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Abstract
·Retinal diseases are featured with the common result of

retinal cell apoptosis that will cause irreversible vision loss.
Various attempts have been made for the solution against cell
death. However, few approaches turn out to be effective.
With the progress in mesenchymal stem cells (MSCs)
research, MSCs were considered as a promising source for
cell replacement or neuroprotection in retinal disorders. MSCs
have the property of self-renewal and are multipotent cells
derived from various mesenchymal tissues, which were
demonstrated being capable of differentiating into
multilineage tissue cells. Some works were also done to
differentiate MSCs into retinal cells. MSCs could be induced to
express retinal cell markers under certain stimuli. Recent
studies also suggest that MSCs should be an ideal source for
neuroprotection via the secretion of a variety of
neurotrophins. Engineered MSCs were also used as vehicles
for continuous delivery of neurotrophins against retinal
degeneration with encouraging results. Since there are still
barriers on the differentiation of MSCs into functional retinal
cells, the use of MSCs for neuroprotection in retinal diseases
seems to be a more practicable approach and worthy of
further investigations.

· KEYWORDS: mesenchymal stem cells; differentiation;

neurotrophin; retina

DOI:10.3980/j.issn.2222-3959.2011.04.19

Xu W, Xu GX. Mesenchymal stem cells for retinal diseases.

2011;4(4):413-421

INTRODUCTION

A ge-related macular degeneration, retinitis pigmentosa,
Stargardt's disease and glaucoma which lead to the

apoptosis of photoreceptors or retinal ganglion cells are
common retinal diseases resulting in irreversible vision loss.
Current therapies for these diseases mainly focus on the
etiology or palliative ways to slow down the process of
retinal cell death. However, except for glaucoma at the early
stage, low efficacy was found in these therapies. Although
the breakthroughs in gene therapy brought new hope for
approaches against these diseases, there is still a long way to
go before clinical application. With the progress in
mesenchymal stem cells (MSCs) research, MSCs become a
promising source for a variety of diseases [1-5] due to the
properties such as plasticity, neuroprotection and
immunomodulation Furthermore, in contrast to
embryonic stem cells MSCs possess many advantages such
as self-renewal, easiness of isolation and expansion ,
free from ethical problems, etc. In particular, autologous
derivation gives MSCs great potential for retinal diseases
and has caught attentions from worldwide researchers.
Therefore, the feasibility of using MSCs for the diverse
retinal disorders was investigated. So far encouraging
outcomes have been achieved, although there are still
problems remained to be solved. The current concerns on
MSCs for retinal degeneration lie in two main aspects,
differentiation and neuroprotection.
MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) are multipotent and
self-renewing stem cells derived from bone marrow, adipose
tissue, umbilical cord, placenta and other mesenchymal
tissues, which could be induced to differentiate into bone
marrow, cartilage, muscle, lipid, myocardial cells, glial cells
and neurons[6-9], and play an important role in tissue repair or
regeneration[10]. MSCs are easy to isolate and expand rapidly
after a short period of dormancy. An culture of
MSCs takes less than one week to pass the next generation.
Though the isolated MSCs could maintain a normal
karyotype and telomerase activity even at passage 12 [11], the
aged MSCs underwent deterioration in biological functions
including the plasticity and the ability in tissue repair [12,13].
Therefore, most studies on the therapeutic potential of
MSCs were conducted at early passages as long as the cells
were purified.
For the identification of MSCs, there are no standard
methods because MSCs are heterogenous populations
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consisting of a variety of subsets. There are even no
universally-accepted criteria for the definition of MSCs
among the investigators. According to the recommendation
by the International Society for Cellular Therapy, three
principles are included in the definition of MSCs, which are
adherence to plasticity, specific surface antigen expression
and multipotent differentiation potential [14]. Therefore, the
identification of MSCs is based on these principles. The
classical method for the identification includes the detection
of cells positive for mesenchymal markers CD90, CD105,
CD73, CD66, CD29 and CD44, and negative for
hematopoietic markers CD34, CD45, together with an
induction to differentiate into mesodermal lineages [15]. This
classical method is prevalent in researches, but it is a
time-consuming process in contrast to a PCR based
detection[16].
The plasticity of MSCs has been verified in various
researches, and it is even considered as a necessary test for
the identification of MSCs. The differentiation of MSCs into
adipocytes could be induced by 1-methy-3-isobutylxanthine,
dexamethasone, insulin and indometacin with a result that
lipid vacuoles continued to develop over time inside the
induced cells and adipocyte specific products such as
peroxisome proliferation-activated receptor 酌2, lipoprotein
lipase, and the fatty acid binding protein aP2 were
expressed [11]. While the osteogenic differentiation of MSCs
could be induced by dexamethasone, 茁-phosphoglycerol,
ascorbic acid phosphate (vitamin C) and 10% v/v fetal
bovine serum [17]. When MSCs were seeded in a 3D
constructs with the presence of TGF-茁 superfamily
members, the cells expressed cartilage specific markers and
turned to be extracellular matrix rich in proteoglycans and
collagen type II, suggesting a chondrogenic differentiation
of the MSCs [18]. Furthermore, MSCs could be induced to
express tyrosine hydroxylase, 酌-amino butyric acid,
茁-microtubulin, nestin and glial fibrillary acid protein [19-23],
which suggests a neuronal differentiation of MSCs.
Molecules responsible for the differentiation of MSCs into
particular tissue cells varied depending on the cell lineage
that MSCs tend to differentiate. Investigations into the
mechanism for the differentiation of MSCs are necessary for
the aim of directional differentiation. For these reasons, an
overall study of the diversity of proteome between MSCs
and induced MSCs might provide a way for a profound
insight into the mechanism in regard to the differentiation of
MSCs. Receptor tyrosine kinase is a critical protein which
regulates the proliferation, growth and differentiation of
MSCs. It works in a ligand-receptor model and activates the
down stream pathway resulting in a series of biological
effects such as phosphorylation of key proteins and

