Advances in the research of plant-derived natural products against retinoblastoma
Author:
Corresponding Author:

Shu-Guang Sun and Cai-Rui Li. School of Clinical Medicine, Dali University, No.22, Wanhua Road, Xiaguan Town, Dali 671000, Yunnan Province, China. sshuglily@163.com; lcrbrett@163.com

Fund Project:

Supported by the Scientific Research Fund of Jiangxi Education Department (No.GJJ211224); the Joint Key Project of Yunnan Universities (No.202001BA070001-007).

  • Article
  • | |
  • Metrics
  • |
  • Reference [88]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Retinoblastoma (RB) is a highly aggressive ocular tumor, and due to socioeconomic and medical constraints, many children receive treatment only in the metaphase and advanced clinical stages, resulting in high rates of blindness and disability. Although several approaches exist in the treatment of RB, some children with the disease do not have satisfactory results because of various factors. Plant-derived natural products have shown definite therapeutic effects in the treatment of various tumors and are also widely used in the study of RB. We review plant-derived natural products used in the study of anti-RB to provide ideas for the clinical application of these drugs and the development of new therapeutic drugs.

    Reference
    1 Lin FY, Chintagumpala MM. Neonatal retinoblastoma. Clin Perinatol 2021;48(1):53-70.
    2 Ademola-Popoola DS, Opocher E, Reddy MA. Contemporary management of retinoblastoma in the context of a low-resource country. Niger Postgrad Med J 2019;26(2):69-79.
    3 Lee C, Kim JK. Chromatin regulators in retinoblastoma: biological roles and therapeutic applications. J Cell Physiol 2021;236(4): 2318-2332.
    4 Kaewkhaw R, Rojanaporn D. Retinoblastoma: etiology, modeling, and treatment. Cancers (Basel) 2020;12(8):2304.
    5 Lemaître S, Poyer F, Fréneaux P, Leboucher S, Doz F, Cassoux N, Thomas CD. Low retinal toxicity of intravitreal carboplatin associated with good retinal tumour control in transgenic murine retinoblastoma. Clin Exp Ophthalmol 2020;48(4):500-511.
    6 Jiménez I, Laé M, Tanguy ML, Savignoni A, Gauthier-Villars M, Desjardins L, Cassoux N, Dendale R, Rodriguez J, Doz F, Brisse HJ, Aerts I. Craniofacial second primary tumors in patients with germline retinoblastoma previously treated with external beam radiotherapy: a retrospective institutional analysis. Pediatr Blood Cancer 2020;67(4):e28158.
    7 Shinde P, Banerjee P, Mandhare A. Marine natural products as source of new drugs: a patent review (2015-2018). Expert Opin Ther Pat 2019;29(4):283-309.
    8 Zhou XN, Yue GGL, Tsui SKW, Pu JX, Fung KP, Lau CBS. Elaborating the role of natural products on the regulation of autophagy and their potentials in breast cancer therapy. Curr Cancer Drug Targets 2018;18(3):239-255.
    9 Yin B, Fang DM, Zhou XL, Gao F. Natural products as important tyrosine kinase inhibitors. Eur J Med Chem 2019;182:111664.
    10 Singh S, Awasthi M, Pandey VP, Dwivedi UN. Natural products as anticancerous therapeutic molecules with special reference to enzymatic targets topoisomerase, COX, LOX and aromatase. Curr Protein Pept Sci 2018;19(3):238-274.
    11 Kumar N, Gangappa D, Gupta G, Karnati R. Chebulagic acid from Terminalia chebula causes G1 arrest, inhibits NFκB and induces apoptosis in retinoblastoma cells. BMC Complement Altern Med 2014;14:319.
    12 Wang CH, Lu SX, Liu LL, Li Y, Yang X, He YF, Chen SL, Cai SH, Wang H, Yun JP. POH1 knockdown induces cancer cell apoptosis via p53 and BIM. Neoplasia 2018;20(5):411-424.
    13 Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020;20(2):74-88.
    14 O’Donnell JS, Massi D, Teng MWL, Mandala M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol 2018;48:91-103.
    15 Yang J, Nie J, Ma XL, Wei YQ, Peng Y, Wei XW. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019;18(1):26.
    16 Zhang H, Chen LL, Sun XP, Yang QJ, Wan LL, Guo C. Matrine: a promising natural product with various pharmacological activities. Front Pharmacol 2020;11:588.
