Bioinformatics and in vitro study reveal the roles of microRNA-346 in high glucose-induced human retinal pigment epithelial cell damage
Author:
Corresponding Author:

Peng Li. Department of Ophthalmology, Xijing 986 Hospital Department, Fourth Military Medical University, Xi’an 710054, Shaanxi Province, China. drlipeng@126.com

Fund Project:

Supported by the Social Development Project of Shaanxi Provincial Department of Science and Technology (No.2020SF-167); Supporting Fund Project of Shaanxi Provincial Department of Science and Technology Agency Project (No.2022SF-502); Xi’an Medical University 2022 Annual Scientific Research Capacity Improvement Plan Project (No.2022NLTS104).

  • Article
  • | |
  • Metrics
  • |
  • Reference [55]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    AIM: To study microRNAs (miRNAs) and their potential effects in high glucose-induced human retinal pigment epithelial cell damage. METHODS: We screened the GSE52233 miRNA expression dataset for differentially expressed miRNAs (DEMs). The target genes of the top 10 DEMs were predicted using miRWalk 2.0 database, followed by function enrichment and protein-protein interaction analysis. miRNA expression was determined in the human retinal pigment epithelial cell line ARPE-19 treated with high glucose (HG) by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell proliferation was determined using cell counting kit (CCK)-8 assay. Cell cycle, apoptosis, and reactive oxygen species (ROS) levels were determined by flow cytometry. The direct interaction between miRNA and targets was validated using dual-luciferase reporter assay. RESULTS: Thirty-nine DEMs were screened, and we predicted 125 miRNA-mRNA pairs for the top 10 DEMs, including 119 target genes of seven DEMs such as miR-346, which was upregulated in diabetic retinopathy (DR). miR-346 target genes were substantially enriched in the regulation of intracellular transport and retinoic acid-inducible gene I (RIG-I)-like receptor signaling pathway. Expression of three upregulated and downregulated miRNAs were verified by qRT-PCR in HG-treated ARPE-19 cells. Expression of miR-346 was elevated in HG treated ARPE-19 cells in a dose-dependent manner. HG inhibited cell proliferation and induced apoptosis, which were partly reversed by transfecting an miR-346 inhibitor, which even decreased the ROS levels elevated due to HG. Argonaute 2 (AGO2) was a target of miR-346. CONCLUSION: miR-346 is a key miRNA and plays an important role in HG-induced damage in human retinal pigment epithelial cells.