differentiation of MSCs. The differentiation of MSCs into
bone forming cells is stimulated by epidermal growth factor
(EGF) rather than platelet-derived growth factor (PDGF).
Though over 90% of the down stream proteins activated by
both cytokines are the same, the two cell factors induce
quite different biological effects. PI3K pathway is uniquely
activated by PDGF. PI3K inhibitor could retreat the
differentiated effect of PDGF, suggesting that PI3K might
be a control point for the differentiation [24]. Thus, it
underlined the significance of an overall investigation into
the network related to the differentiation of MSCs.
MSCs possess the common features of stem cells such as
self-renewal and plasticity, but there are debates that
transdifferentiation could be a more appropriate description
for the multilineage differentiation [25]. In addition, there are
also controversies that the differentiation of MSCs is
probably a result of cell fusion [26]. The expression of a
variety of cell-specific markers and even the gain of cell
function are results from cell fusion that leads to the
multiplication of chromosome and the expression of
particular proteins. Actually, such phenomenon is more
often seen in hematopoietic stem cells [27,28]. When MSCs
were co-cultured with bronchial epithelium, some of the
co-cultured MSCs rapidly integrated into the monolayer of
bronchial epithelium, changed the morphology into
bronchial epithelium-like shape, and expressed bronchial
epithelium-specific markers. Moreover, some of the
integrated cells fused with bronchial epithelium. Nuclear
fusions were also detected among these fused cells [29]. It is
necessary to mention that cell fusion is not a rare incident.
Therefore, cell fusion presents the question to some extent
that whether the expression of particular markers in MSCs is
really differentiation.
Although there are questions on the plasticity of MSCs, it is
true that MSCs play an important role in tissue repair
(Figure 1). MSCs could migrate and integrate into the
wound tissue and promote the process of wound repair. It is
probable that the wound area benefits from the cytokines
secreted from MSCs or the differentiation of MSCs into the
tissue-specific cells and replaces the wound tissue. MSCs
could even transfer across the blood-brain barrier and
promote the repair in the central nervous system.
Transplantation of MSCs in stroke patients significantly
helped functional recovery without side effects during the
observations [30,31]. Although the exact mechanism that MSCs
affect the recovery process is still obscure, it might be
related to the secretion of neurotrophic factors hence the
survival of neurons, the expression of stromal-derived factor
(SDF-1) located in the wound tissue together with the
migration and integration of MSCs into these areas. What's
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Figure 1 Cell replacement and neuroprotection are the
potential applications of MSCs for neurodegenerative diseases
Cell replacement could be achieved by the differentiation of MSCs
or MSCs-associated endogenous regeneration. Neuroprotection
results from the secretion of neurotrophins by both MSCs and host
cells or other mechanisms during the process of endogenous repair