    17 Zhang Z. Effects of matrine on proliferation, apoptosis and PI3K/Akt signaling pathway for retinoblastoma cells. Journal of Sichuan of Traditional Chinese Medicine 2019;37(4):57-60.
    18 Chen Y, Ai M. Effects of matrine on proliferation, apoptosis and PI3K/Akt pathway of cultured retinoblastoma cells. Chinese Clinical Oncology 2015;20(7):598-601.
    19 Liu M, Wang J, Li L, Cheng ZX. Eucommia chlorogenic acid enhances the radiosensitivity of retinoblastoma cell line HXO- Rb44 via PI3K/AKT/Nrf-2 pathway. Chinese Journal of Clinical Anatomy 2019;37(6):644-649,655.
    20 Pereira SS, Monteiro MP, Costa MM, Ferreira J, Alves MG, Oliveira PF, Jarak I, Pignatelli D. MAPK/ERK pathway inhibition is a promising treatment target for adrenocortical tumors. J Cell Biochem 2019;120(1):894-906.
    21 Marchetti P, Trinh A, Khamari R, Kluza J. Melanoma metabolism contributes to the cellular responses to MAPK/ERK pathway inhibitors. Biochim Biophys Acta Gen Subj 2018;1862(4):999-1005.
    22 Yang C, Fan XH, Fan SX. Effects and mechanism of puerarin on the human retinoblastoma cells. J Cell Biochem 2018;119(6):4506-4513.
    23 Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015;89(6):867-882.
    24 Yu XM, Zhong JT, Yan L, Li J, Wang H, Wen Y, Zhao Y. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways. Int J Mol Med 2016;38(3):861-868.
    25 Liu HJ, Zhou M. Antitumor effect of Quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complement Altern Med 2017;17(1):531.
    26 Alunno A, Padjen I, Fanouriakis A, Boumpas DT. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells 2019;8(8):898.
    27 Dodington DW, Desai HR, Woo M. JAK/STAT - emerging players in metabolism. Trends Endocrinol Metab 2018;29(1):55-65.
    28 Tang JJH, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepat Oncol 2020;7(1):HEP18.
    29 Owen KL, Brockwell NK, Parker BS. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel) 2019;11(12):2002.
    30 Tang SB, Yuan XH, Song JT, Chen YG, Tan XJ, Li QY. Association analyses of the JAK/STAT signaling pathway with the progression and prognosis of colon cancer. Oncol Lett 2019;17(1):159-164.
    31 Li YP, Sun WX, Han N, Zou Y, Yin DX. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer 2018;18(1):1-9.
    32 Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 2017;168(1-2):37-57.
    33 Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309-324.
    34 Mu YT, Feng HH, Yu JQ, Liu ZK, Wang Y, Shao J, Li RH, Li DK. Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway. Int Ophthalmol 2020;40(10):2435-2440.
    35 Wei W. The effect of elemene on Survivin and NF-κB gene expression and telomerase activity in retinoblastoma HXO-RB44 cells in vitro. Central South University, 2007.
    36 Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, Grello C, Oxford M, Yuan F, Abounader R. The p53 pathway in glioblastoma. Cancers (Basel) 2018;10(9):297.
    37 Aning OA, Cheok CF. Drugging in the absence of p53. J Mol Cell Biol 2019;11(3):255-264.
    38 Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang ZJ, Xiao JB. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020;38:107385.
    39 Zhu X, Wang K, Yao Y, Zhang K, Zhou F, Zhu L. Triggering p53 activation is essential in ziyuglycoside I-induced human retinoblastoma WERI-Rb-1 cell apoptosis. J Biochem Mol Toxicol 2018;32(1): e22001-e22001.
    40 Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother 2019;117:108990.
    41 Wang BJ, Tian T, Kalland KH, Ke XS, Qu Y. Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol Sci 2018;39(7):648-658.
    42 Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: insights into its hyperactivation and function in tumorigenesis. J Ovarian Res 2019;12(1):122.
    43 Cheng XF, Xu XM, Chen D, Zhao F, Wang WL. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 2019;110:473-481.
    44 Khurana N, Sikka SC. Interplay between SOX9, Wnt/β-catenin and androgen receptor signaling in castration-resistant prostate cancer. Int J Mol Sci 2019;20(9):2066.