    Reference
    1 Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017;128:40-50.
    2 Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010;376(9735):124-136.
    3 Rees G, Xie J, Fenwick EK, Sturrock BA, Finger R, Rogers SL, Lim L, Lamoureux EL. Association between diabetes-related eye complications and symptoms of anxiety and depression. JAMA Ophthalmol 2016;134(9):1007.
    4 Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ. Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 2011;34(5):1238-1244.
    5 Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci 2018;19(6):1816.
    6 Bucolo C, Gozzo L, Longo L, Mansueto S, Vitale DC, Drago F. Long-term efficacy and safety profile of multiple injections of intravitreal dexamethasone implant to manage diabetic macular edema: a systematic review of real-world studies. J Pharmacol Sci 2018;138(4):219-232.
    7 Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica 2020;243(1):9-20.
    8 Jo DH, Yun JH, Cho CS, Kim JH, Kim JH, Cho CH. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2019;67(2):321-331.
    9 Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol 2011;21(Suppl 6):S3-S9.
    10 Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021;83:100919.
    11 Samuels IS, Bell BA, Pereira A, Saxon J, Peachey NS. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. J Neurophysiol 2015;113(4):1085-1099.
    12 Omri S, Behar-Cohen F, de Kozak Y, Sennlaub F, Verissimo LM, Jonet L, Savoldelli M, Omri B, Crisanti P. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCζ in the Goto Kakizaki rat model. Am J Pathol 2011;179(2):942-953.
    13 Aizu Y, Oyanagi K, Hu JG, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology 2002;22(3):161-170.
    14 Ponnalagu M, Subramani M, Jayadev C, Shetty R, Das D. Retinal pigment epithelium-secretome: a diabetic retinopathy perspective. Cytokine 2017;95:126-135.
    15 Wirostko B, Wong TY, Simó R. Vascular endothelial growth factor and diabetic complications. Prog Retin Eye Res 2008;27(6):608-621.
    16 Zeng J, Chen B. Epigenetic mechanisms in the pathogenesis of diabetic retinopathy. Ophthalmologica 2014;232(1):1-9.
    17 Bonasio R, Tu SJ, Reinberg D. Molecular signals of epigenetic states. Science 2010;330(6004):612-616.
    18 Feng SH, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science 2010;330(6004):622-627.
    19 Mastropasqua R, Toto L, Cipollone F, Santovito D, Carpineto P, Mastropasqua L. Role of microRNAs in the modulation of diabetic retinopathy. Prog Retin Eye Res 2014;43:92-107.
    20 Yang Y, Liu Y, Li YP, Chen ZL, Xiong YX, Zhou TC, Tao WY, Xu F, Yang HL, Ylä-Herttuala S, Chaurasia SS, Adam WC, Yang K. microRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy. J Clin Endocrinol Metab 2020;105(11):3404-3415.
    21 Shao Y, Dong LJ, Takahashi Y, Chen JL, Liu X, Chen Q, Ma JX, Li XR. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 2019;316(3):E443-E452.
    22 Dávalos A, Fernández-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res 2013;75:60-72.
    23 Gong QY, Su GF. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 2017;37(6): BSR20171157.
    24 Chen QA, Qiu FF, Zhou KL, Matlock HG, Takahashi Y, Rajala RVS, Yang YH, Moran E, Ma JX. Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα. Diabetes 2017;66(6):1671-1682.
    25 Platania C, Maisto R, Trotta M, D’Amico M, Rossi S, Gesualdo C, D’Amico G, Baltă C, Herman H, Hermenean A, Ferraraccio F, Panarese I, Drago F, Bucolo C. Retinal and circulating miRNA expression patterns in diabetic retinopathy: an in silico and in vivo approach. Br J Pharmacol 2019;176:2179-2194.
    26 Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004;20(3):307-315.
    27 Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19(2):185-193.
    28 Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4(2):249-264.
    29 Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock REW, Brinkman FSL, Lynn DJ. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res 2013;41(D1):D1228-D1233.
    30 Palmieri V, Backes C, Ludwig N, Fehlmann T, Kern F, Meese E, Keller A. IMOTA: an interactive multi-omics tissue atlas for the analysis of human miRNA-target interactions. Nucleic Acids Res 2018;46(D1):D770-D775.
    31 Tang Y, Li M, Wang JX, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015;127:67-72.
    32 Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000;25(1):25-29.
    33 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28(1):27-30.
    34 Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10:protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015;43(D1):D447-D452.
    35 Su T, Gu CF, Draga D, Zhou CD, Lhamo T, Zheng Z, Qiu QH. Integrative analysis of miRNA–mRNA network in high altitude retinopathy by bioinformatics analysis. Biosci Rep 2021;41(1): BSR20200776.
    36 Grassmann F, Schoenberger PG, Brandl C, Schick T, Hasler D, Meister G, Fleckenstein M, Lindner M, Helbig H, Fauser S, Weber BH. A circulating microrna profile is associated with late-stage neovascular age-related macular degeneration. PLoS One 2014;9(9):e107461.
    37 Ling SK, Birnbaum Y, Nanhwan MK, Thomas B, Bajaj M, Ye YM. microRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina. Cell Signal 2013;25(12):2840-2847.
    38 Perrone L, Matrone C, Singh LP. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J Ophthalmol 2014;2014:789120.
    39 Hsu CY, Hsieh TH, Tsai CF, Tsai HP, Chen HS, Chang Y, Chuang HY, Lee JN, Hsu YL, Tsai EM. miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J Pathol 2014;232(3):330-343.
    40 Peplow P, Martinez B. microRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res 2019;14(11):1858.
    41 Tiwari A, Mukherjee B, Dixit M. microRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets 2018;18(3):266-277.
    42 Bao XY, Cao J. MiRNA-138-5p protects the early diabetic retinopathy by regulating NOVA1. Eur Rev Med Pharmacol Sci 2019;23(18): 7749-7756.
    43 Zhang R, Feng YQ, Lu JF, Ge YN, Li HL. lncRNA Ttc3-209 promotes the apoptosis of retinal ganglion cells in retinal ischemia reperfusion injury by targeting the miR-484/Wnt8a axis. Invest Ophthalmol Vis Sci 2021;62(3):13.
    44 Hyun CS, Mark G, Yuki S, Zhu L, So-Ra L, Shen WY. Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation. PLoS One 2015;10(3):e0118949.
    45 Miao AW, Lu J, Wang YS, Mao SD, Cui YM, Pan JY, Li LS, Luo Y. Identification of the aberrantly methylated differentially expressed genes in proliferative diabetic retinopathy. Exp Eye Res 2020;199:108141.
    46 Loo YM, Gale M. Immune signaling by RIG-I-like receptors. Immunity 2011;34(5):680-692.
    47 Quicke KM, Diamond MS, Suthar MS. Negative regulators of the RIG-I-like receptor signaling pathway. Eur J Immunol 2017;47(4): 615-628.
    48 Chen XJ, Zhang CJ, Wang YH, Jin ZB. Retinal degeneration caused by Ago2 disruption. Invest Ophthalmol Vis Sci 2021;62(12):14.
    49 Xia TN, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vis Res 2017;139:72-81.
    50 Kang QZ, Yang CX. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020;37:101799.
    51 Tu G, Zhang YF, Wei W, Li LG, Zhang YM, Yang J, Xing YQ. Allicin attenuates H₂O₂-induced cytotoxicity in retinal pigmented epithelial cells by regulating the levels of reactive oxygen species. Mol Med Rep 2016;13(3):2320-2326.
    52 Liu SW, Fang Y, Yu JC, Chang XD. Hawthorn polyphenols reduce high glucose-induced inflammation and apoptosis in ARPE-19 cells by regulating miR-34a/SIRT1 to reduce acetylation. J Food Biochem 2021;45(2):e13623.
    53 Wu MY, Yiang GT, Lai TT, Li CJ. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid Med Cell Longev 2018;2018:3420187.
    54 González de Vega R, García M, Fernández-Sánchez ML, González-Iglesias H, Sanz-Medel A. Protective effect of selenium supplementation following oxidative stress mediated by glucose on retinal pigment epithelium. Metallomics 2018;10(1):83-92.
    55 Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011;52(2):1156-1163.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Peng Li, Li Wang, Qing Liu,/et al.Bioinformatics and in vitro study reveal the roles of microRNA-346 in high glucose-induced human retinal pigment epithelial cell damage. Int J Ophthalmol, 2023,16(11):1756-1765

Copy
Share
Article Metrics
  • Abstract:161
  • PDF: 741
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:April 05,2023
  • Revised:July 05,2023
  • Online: November 18,2023