more, the MSCs induced endogenous cell proliferation and
axon reconstruction [32]. Although only a small amount of
MSCs were detected migration, integration and
differentiation, the improvement of the morphology and
function in the injured tissue was usually significant. One
explanation is probable that MSCs promote the endogenous
cell repair. MSCs could promote endogenous neuron stem
cells proliferation, migration, integration and differentiation,
after being grafted into the dentate gyrus of hippocampus in
immunodeficiency mice[33].
Another characteristic for MSCs is the immunomodulation,
which also catches the attention for the potential use in
immunosuppression. MSCs could inhibit the proliferation of
T cells and the expression of cytokines from T cells [34].
Meanwhile, MSCs inhibit T cell proliferation in a
dose-dependent manner [35]. Strong inhibition of cyclin D2
and up-regulation of cyclin-dependent kinase inhibitor
p27kip1 in T cells could be induced by MSCs in an
model, thus leading to the suppression of T cells from
activation [36]. MSCs could ameliorate the pathological
changes in asthma in an animal model by the expression of
TGF-茁 which blocked pro-inflammatory Th2 cells response
and modulated Th1/Th2 to a proper ratio [37]. The inhibition
of T cell response plays an important role in the process that
MSCs take part in immunomodulation. Nevertheless, this
does not necessarily mean that the transplantation of
allogenous MSCs would not result in rejection. An injection
of MSCs into rat hippocampus and striatum induced severe
immune response in the host, leading to the failure of
survival of the engrafted cells[38]. Although allogenous MSCs
could raise the T cell response in the host, the host's MSCs
were capable of inducing immune tolerance [39]. Therefore,
immunomodulation could be a better description for MSCs
in terms of their immune properties than the general notion
that MSCs are immunoprivileged.

Figure 2 Major approaches for administration of MSCs
(green) in retinal disorders Both systemic and local
administrations of MSCs were used in animal models (right). For
local administration, intravitreal and subretinal injections were
conducted according to different purposes (left)

