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Abstract
·Many organisms have evolved an approximately 24 -
hour circadian rhythm that allows them to achieve
internal physiological homeostasis with external
environment. Suprachiasmatic nucleus (SCN) is the
central pacemaker of circadian rhythm, and its activity is
entrained to the external light -dark cycle. The SCN
controls circadian rhythm through regulating the
synthesis of melatonin by pineal gland a
multisynaptic pathway. Light, especially short -
wavelength blue light, is the most potent environmental
time cue in circadian photoentrainment. Recently, the
discovery of a novel type of retinal photoreceptors,
intrinsically photosensitive retinal ganglion cells, sheds
light on the mechanism of circadian photoentrainment
and raises concerns about the effect of ocular diseases
on circadian system. With age, light transmittance is
significantly decreased due to the aging of crystalline
lens, thus possibly resulting in progressive loss of
circadian photoreception. In the current review, we
summarize the circadian physiology, highlight the
important role of light in circadian rhythm regulation,
discuss about the correlation between age -related
cataract and sleep disorders, and compare the effect of
blue light - filtering intraocular lenses (IOLs) and
ultraviolet only filtering IOLs on circadian rhythm.
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INTRODUCTION

M any organisms have evolved an approximately
24-hour biological clock. This endogenous circadian

rhythm is formed by several peripheral oscillators under the
control of suprachiasmatic nucleus (SCN) in the anterior
hypothalamus. Although the SCN neurons can run
autonomously, they require daily synchronization through
external time cues. Light, especially short-wavelength blue
light, is the most potent time cue in circadian
photoentrainment. In 2002, a new subtype of retinal ganglion
cells, intrinsically photosensitive retinal ganglion cells
(ipRGCs), were discovered[1]. Further study found that a kind
of blue light sensitive photopigment named melanopsin
expressed in ipRGCs contributed to the synchronization of
circadian rhythms with the solar day [2]. The regulation of
circadian rhythm depends on a pathway that originates from
ipRGCs, the retinohypothalmic tract (RHT) to SCN [3]. In
addition, ipRGCs also project to olivery pretectal nucleus
(OPN) controlling pupillary light reflex (PLR) [4-5].
Sleep disorders are common among the elderly [6]. It was
proposed that age-related loss in lens transmittance and
decrease of pupillary area might be important causes of sleep
disorders and circadian rhythms disturbance in the elderly[7].
Age-related cataract is the leading cause of reversible
blindness and visual impairment throughout the world. It is
characterized by lens opacity, which leads to the gradually
loss of vision and light transmission with age. Nowadays, it
is commonly believed that surgery is the only effective
treatment for age-related cataract. In addition to improving
vision, cataract extraction with intraocular lens (IOLs)
implantation might affect the circadian rhythm and sleep.
There were literatures suggested that oxidative stress in the
retinal pigment epithelium (RPE) caused by blue light
exposure could be an important factor in the pathogenesis of
age-related macular degeneration (AMD) [8-9]. Based on this
theory, blue light-filtering IOLs was invented and applied in
clinical. However, the concern of its potential disadvantages
effect on circadian rhythm has been raised.
In this review, we summarize the relevant circadian
physiology, highlight the important role of eye in circadian
rhythm regulation, and discuss how lens aging and cataract
surgery influence the circadian system.
Suprachiasmatic Nuclei -the Master of Circadian
System In most living organisms, the daily variations of
physiological processes such as behavior, sleep/wake cycle,
subjective alertness, cognitive performance, hormone
production, and body temperature have a circadian rhythm of
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roughly 24h. Under normal conditions, the endogenous
circadian rhythm is generated by neurons located in SCN of
the anterior hypothalamus. The SCN neurons have an
intrinsic electrical rhythm of nearly 24h even in the absence
of environmental time cues [10-11]. This rhythm reflects the
auto-regulatory transcription and translation feedback loops
of the clock genes[12-14].
Although the SCN rhythm can run autonomously, it is
synchronized to the daily light/dark cycle [12-13]. Zeitgebers are
time cues that phase shift circadian clocks, and light is the
most potent zeitgeber in circadian system; however, other
non-photic signals can also entrain the circadian rhythm,
such as time of food intake, exercise, and social interactions[15].
SCN receives light information from retinal photoreceptors