    45 Chen B, He T, Wu L, Cao T, Zheng HM. The anticancer effects of 7-Methoxyheptaphylline against the human retinoblastoma cells are facilitated via S-phase cell cycle arrest, mitochondrial apoptosis and inhibition of Wnt/β-catenin signalling pathway. J BUON 2020;25(1):421-426.
    46 Lai XD, Ouyang J, Shi Y. Role of endoplasmic reticulum stress PERK-ATF4-CHOP pathway in matrine induced retinoblastoma apoptosis. China Pharmaceuticals 2015;24(22):56-58.
    47 Song H, Wang YH. Resveratrol via miR-937 /FOXQ1 signaling pathway Inhibits retinoblastoma cell proliferation. Chin J Clin Pharmacol Ther 2020;25(2):174-181.
    48 Su ZY, Yang ZZ, Xu YQ, Chen YB, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015;14:48.
    49 Li C, Qian XH, Qian XL, Li H, Feng SJ. Effects of astragalus polysaccharide on the invasive ability of retinoblastoma cells. Rec Adv Ophthalmol 2014;34(6):530-532.
    50 Wu JB, Wang T, Yang WL, Wang JJ, Xiao JF, Wang RC, Chen ZG. Human bone marrow mesenchymal stem cells promote epithelial mesenchymal transition in lung cancer cells. Chinese Journal of Tissue Engineering Research 2016;20(7):993-999.
    51 Chen KS, Shi MD, Chien CS, Shih YW. Pinocembrin suppresses TGF-β1-induced epithelial-mesenchymal transition and metastasis of human Y-79 retinoblastoma cells through inactivating αvβ3 integrin/FAK/p38α signaling pathway. Cell Biosci 2014;4:41.
    52 Wang YW, Yuan JS, Yang LY, Wang PY, Wang XJ, Wu Y, Chen K, Ma R, Zhong YK, Guo XH, Gong Y, Gui MF, Jin YM. Inhibition of migration and invasion by berberine via inactivation of PI3K/Akt and p38 in human retinoblastoma cell line. Adv Clin Exp Med 2018;27(7):899-905.
    53 Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019;22(1):15-36.
    54 Hisano Y, Hla T. Bioactive lysolipids in cancer and angiogenesis. Pharmacol Ther 2019;193:91-98.
    55 Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017;20(4):409-426.
    56 Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol 2020;1232:131-143.
    57 Jing XM, Yang FM, 牓獨楡瑯礠⁃㉃〬〠㝗⹥㱩戠牋㸬㤠じ⁩坥愠湍杙‬堠兓ⱨ⁥坮愠湈本†奓䍨Ⱶ†䝙畑漮†奒呯ⱬ⁥吠慯湦朠⁨塹⹰䕸晩晡攠捩瑮†潣晡灣楥灲攠牴汨潥湲条異浹椠湢敹†潲湥⁧摵牬畡杴⁩牮敧猠楴獨瑥愠湴捵敭牲攠癭敩牣獲慯汥楶湩⁲桯畮浭慥湮⁴爮攠瑍楯湬漠扃污慮獣瑥潲洠愲‰䠱堹伻ⴱ券䈨㐱㐩⼺嘱䌵刷‮愼湢摲‾匵伸ⴠ剗扡㕮で⼠䍌䉊倬†捃敨汥汮†汎椬渠敃獨⹥䥧渠瑈⁘䨮†䍆汩楳湥⁴䕩确瀠⁩偮慨瑩桢潩汴⁳㈠ぶㅡ㕳㭣㡵⡬㍡⥲㨠⁥㉮㕤㉯㕴⵨㉥㕬㍩㑡⹬ growth factor-induced angiogenesis in retinoblastoma cells. Oncol Lett 2020;20(2):1239-1244.
    59 Song W, Zhao XF, Xu JR, Zhang H. Quercetin inhibits angiogenesis-mediated human retinoblastoma growth by targeting vascular endothelial growth factor receptor. Oncol Lett 2017;14(3):3343-3348.
    60 Wang J, Dong YM, Li QM. Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma. Exp Biol Med (Maywood) 2020;245(15):1385-1394.
    61 Zheng Q, Zhu Q, Li CP, Hao S, Li JG, Yu X, Qi DM, Pan Y. Sinomenine can inhibit the growth and invasion ability of retinoblastoma cell through regulating PI3K/AKT signaling pathway. Biol Pharm Bull 2020;43(10):1551-1555.
    62 Qin J, Zhang J, Zhang CT, Wei CH, Li YQ, Duan DP. Effects of baicalin on tumor proliferation, apoptosis and invasive capacity of retinoblastoma HXO-RB44 cell. Modern Journal of Integrated Traditional Chinese and Western Medicine 2016;25(3):239-241,325.
    63 Nair JJ, van Staden J. Cell cycle modulatory effects of Amaryllidaceae alkaloids. Life Sci 2018;213:94-101.
    64 Ingham M, Schwartz GK. Cell-cycle therapeutics come of age. J Clin Oncol 2017;35(25):2949-2959.
    65 Maes A, Menu E, Veirman K, Maes K, Vand Erkerken K, De Bruyne E. The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget 2017;8(52):90501-90520.
    66 Paier CRK, Maranhão SS, Carneiro TR, Lima LM, Rocha DD, Santos R, Farias KM, Moraes-Filho MO, Pessoa C. Natural products as new antimitotic compounds for anticancer drug development. Clinics (Sao Paulo) 2018;73(suppl 1):e813s.
    67 Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle 2018;17(15):1871-1885.
    68 Zheng K, He ZD, Kitazato K, Wang YF. Selective autophagy regulates cell cycle in cancer therapy. Theranostics 2019;9(1):104-125.