MESENCHYMAL STEM CELLS FOR RETINAL
DISEASES
Both and studies were conducted in the
investigation of MSCs for retinal diseases. Non-contact
co-culture of MSCs with retinal cells or organotypic
explants is a usual approach for an study of the
differentiation of MSCs into retinal cells, due to the
advantage that it is free from the possibility of cell fusion
and that it has a relatively simple microenvironment in
contrast to an study. Though there is a progressive
necrosis of the retinal cells and exacerbation of the
morphology in retinal explants cultured , a relative
long-term survival of retinal explants could be achieved [40].
So it is possible for an investigation of intraocular
transplantation of MSCs in an model, making the
investigation more facilitated in contrast to an
transplantation.
However, an transplantation of MSCs is also
necessary for validation of the potential use or therapeutic
effect of MSCs. The transplantation of MSCs for
retinal diseases mainly refers to three approaches (Figure 2):
systemic administration, subretinal injection and intravitreal
injection. Subretinal injection of MSCs is preferred for the
advantage of the immunoprivilege and also a direct contact
with the outer layer of the retina in the subretinal space
where it is easy for the migration, integration and
differentiation of the transplanted cells. Given the restricted
volume capable of transplantation and the destruction of
tissue integrity, intravitreal transplantation is also considered
as an alternative for a local administration of MSCs. In
contrast with subretinal transplantation, an intravitreal
injection of MSCs allows a larger volume hence a larger
amount of cells could be transplanted. Besides, an
intravitreal transplantation of MSCs could reduce the
damage to retinas. The inner limiting membrane (ILM) is a
natural barrier that blocks the MSCs from migration and
incorporation into neural retina. An model of
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intravitreal injection of MSCs demonstrated that MSCs
could hardly penetrate the ILM [41]. Likewise, the
intravitreally injected MSCs could attach to the surface of
the retina, but few cells passed across the barrier [42]. A few
injected cells integrated into neural retina even after the
basement membrane of the ILM were digested by
collagenase, demonstrating that the integrity of the inner
basal lamina was not sufficient to block the migration.
However, when the M俟ller cells were suppressed by
glial-specific toxins, it dramatically enhanced the integration
of the implanted cells into retina [43], showing that glial
endfeet were the major contribution to the prevention of
grafted cells penetrating into the retina. So an intravitreal
injection of MSCs seems more suitable for the investigation
of neurotrophic properties of MSCs, by which neurotrophins
secreted from MSCs could penetrate into the retina, while
MSCs could not. Thus, the migration, integration and
differentiation of MSCs into retinal cells could be ignored,
as long as there is a normal M俟ller cell reactivity. MSCs
could migrate into multiple organs after a systemic
administration [44]. However, the migration of MSCs into the
host retina after systemic administration might require some
stimuli, the damage in RPE or the retinal vascular
leakage. Because blood-retinal barrier (BRB) at a normal
integrity could be a possible factor that prevents MSCs from
migration into the host retina.
Mesenchymal Stem Cells and Retinal Repair Retinal
damage plays an important role in the homing and
integration of grafted cells due to the high expression of
chemoattractants by injured retinal cells [45]. Among these
chemoattractants, SDF-1 was considered as a major
contribution to the migration of MSCs. The interaction
between SDF-1 and its receptor CXCR4 made MSCs
respond to tissue damage [46]. Therefore, during the retinal
damage, MSCs also migrate to the injured retina and are
involved in the repair via the secretion of SDF-1 from
retinal cells. A systemic administration of MSCs in a
laser-induced choroidal neovascularization animal model
resulted in recruitment and differentiation of MSCs into
multiple cell types participating in the process of
neovascularization in the damaged spot [47]. MSCs could
migrate to retina, differentiate into photoreceptor-like cells
(Figure 3) as well as glial-like cells and ameliorate the BRB
breakdown in diabetic rats after tail vein injections [48].
Nevertheless, a systemic administration of MSCs did not
result in the migration of grafted cells into host retina in an
intraocular hypertension animal model induced by
photocoagulation of trabecular meshwork. While a quite
different result that a small amount of MSCs migrated to
retina after intravitreal injection was observed in the same

animal model [49]. Intraocular hypertension leads to retinal
damage, but it is not sufficient for the migration of MSCs
after systemic administration due to the integrity
of BRB. Sodium iodate-induced RPE damage up-regulated
the expression of SDF-1 by RPE and promoted the
migration of MSCs. Moreover, the chemotaxis effect of
MSCs was retrieved after incubation with SDF-1 antagonist[50].
Chemoattractants expressed by retinal cells and BRB
breakdown might be two prerequisites for the migration and
integration of MSCs into host retina after systemic
administration. However, BRB breakdown did not seem to
be a necessary factor for the migration and integration of
MSCs after intravitreal injection provided the existence of
retinal damage.
Differentiation of Mesenchymal Stem Cells into Retinal
Cells MSCs-based retinal regeneration is one of the most
promising therapies for retinal diseases, which needs
successful generation of retinal cells from MSCs. Some
growth factors involved in the development of retinal cells
might also be essential to the differentiation of MSCs into
retinal cells. These molecules include basic fibroblast
growth factor (bFGF), brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), epidermal growth
factor (EGF), etc. Basic fibroblast growth factor is critical