the RHT, and connects to the pineal gland regulating the
synthesis and secretion of melatonin [16-18] (Figure 1). In
conclusion, SCN synchronizes the internal biological
processes with the external time cues to maintain normal
physiological functions.
The majority of SCN neurons are GABAergic [17], and they
can be divided into two subtypes according to the different
neuropeptides they expressed. One subtype expresses
arginine vasopressin (AVP), while the other expresses
vasoactive intestinal polypeptide (VIP)[19-20]. AVP and VIP act
on V1a/V1b and VPAC2 receptors respectively to transmit
circadian signals [21-22]. It is believed that different subtypes
play different roles. Specifically, VIPergic neurons are
involved in receiving RHT and secondary visual inputs,
whereas AVPergic neurons amplify the endogenous SCN
rhythms into coherent behavioral outputs[23].
The output of SCN is complex with major efferents going
caudally into the subparaventricular zone and dorsomedial
nucleus (DMN), dorsal efferents to the thalamus, and rostral
efferents to the anterior hypothalamus and preoptic area [24-25].
DMN integrates the direct input from SCN and the indirect
input from subparaventricular zone, and then projects to
other hypothalamic areas to control circadian responses, for
example sleep and wake initiation. The efferents to
paraventricular nucleus (PVN) mainly regulate the melatonin
synthesis by pineal gland.
Melatonin -the Marker of Circadian System Melatonin
is a hormone synthesized and released by pineal gland in a
cyclic pattern under the control of SCN [26]. The chemical
structure of melatonin is N-acetyl-5-methoxytryptamine [27].
Melatonin is synthesized from L-tryptophan, which is
converted into 5-hydroxytryptophan and then into serotonin.
Serotonin is first transformed into N-acetylserotonin by the
arylalkylamine-N-acetyltransferase (AA-NAT), and then
transformed to melatonin by hydroxyindole-O-methyl
transferase (HIOMT) [28-29]. The AA-NAT is activated by
norepinephrine through binding to 茁-adrenergic receptors [30].
Melatonin is released into circulation once produced by

pineal gland. Plasma melatonin concentration is low during
the day and high during the night. The 24-hour plasma
melatonin profiles provide accurate measurement of
circadian phase, specifically, melatonin levels start to
increase about 2 to 3h prior to habitual bedtime, remain
elevated during the night, peak between 02:00 to 04:00, and
rapidly decease in the following hours [31-32] (Figure 2). Dim
light is particularly important in the entrainment of circadian
rhythm. Two currently used indicators of circadian phase
include the dim light melatonin onset (DLMO) and the peak
melatonin concentration at night. DLMO represents the onset
of the evening melatonin production measured in dim light
and is thought to be the most reliable circadian phase marker[31].
Moreover, the normal nocturnal melatonin synthesis can be
suppressed and phase-shifted by light, depending on its
intensity, wavelength, timing and duration[33-35].
In mammals, actions of melatonin are mediated by two types
of melatonin receptors-MT1 and MT2 [36]. Melatonin
receptors belong to G protein-coupled receptor superfamily[36].
As melatonin receptors are widely expressed in many organs
and tissues, melatonin is involved in modulating multiple
physiological activities. The rhythm of melatonin production
and the concentration of melatonin in body fluid are reliable
markers reflecting the circadian rhythm [37]. And because
exogenous administration of melatonin can improve sleep
quality, melatonin is thought to be a sleep-promoting agent
in the treatment of insomnia [38], delayed sleep phase disorder

Figure 1 Schematic summary of primary light -induced non -
image forming pathways The circadian regulation of melatonin
secretion (the blue pathway) and the pupillary response (the orange
pathway) depend on pathways originate from the ipRGCs in the
retina. ipRGCs receive light stimulus and project to SCN the
RHT. SCN sends inhibitory signals to neurons of the PVN. PVN
activates the preganglionic neurons of intermediolateral column in
the spinal cord, and then projects to the cervical superior ganglion
(CSG) activating melatonin secretion by pineal gland (PG). The
circulating melatonin binds to melatonin receptors and inhibits SCN
neurons from firing. ipRGCs also project to OPN, and form the
pathway involving OPN, Edinger-Westpha nucleus (EW), and
ciliary ganglion (CG) regulating pupillary responses.