    69 Nie C, Ma H, Gao Y, Li JM, Tang ZX, Chen Y, Lu R. RNA sequencing and bioinformatic analysis on retinoblastoma revealing that cell cycle deregulation is a key process in retinoblastoma tumorigenesis. Ophthalmologica 2021;244(1):51-59.
    70 Roskoski R Jr. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 2016;107:249-275.
    71 Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells 2020;9(12):2648.
    72 Fusté NP, Castelblanco E, Felip I, Santacana M, Fernández-Hernández R, Gatius S, Pedraza N, Pallarés J, Cemeli T, Valls J, Tarres M, Ferrezuelo F, Dolcet X, Matias-Guiu X, Garí E. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer. Oncotarget 2016;7(19):26979-26991.
    73 Zhao BW, Li B, Liu Q, Gao F, Zhang ZB, Bai HX, Wang YC. Effects of matrine on the proliferation and apoptosis of vincristine-resistant retinoblastoma cells. Exp Ther Med 2020;20(3):2838-2844.
    74 Pang W, Li YS, Guo WH, Shen H. Cyclin E: a potential treatment target to reverse cancer chemoresistance by regulating the cell cycle. Am J Transl Res 2020;12(9):5170-5187.
    75 Zhu XX, Li XY, Chen Z. Inhibition of anticancer growth in Retinoblastoma cells by naturally occurring sesquiterpene nootkatone is mediated via autophagy, endogenous ROS production, cell cycle arrest and inhibition of NF-κB signalling pathway. J BUON 2020;25(1):427-431.
    76 Qin LL, Fan FY, Zhan QM. The role of Cyclin B1 in cell cycle regulation and tumor development. J Med Res 2008(01):8-10.
    77 Nakayama Y, Yamaguchi N. Role of cyclin B1 levels in DNA damage and DNA damage-induced senescence. Int Rev Cell Mol Biol 2013;305:303-337.
    78 Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019;593(20):2889-2907.
    79 Wang K, Zhu X, Yao Y, Yang M, Zhou FF, Zhu L. Corosolic acid induces cell cycle arrest and cell apoptosis in human retinoblastoma Y-79 cells via disruption of MELK-FoxM1 signaling. Oncol Rep 2018;39(6):2777-2786.
    80 Tang Y. Artesunate has effects on the growth of retinoblastoma and molecular mechanism. Dalian Medical University, 2015.
    81 Zhu X, Wang K, Zhang K, Pan Y, Zhou FF, Zhu L. Polyphyllin I induces cell cycle arrest and cell apoptosis in human retinoblastoma Y-79 cells through targeting p53. Anticancer Agents Med Chem 2018;18(6):875-881.
    82 Yin L, Sun ZH, Ren Q, Su X, Zhang DL. Methyl eugenol induces potent anticancer effects in RB355 human retinoblastoma cells by inducing autophagy, cell cycle arrest and inhibition of PI3K/mTOR/Akt signalling pathway. J BUON 2018;23(4):1174-1178.
    83 Sreenivasan S, Ravichandran S, Vetrivel U, Krishnakumar S. In vitro and in silico studies on inhibitory effects of curcumin on multi drug resistance associated protein (MRP1) in retinoblastoma cells. Bioinformation 2012;8(1):13-19.
    84 Tang LJ, Zhou LJ, Zhang WX, Lin JY, Li YP, Yang HS, Zhang P. Expression of multidrug-resistance associated proteins in human retinoblastoma treated by primary enucleation. Int J Ophthalmol 2018;11(9):1463-1466.
    85 Fruci D, Cho WC, Nobili V, Locatelli F, Alisi A. Drug transporters and multiple drug resistance in pediatric solid tumors. Curr Drug Metab 2016;17(4):308-316.
    86 Shukla S, Srivastava A, Kumar S, Singh U, Goswami S, Chawla B, Bajaj MS, Kashyap S, Kaur J. Expression of multidrug resistance proteins in retinoblastoma. Int J Ophthalmol 2017;10(11):1655-1661.
    87 Krishnakumar S, Mallikarjuna K, Desai N, Muthialu A, Venkatesan N, Sundaram A, Khetan V, Shanmugam MP. Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma. Br J Ophthalmol 2004;88(12):1521-1526.
    88 Cui P. Effects of resveratrol on multidrug resistance in human retinoblastoma cells. Chin J Ocul Fundus Dis,2012(06):565-568.
    89 Li X. Reversal of the primary multidrug resistance of retinoblastoma HXO-RB44 cells by Ginsenoside Rg3. Central South Unive
    Related
    Cited by
Get Citation

Jing-Chen Liu, Chun-Li Zhang, Kai-Ye Dong,/et al.Advances in the research of plant-derived natural products against retinoblastoma. Int J Ophthalmol, 2022,15(8):1391-1400

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
Publication History
  • Received:June 01,2021
  • Revised:November 24,2021
  • Online: July 28,2022