalmology 2018;125(11):1817-1827.nalysis. Front Med (Lausanne) 2021;8:696004.
    41 Akbari M, Abdi P, Fard MA, Afzali M, Ameri A, Yazdani-Abyaneh A, Mohammadi M, Moghimi S. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 2016;36(2):141-146.
    42 Wu J, Hao J, Du Y, Cao K, Lin C, Sun R, Xie Y, Wang N. The association between myopia and primary open-angle glaucoma: a systematic review and meta-analysis. Ophthalmic Res 2021.
    43 Torabi R, Harris A, Siesky B, Zukerman R, Oddone F, Mathew S, Januleviciene I, Vercellin A. Prevalence rates and risk factors for primary open angle glaucoma in the middle east. J Ophthalmic Vis Res 2021;16(4):644-656.
    44 Siggs OM, Han XK, Qassim A, Souzeau E, Kuruvilla S, Marshall HN, Mullany S, MacKey DA, Hewitt AW, Gharahkhani P, MacGregor S, Craig JE. Association of monogenic and polygenic risk with the prevalence of open-angle glaucoma. JAMA Ophthalmol 2021;139(9):1023-1028.
    45 Schuster AK, Wagner FM, Pfeiffer N, Hoffmann EM. Risk factors for open-angle glaucoma and recommendations for glaucoma screening. Ophthalmologe 2021;118(2):145-152.
    46 Liuska PJ, Harju M, Kivelä TT, Turunen JA. Prevalence of MYOC risk variants for glaucoma in different populations. Acta Ophthalmol 2021;99(7):e1090-e1097.
    47 Wurster P, Harris A, Gonzalez AC, Adjei S, Verticchio Vercellin A, Mathew S, Lang M, Eikenberry J, Siesky B. Risk factors for open-angle glaucoma in persons of Latin American descent. J Glaucoma 2020;29(3):217-225.
    48 Ren RJ, Wang NL, Zhang XJ, Cui TT, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol 2011;249(7):1057-1063.
    49 Berry S, Lin WV, Sadaka A, Lee AG. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management. Eye Brain 2017;9:23-28.
    50 Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica 1999;213(2):76-96.
    51 Hayreh SS, Zimmerman B. Visual field abnormalities in nonarteritic anterior ischemic optic neuropathy: their pattern and prevalence at initial examination. Arch Ophthalmol 2005;123(11):1554-1562.
    52 Choi J, Cho HS, Lee CH, Kook MS. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma. Ophthalmology 2006;113(11):1954-1960.
    53 Gerling J, Meyer JH, Kommerell G. Visual field defects in optic neuritis and anterior ischemic optic neuropathy: distinctive features. Graefes Arch Clin Exp Ophthalmol 1998;236(3):188-192.
    54 Traustason OI, Feldon SE, Leemaster JE, Weiner JM. Anterior ischemic optic neuropathy: classification of field defects by Octopus™ automated static perimetry. Graefes Arch Clin Exp Ophthalmol 1988;226(3):206-212.
    55 Sommer A. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991;109(1):77.
    56 Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol 1980;98(9):1564-1571.
    57 Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 2007;114(12):2338-2344.e1.
    58 Jonas JB, Fernández MC, Stürmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 1993;100(1):63-68.
    59 Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009;127(12):1603-1609.
    60 Leung CKS, Cheung CYL, Weinreb RN, Qiu QL, Liu S, Li
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Yu-Xin Tong, Xin-Yu Zhang, Yi He,/et al.Optical coherence tomography evaluation of retinal nerve fiber layer thickness in non-arteritic anterior ischemic optic neuropathy and primary open angle glaucoma: a systematic review and Meta-analysis. Int J Ophthalmol, 2022,15(8):1370-1380

Copy
Share
Article Metrics
  • Abstract:624
  • PDF: 732
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:June 17,2021
  • Revised:January 27,2022
  • Online: July 28,2022