1067



(DSPD) [39], jet lag and shift work disorders [40]. Moreover,
melatonin also acts as a free-radical scavenger [41-42]. This
property of melatonin is important in protecting cells from
aging and might keep animals and human away from
neurodegenerative diseases [41]. Melatonin also has a crucial
role in immunomodulation, cardiovascular function regulation
and tumor suppression function[43-44].
There is an age-related alteration in nocturnal serum
melatonin concentrations [45]. The melatonin level peaks at
3-6y, and then gradually decreases in adolescence. With
aging, the melatonin rhythm progressively dampens, with a
tendency towards phase-advance [46-47]. Moreover, some
studies reported that melatonin concentration decreased in
numerous diseases [48-51]. In conclusion, whether the
declination of melatonin levels is only age-related changes，
or is related to systemic diseases still remains unclear.
Intrinsically Photosensitive Retinal Ganglion Cells -a
Novel Photoreceptor in Light Entrainment The
mammalian eye is responsible for two main light-induced
functions. The most widely recognized function is to provide
visual information. However, the non-visual functions, for
example circadian photoentrainmen,are of equal importance.
Several experimental studies found that genetic ablation of
rod and cone photoreceptors in animals didn't affect their
circadian responses to light [52-54]. Moreover, clinical findings
showed that optic neuropathies selectively affected classic
photoreceptors in the outer-layer of retina could result in
vision loss with relatively preserved pupillary light reflex and
stable circadian rhythm [55-56]. These results suggested that
there might be another photoreceptive pathway in the retina
regulating circadian rhythm aside from the cones and rods.

In 2002, Berson [1] reported a novel type of
photosensitive ganglion cells in the mammalian retina. These
retinal ganglion cells express melanopsin and could
depolarize to light stimulation in absence of rods and cones,
therefore, they are named ipRGCs. Further study showed that
melanopsin gene (Opn4) shared more homogenous sequence
with invertebrate rhabdomeric opsins than with vertebrate
opsins [57], suggesting that there might be a different
mechanism for melanopsin photoreception from rods and
cones photopigments in vertebrates [58]. Although ipRGCs
comprise only 0.2% -4% of total retinal ganglion cells in
mammalian retina [1,59-60], they mediate a broad range of
physiological responses and are divided into five types
(M1-M5) according to their morphological and physiological
properties [61-62]. The M1 cells are the largest and most
numerous subtypes. They project predominantly to SCN[63-64],
and also project to OPN [65-66]. However, the non-M1 cells
show widespread projections to brain areas that involved in
image formation. The light response of ipRGCs is different
from that of rods and cones. The activation threshold of
ipRGCs is higher than rods and cones, and the response
latency as well as the duration of firing are longer than rods
and cones[59].
Although ipRGCs are directly photosensitive, they also
receive input from rods and cones. The detail connections
between ipRGCs and other cells in the retina are not
completely understood. Current studies discovered that
ipRGCs connected to cones the cone bipolar cells, and
connected to rods the amacrine cells and rod bipolar
cells [67] (Figure 3). The spectral sensitivity of melanopsin is
similar in different species with 姿max at approximately
480 nm [1,59,68-69]. Light elicits isomerization of 11-cis
retinaldehyde resulting in conformational changes in the
opsin receptor, which triggers the downstream signal
transduction cascade[70].
ipRGCs have roles in both non-image-forming
photoreception and image-forming visual function [59].
Specifically, ipRGCs have two primary non-image forming
functions: the circadian photoentrainment function
retinohypothalamic tract (RHT) projecting to the SCN [1,71],
and the regulation of pupil light reflex by projecting to the
OPN [63] (Figure 1). ipRGCs also project to intergeniculate
leaflet (IGL), subparaventricular zone (SPZ) and ventrall
preoptic nucleus (VLP)，which provide additional pathways
for circadian photoentrainment [4]. For about image-forming
visual functions, evidences from recent studies indicated that
ipRGCs projected to distinct brain regions involved in spatial
and discriminative visual functions [60,72]. The intrinsic
mechanism of the melanopsin's contribution to spatial
information and visual perception, and whether it works in
humans need to be explored, for these may lead to new
prospects for restoring vision in patients who loss vision
from rod and cone disease.