Figure 3 Migration and integration of MSCs (green) after
administration The grafted cells differentiated into RPE-like cells
(brown arrow), photoreceptor-like cells (blue arrow) and RGC-like
cells (green arrow). The host retina also benefits from
MSCs-induced neurotrophins (blue triangles) up-regulation.
RPE=retinal pigment epithelium; RGC=retinal ganglion cells
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for the expression of opsin in neonatal retinal cells by
enhancing the proliferation of precursor cells and
differentiation of immature photoreceptors [51]. EGF played a
role in neurites formation [52]. NGF promoted the survival of
retinal cells [53,54]. BDNF was involved in the differentiation
of ganglion cells [55]. Therefore, these growth factors were
used in the attempts for the differentiation of MSCs into
retinal cells . MSCs could be induced to express
microtubule-associated protein 2, 茁-tubulin III, glial
fibrillary acidic protein (GFAP), protein kinase C alpha
(PKC-琢) and recoverin in the medium supplemented with
BDNF, NGF and bFGF. Besides, neurofilament 200 could
also be detected in the growth factors pretreated MSCs after
co-culture with retinal explants [56]. Growth factors involved
in the early development of retinal cells provide a
microenvironment for the differentiation of MSCs into
retinal cells. What's more, the growth factors present in the
culture medium regulate the differentiation of MSCs. It was
reported that approximately 30% MSCs could be induced to
express rhodopsin and cellular retinoic acid-binding protein
1, and another 6%~10% MSCs could be induced to express
nestin, suggesting a retinal or neuronal differentiation of
MSCs after an induction by activin A, taurine and
EGF [57]. However, further investigations are necessary for a
higher production of these differentiated cells to reach the
final goal of directional differentiation of MSCs.
Although it would be relatively easy to determine key
factors responsible for the differentiation of MSCs into
retinal cells in an model in contrast to an
study, only an induction is not sufficient to make
MSCs differentiate into functional retinal cells due to the
simple microenvironment. Therefore, studies were
also conducted for assessing the differentiation potential of
MSCs during retinal damage. Subretinal injection of MSCs
into sodium iodate-induced retinal degeneration animal
model resulted in a small amount of cells migrating and
incorporating into neuronal retina and expressed rhodopsin,
GFAP and cytokeratin, though the majority of injected cells
remained in the subretinal space [58]. Morphological changes
and differentiation also occurred in mechanically injured
retina after intravitreal injection [59]. Furthermore, functional
recovery was observed in RCS rats that received subretinal
injections of MSCs[60].
Plenty of studies have demonstrated that MSCs could be
induced to differentiate into retinal cells and ,
some of which even showed the enhancement of function in
these differentiated cells. However, there are still questions
faced with the differentiation of MSCs into retinal cells, e.g.
selection of an effective induction approach and time point
control for a directional differentiation. Though MSCs could