Figure 2 Illustration of plasma melatonin concentrations in a
normal subject The DLMO and the peak melatonin concentration
are two reliable markers of circadian rhythm. At present, there is no
standard calculative method of DLMO. The calculation of DLMO
is based on a fixed threshold (time reaching 1-, 3- or 5-pg/mL), a
dynamic threshold (2 standard deviations above the mean of 3 baseline
samples), or a mathematical model (for example the "hockey-stick"
method). The peak is often reached at 02:00 to 04:00.
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Light-the Central Modulator of the Circadian Rhythm
It is generally agreed that light is crucial in generating
images. Meanwhile, many important physiological activities
in human are also influenced by retinal illumination [73-75].
These activities are regulated through independent pathways
from image formation. These pathways are referred to as
non-image-forming pathways. The most important light-
induced non-image forming functions are synchronization of
the circadian clock to solar day, tracking of seasonal
changes, and regulation of sleep through the rhythmic
secretion of melatonin [74]. Light is the most potent time cue
(Zeitgeber) in circadian photoentrainment. Beyond these
functions, pupil light reflex, body temperature, hormone
production, alertness and cognitive functions are also
regulated by light.
Light causes phase shifting of the circadian rhythm
depending on its duration, intensity, timing and spectrum by
regulating the expression of clock genes [76-78]. First of all,
studies showed that light administered in late night and early
morning could cause phase advancing of the circadian clock.
However, light administered in early night could induce
phase delay shifts [79-81]. Secondly, regarding to the influence
of intensity on the resetting response to light, Zeitzer [82]

found that exposing to intensity greater than room light level
in early biological day demonstrated significantly more
advancement in circadian clock than exposure to dim light.
In addition, Zeitzer [83] also found that the resetting
response and melatonin suppression by light at late biological
day related to a non-linear way to illuminance, with minimal
responses below 100 lux and saturating responses above

1000 lux. Thirdly, by comparing the phase shifting responses
to monochromatic light of different wavelengths with equal
photon density, Lockley [84] demonstrated that both
phase shifting and melatonin suppression responses were
significantly greater in subjects exposed to 460 nm than
longer wavelength. In conclusion, light administered at
biological night with high intensity and wavelength lies in
blue spectrum is more potent for circadian photoentrainment.
Sufficient light exposure at appropriate time is the optimal
time cue for circadian photoentrainment, whereas inadequate
light exposure could possibly lead to "free-running".
Free-running means independent SCN rhythm without daily
synchronization and it may lead to circadian rhythm
misalignment [85-87]. It was found that many totally blind
people had abnormal or non-entrained circadian rhythms due
to inability to detect light[88-89]. These patients always suffered
from insomnia and daytime drowsiness, which might
consequently do harm to psychological and physical health.
Exogenous melatonin and melatonin agonist could
effectively improve sleep quality and reset circadian clock in
these patients[86-87].
The basic biological functions of light give rise to the
development of many therapeutic applications. Timed light
treatments was shown to be effective for promoting circadian
entrainment, improving sleep efficiency, and relieving
symptoms of seasonal affective disorder (SAD) and
depression[39,90-91].
Lens Aging, Cataract Surgery and Their Effects on
Circadian Rhythm Numerous studies showed that the
prevalence of sleep disorders is higher in the elderly
compared to that in young people [92-93]. A multicenter
epidemiologic study that enrolled more than 9000
participants aged over 65y reported that over half of the
participants complained about symptoms relating to
insomnia [94]. In human, aging is characterized by decreased
amplitude of circadian rhythm, advanced phase in circadian
rhythm, and disrupted nocturnal sleep [95-96]. These changes of
circadian rhythm with age contribute to sleep disorders in the
elderly.
Sleep disorders poses substantial risks for the development of
many health problems, including cardiovascular and mental
disorders, and may contribute to increased morbidity and
mortality in the elderly. Therefore, more attention should be
paid to improve sleep quality in the elderly [95-96]. Moreover,
there are many factors that affect sleep, for example certain
physical and psychiatric comorbidities, medications, jet lag
and shift work, .
Any disturbance of the circadian pathway will lead to
interruption of the normal circadian rhythm. Therefore, as an
important organ in circadian photoreception, the physical and
pathological changes of the eye may lead to changes in
circadian rhythm. Age-related reduction in responses to light