be induced to differentiate into retinal cells or retinal
progenitors under certain stimuli, MSCs are of homeostasis
and tend to maintain themselves in an undifferentiated state.
MSCs could differentiate into retinal ganglion precursor-like
cells when co-cultured with E13.5 retinal progenitor cells
(RPCs) for 3 days, but the effect did not persist after a
longer time of co-culture, suggesting the self-feedback
regulation of MSCs to an undifferentiated condition [61]. The
retrieval of MSCs from differentiation presents a problem in
respect of a stable differentiation status after induction and
makes it difficult to select a time point for detection of a
particular marker. These may be part of the reasons for
different outcomes during the induction of MSCs to
differentiate into retinal cells [62-64]. Alhough there are
questions on the differentiation of MSCs into retinal cells,
hosts could benefit from the transplantation of MSCs.
Myelin formation by xenogenic oligodendrocyte precursors
after the retinal transplantation could be enhanced by
adjunctive MSCs [64]. Umbilical cord-derived MSCs were
neurotrophic and could promote the survival of axotomised
RGC and regeneration of axon [63], which indicated other
potential applications of MSCs besides the plasticity.
Neurotrophic Effect of Mesenchymal Stem Cells in
Retinal Disorders Neurotrophins which are beneficial to
central nervous system (CNS) disorders probably play
similar roles in retinal degeneration due to the same
derivation of CNS and retina during the development,
especially in RGCs degeneration. GDNF-loaded
biodegradable microspheres are neurotrophic for RGCs
degeneration by enhancing the survival of RGCs, decreasing
the activation of glial cells in retina and optic nerve and
reducing the loss of inner plexiform layer thickness [65,66] .
Ciliary neurotrophic factor (CNTF) increased the survival of
RGCs by signal transducer and activator of transcription 3
(STAT3) pathway and induced regeneration of cone outer
segment [67,68]. BDNF is another important neurotrophin for
the survival of RGCs, which binds to the receptor TrkB,
resulting in the activation of c-jun and suppression of
caspase-2 [69,70]. The neurotrophins provide alternative ways
for retinal disorders. However, the rescue effects on retinal
cells depended on continuous release of neurotrophins [71]. A
merely intravitreal injection of BDNF did not produce
neurotrophic effect in an animal model [72,73]. Thus, an
appropriate way of neurotrophin delivery is necessary for
achieving the therapeutic effect. Viral vector seems to be an
ideal tool for the delivery of neurotrophic factors against
retinal disorders, but the possibility of gene mutation and the
lack of acceptance from patients make it still a long way for
clinical application. MSCs have been reported to express a
variety of neurotrophins which might be beneficial for
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retinal diseases after transplantation . Furthermore,
the use of MSCs for the delivery of neurotrophins is free of
the problems encountered with viral vector. In addition,
neurotrophins secreted from MSCs are more varied than
viral vector transfection and released in an injury-dependent
manner rather than a continuous manner. So MSCs could be
a promising source for retinal neuroprotection.
It has been frequently reported that MSCs are neurotrophic
in CNS disorders. Although MSCs showed no indication of
neuronal differentiation in co-culture with slice of neonatal
brain cortex, neuroprotection could be achieved via the
interactions between NGF and neurotrophin-3 (NT-3)
secreted from MSCs and the receptors NGFR and TrkC [74].
For retinal diseases, only a limited amount of MSCs are
capable of differentiation or even no differentiation occurs
after transplantation, but histological improvement or
functional recovery of the degenerative retina is usually
detected after the administration of MSCs. It is a suggestion
that MSCs are neurotrophic in retinal diseases. Thus the use
of MSCs for retinal degeneration would be a more practical
approach since there are still technical problems faced with
the differentiation of MSCs into retinal cells.
Subretinal injection of MSCs in RCS rats induced hexagonal
morphology of the grafted cells, the expression of pigment
epithelium-derived factor (PEDF) as well as epithelial
markers and more important a rescue effect for the
degenerating photoreceptors [75]. Though the rescue of
photoreceptors could be a result from the differentiation of
MSCs into RPE hence the improvement of biological
function in the RPE layer, the differentiation of MSCs could
only be a partial explanation for the result. A similar
experiment was conducted in rhodopsin knockout mice
through subretinal transplantation of MSCs in which the
photoreceptors were undergoing progressive apoptosis while
the RPE kept intact. The engraftment demonstrated a
significant rescue effect for the photoreceptors with only
sparse distribution of MSCs in the retina [76]. Therefore,
neurotrophic properties of MSCs play a significant role in
protecting photoreceptors from apoptosis after subretinal
injection.
Actually, there might be another possibility that the
differentiation of MSCs into retinal cells leads to a rescue
effect after transplantation of MSCs. But the point is that
only a very small amount of grafted cells could incorporate
into retina and differentiate. Furthernore, there was hardly
any evidence demonstrating that the differentiated cells are
functional as normal ones. Inoue [77] reported no
differentiation of MSCs into photoreceptors via subretinal
injection in RCS rats during the observation, but a
significant reduction of the loss of outer nuclear layer