Figure 3 The schematic of ipRGCs and their connections in
mammalian retina The ipRGCs can either respond to light
autonomously or receive light information from rod and cone
photoreceptors in regulating the non-image forming functions. Rods
provide inputs to ipRGCs mainly rod bipolar cells and amacrine
cells. Cones provide inputs to ipRGCs through cone bipolar cells
and amacrine cells (the specific connections are depending on
different type of cones and ipRGCs).
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has been found in both animal and human experiments. It
was shown that older rats needed higher light intensity to
achieve the same activity rhythm amplitude compared to
younger rats [97]. For human, a study investigated the
age-related changes in light induced melatonin suppression,
and the results showed that the elderly demonstrated
significantly reduced melatonin suppression after exposing to
short wavelength light compared to the young[98]. However, a
recent study showed that in spite of decreased retinal
illumination in the elderly, melatonin suppression by
nocturnal light exposure was not reduced, however, the peak
of non-visual sensitivity shifted to longer wavelengths [99]. So
far, the mechanism of how ocular aging affect the circadian
photoentrainment is still unclear. More researches are needed
to clarify this issue.
Cataract is the leading cause of blindness and visual
impairment throughout the world, and age-related cataract is
the most common type of cataract. With age, the crystalline
lens gradually increases in thickness and weight. The lens
nucleus undergoes compression and hardening, and the lens
proteins are modified and take on a yellow-to-brown
coloration. As a result, the transparency and refractive index
of the lens are changed. These changes block the
transmission of blue light to retina, thereby reducing the blue
light absorbed by ipRGCs [100-101]. Thus, cataract may possibly
lead to decreased circadian photoentrainment.
Both and experiments indicated that there
was a correlation between lens aging and light transmittance.
By evaluating human donor lenses over a wide range of age
between 18 to 76y, Kessel [101] found that increasing age
was associated with gradually decreasing transmittance of
light, especially at shorter blue wavelengths. In recent years,
the development of new apparatuses measuring the
transmittance of human crystalline lens showed that
the transmission of blue light to retina progressively
decreased with age [102-103]. In a word, the aging lens acts as a
yellow filter that attenuates blue light reaching the retina and
lens aging is thought to influence the circadian
photoentrainment. Brondsted [104] found that the
potential for melanopsin stimulation and melatonin
suppression were reduced by 0.6-0.7 percentage point per
year of life. A cross-sectional population based study by
Kessel [100] found that the risk of sleep disturbances was
significantly increased when the transmission of blue light
was low. In addition, reduced pupil diameter [105], loss of
ipRGCs with age [56], coexistent eye diseases [106] and reduced
environmental illumination[107] may all contribute to circadian
rhythm disorders in the elderly.
Lens extraction with IOLs implantation is the standard and
only effective treatment for age-related cataract. In addition
to improving visual function, in theory, cataract surgery is
supposed to have a beneficial effect on circadian rhythm

regulation for it removes the barrier to short wavelength light
optimal for circadian photoentrainment. However,
conclusions are inconsistent in different studies. The
regulation of circadian rhythms can be measured in various
ways, and the most commonly used methods are Pittsburgh
Sleep Quality Index (PSQI) and Epworth Sleepiness Score
(ESS) questionnaires, actigraphy and melatonin concentrations
in body fluid. The results of a questionnaire-based
investigation revealed that there was a self-reported
improvement of sleep quality 1mo after cataract surgery [108].
Another study involved in 961 patients and with longer
follow-up time also found an improvement of PSQI overall
sleep quality and sleep latency 1mo after cataract surgery,
and these effects were sustained at 6 and 12mo
postoperatively [109]. Schmoll [110] reported a reduction of
daytime sleepiness after phacoemulsification cataract surgery
by using ESS. However, a recent randomized double-masked
clinical trial by Brondsted [111] showed that PSQI global
scores and the number of poor sleepers were not affected by
cataract surgery. In addition, the study results by Ayaki

[112-113] demonstrated that there was a significant
improvement in sleep 2mo after cataract surgery with blue
light-filtering IOLs implantation, but thereafter the
improvement was not statistical significant; while, the
improvement of sleep was found only in poor sleepers after
cataract surgery with UV only filtering IOLs.
In regard to melatonin levels, contradictions also exist.
Brondsted [111] found that the peak melatonin
concentration at night increased significantly 3wk after
cataract surgery regardless of IOLs types, while the majority
of circadian and sleep-specific actigraphy parameters did not
change after surgery. However, a previous study by Tanaka

[114] failed to demonstrate changes in maximum
melatonin concentration and time of reaching maximum
concentration after cataract surgery. Further studies of larger
sample size and standardized melatonin measurement are
required to solve this discrepancies. Considering the small
number of participants, various study design, different
detecting method and bias, we could draw the conclusion
that cataract surgery do not have adversely effect on
circadian rhythm and sleep. Further randomized control
studies of more participants, longer follow-up time and
standard outcome measures are needed to verify the
hypothesis that increased photoreception potentiates the input
signal to SCN, leading to an improvement in circadian
entrainment and sleep quality.
Based on results of animal and epidemiological studies that
blue light contributed to the pathogenesis of AMD [8,115], blue
light-filtering IOLs were invented and put into clinical use.
In recent years, the heated debate regarding to the
advantages and disadvantages of blue light-filtering IOLs has
never stopped. The blue light-filtering IOLs has lower
transmittance of blue light to the retina than the UV
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light-filtering IOLs [99-101]. Concerns with blue light-filtering
IOLs about its negative effects on circadian rhythms have
been raised. It has been found that blue light-filtering IOLs
had similar transmittance to that of 53-year-old adults [116].
Some studies suggested that the decreased blue light
transmission had negative effects on sleep [117-118]. However,
most of the recent studies hold the opinion that blue
light-filtering IOLs do not cause significant disruption to the
circadian rhythm compared to UV only filtering IOLs[104,111,119-120].
Although blue light-filtering IOLs had lower blue light
transmission than neutral UV only filtering IOLs, the clinical
effect of blue light-filtering IOLs was relatively small. The
results above do not prove that there is no difference
between the two types of IOLs except large scale clinical
trials and systemic analysis are carried out to determine
whether it is better to implant a blue light-filtering IOLs or a
UV only filtering IOLs.
CONCLUSION AND PERSPECTIVES
Light is crucial in human health. The eye plays an important
role in light-induced non-image forming responses by
ipRGCs transducing light information into electrical signals
and then transmit to non-visual brain centers including the
SCN. SCN is the pacemaker of circadian system and controls
many physiological processes. Normal SCN function and
sufficient illumination are necessary for maintaining body
homeostasis, for example, the normal everyday secretion
rhythm of hormones, stable emotions, normal cognitive
functions and sleep/wake cycle.
Ocular aging leads to gradually loss of retinal illumination
caused by decreasing crystalline lens transmittance and
pupillary area, which could consequently limit the
photoreception for non-image forming functions. Recent
studies found that glaucoma might do damage to the
ipRGCs, which could possibly be harmful to the circadian
system. Moreover, aging is always associated with numerous
systemic diseases that may cause degeneration of SCN
neurons or dampen the SCN signals output. All these
situations consequently increase the risks of sleeping
disorders, psychological illness, dementia, and cardiovascular
disease.
Surgery is the only effective treatment for age-related
cataract. It removes a barrier to light optimal for both vision
forming and circadian phtoreception. In theory, age-related
cataract patients might benefit from cataract surgery not only
in the improvement of visual acuity, but also in the
improvement of sleep quality and circadian regulation.
However, the exact effects of cataract surgery on the
circadian system are still not well understood. And whether
there are different circadian photoentrainment effects in blue
light-filtering IOLs and UV only filtering IOLs is also
unclear. To further investigate these problems, large scale,
randomized controlled clinical trials with standard outcome
measures are needed.
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