(ONL) thickness and the deterioration of electroretinogram
were detected after the injection. Cultured medium from
MSCs could also enhance the survival of photoreceptors

. So it is possible that neurotrophins secreted from
MSCs are responsible for the rescue effect. Various
neurotrophins may be involved in the repair of retinal
degeneration, e.g. CNTF, bFGF, BDNF, GDNF, PEDF.
Subretinal transplantation of MSCs in light-damaged retina
induced the inhibition of photoreceptor apoptosis and
increased the amount of cells in ONL while expressing
BDNF and bFGF [78]. Intravitreal injection of MSCs could
slow down the rate of RGCs death with the expression of
CNTF, GDNF, bFGF, HGFα , and BDNF in grafted MSCs
for a long period in an experimental glaucoma model[42]. The
expression of CNTF and bFGF in the retina of an
ischemia/reperfusion model decreased in contrast to the
normal retina, while the increased expression of both
neurotrophic factors was detected after an intravitreal
injection of MSCs. Moreover, the damaged retinal tissue
was observed being rescued after the engraftment[79].
Another frequently used approach in the attempt for
neuroprotection from MSCs is transfection of MSCs with
neurotrophins, MSCs being made as vehicles for steady
release of neurotrophins. Various neurotrophins were
transfected into MSCs for the treatment of
neurodegenerative diseases with encouraging outcomes.
BDNF delivered from engineered MSCs was able to
attenuate the loss of the RGC-5s following glutamate or
H2O2 insults [80]. PEDF-transduced MSCs demonstrated the
rescue effect for dystrophic retinas after engraftment [74].
However, most of the current engineered MSCs are viral
transfected, leading to the consideration that whether the
transfected MSCs would encounter the problems that viral
vectors did. Levkovitch-Verbin [81] developed a
non-transfected approach for the induction of MSCs into
neurotrophic factors secreting MSCs (NTF-SCs) and found
that both NTF-SCs and MSCs were beneficial to the
survival of RGCs in rat eyes after optic nerve transection.
The neurotrophic effect of MSCs targets not only on RGCs
but also on other retinal cells, though RGCs could be the
most promising target for neurotrophic therapy by MSCs.
Systemic administration of MSCs in RCS rats resulted in a
rescue effect in photoreceptors and a reduction of
pathological retinal vascular generation. Moreover, the
preservation of visual function and up-regulation of
neurotrophic factors in the host retina were detected after
the introduction of MSCs[82].
Neurotrophins are beneficial to retinal degeneration, so the
up-regulation of neurotrophins in both grafted cells and host
retinas are responsible for the neurotrophic effect. However,
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it is still not clear that how the engrafted cells and the host
interact with each other, which neurotrophin plays the major
role in the rescue effect and whether there is a synergistic
effect with a combination of these neurotrophins. Therefore,
these remain for further investigations.
CONCLUSION
MSCs are a promising source for either cell replacement or
neuroprotection of retinal degeneration. Great success has
been made in the attempt for clinical use of MSCs. MSCs
have been demonstrated to be able to differentiate into
photoreceptor-like cells and RGC-like cells and express a
variety of neurotrophins beneficial to the survival of retinal
cells under a pathologic condition. Therefore, two major
routes for clinical application of MSCs are cell replacement
and neuroprotection. For the cell replacement, technical
problem of massive differentiation of MSCs into functional
cells makes the attempt still a long way to explore. While
the neuroprotection is quite different, an administration of
MSCs to rescue the degenerating retinal cells is currently
available by autologous transplantation without rejection.
However, further studies for the mechanism that MSCs
exert neurotrophic effects on retinal cells should be carried
out. Other issues from the administration of MSCs such as
the teratoma or proliferative vitreoretinopathy should also be
paid particular attention to, though these were seldom
reported during the observations.
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