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Abstract
● Glaucoma is a serious leading cause of irreversible 
blindness worldwide. Reducing intraocular pressure (IOP) 
does not always stop glaucomatous neurodegeneration 
and the optic nerve may continue to be damaged in the 
normal IOP. Microglial activity has been recognized to play 
essential roles in pathogenesis of the central nervous 
system (CNS) as well as retinal ganglion cell (RGC) survival. 
The relationship between the neurodegeneration and the 
microglia cells in glaucoma is very complicated and still 
remains unclear. In the present review, we summarize the 
recent studies of mechanisms of microglia in glaucoma 
neurodegeneration, which might provide new ways to treat 
glaucoma.
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INTRODUCTION

G laucoma is the leading cause of irreversible blindness 
worldwide, and the vision loss often occurs gradually 

over a long period of time[1]. The major pathological features 
of glaucoma are loss of retinal ganglion cells (RGCs) and 
degeneration of their axons. 
The World Health Organization reported that glaucoma affects 
over 60 million people worldwide[2]. And it is expected that 
approximately 80 million people would suffer from glaucoma 
by the year of 2020, leading to 11.2 million cases of bilateral 
blindness[3-4].
Although many studies and investigations have shown some 
effect factors which related to glaucoma, the specific etiology 

and pathogenesis still remains unclear. Among these factors, 
elevated intraocular pressure (IOP) is one of the primary and 
important one, while other factors have also been identified 
that associated with the disease, including low diastolic ocular 
perfusion pressure, other ocular hemodynamic parameters, 
and systemic diseases such as sustained high blood pressure or 
diabetes, ethnic group, age, myopia, migraine, as well as the 
nutritional state of RGCs[5].
Besides IOP, other factors which related to immunological 
mechanisms also play key roles in the pathogenesis of glaucoma[6].
Microglia are immune cells that normally residing in the 
central nervous system (CNS). Recent studies showed that 
microglia play essential roles in the interactions between the 
CNS and the immune system[7]. By scavenging, phagocytosis, 
extracellular signaling and other functions, microglia might 
be an important mediator of immune response and maintain 
homeostasis within the CNS.
Acute glial hyperplasia promotes the survival of neurons by 
reconstructing the protection and recruitment of nerve tissue in 
the extracellular medium. However, the uncontrolled response 
occurs in most neurodegenerative diseases like glaucoma, 
would have a negative impact on the tissue[8].
Therefore, the role of microglia in the pathogenesis of 
glaucoma as well as its possible mechanism(s) are discussed in 
this review.
INTERACTION OF MICROGLIA AND GLAUCOMA
In the eyes of patients with glaucoma, microglial cells with 
a variety of morphology, gathered at the lamina cribrosa and 
its surrounding blood vessels, suggesting that microglial 
cells on the blood retina barrier (BRB) protective effect[9]. 
Furthermore, microglia also have an important function 
to continuously serve the microenvironment and respond 
rapidly to neuronal injury by the phagocytosis of potentially 
harmful neuronal debris to limit damage, the secretion of 
local inflammatory mediators and the signal transmission with 
other potential immune effector cells[10]. However, microglial 
cells may have beneficial effects in the presence of acute 
inflammation, whereas in chronic inflammation the activation 
of microglia is often detrimental, leading to the pathogenesis 
of neurodegenerative disorders[11]. 
In animal models of ocular hypertension[12] and chronic 
glaucoma[13], microglia become reactive and redistribute in 
the retina, optic nerve, and optic tract as early alterations, 
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which may contribute to the disease onset or progression. 
Nevertheless, it was observed that microglia proliferated 
near the RGCs[14], and recruitment as well as activation of 
microglia occurred before RGC death[13]. This provides direct 
evidence for the involvement of microglia in RGC death in 
glaucoma. In addition, in glaucomatous animal models, the 
CD200, which is closely associated with microglial activation, 
was early detected and increased in the retina, indicating 
this process accompanies ongoing axonal degeneration[15]. 
Microglia reactivity in glaucoma is not limited in the retina. 
In glaucomatous monkeys, activated microglia in the lateral 
geniculate nucleus (LGN), the primary processing center for 
visual information received from the retina, can be observed 
though positron emission tomography[16]. Other studies of 
neurodegeneration showed that glaucoma occured in the LGN, 
perhaps with microglial-related activations [17-18]. 
In addition, a tetracycline derivative, minocycline, known 
to inhibit the activation of microglia, also inhibited RGCs 
neurodegeneration in ischemia and glaucoma models[19-21] and 
improved the integrity of the optic nerve, supporting further 
evidence of the role of microglia in neuropathy in glaucoma. 
In the early stage of glaucomatous model, minocycline can 
also inhibit the axonal transport deficit contribute to microglial 
reactivity[22]. Furthermore, high doses of irradiation can 
reduce microglia activation and proliferation in the central 
retina, the optic nerve head (ONH) region in glaucoma animal 
models, leading to a decrease of degeneration in RGC and an 
improvement of the structural and functional integrity of RGC 
axons[23].
In an experimental autoimmune glaucoma animal model, IgG 
autoantibody is accompanied with the loss of RGCs and could 
be a useful glaucoma biomarker, found in co-localization with 
activated microglia cells[24].
Microglia and Neuroinflammation in Glaucoma  As 
with many neurodegenerative diseases, there are similar 
inflammatory responses in glaucoma. Microglia activation not 
only occurs in the eyes with high IOP, but also occurs in the 
contralateral healthy eye[25], indicating complex mechanisms 
are involved in the pathogenesis of glaucoma.
Microglia perceive the signal from microenvironment and 
protect neurons from disturbances. Accompanied with changes 
in signaling and gene expression, activated microglial cells 
with morphous altered would proliferate and migrate to the 
site of injury[26]. However, in order to limit the damage, the 
persistent impairment may activate the neurotoxic phenotype of 
microglia[27]. The prolonged and excessive activation of retinal 
microglia is related to the degeneration of neurons, especially 
the loss of RGC, which is a characteristic of glaucoma[21,28].
The activations of microglial cells is closely regulated by 
several inhibitory pathways[29-30]. Fractalkine, also known as 
chemokine (C-X3-C motif) ligand 1 (Cx3cl1), is a membrane-

bound chemokine primarily expressed by neurons, while 
microglia is the mainly expression of its anti-inflammatory 
receptor Cx3cr1. These molecules are important to maintain 
microglial function in physiological and pathological 
conditions. In mouse Parkinson and amyotrophic lateral 
sclerosis (ALS) models, the lack of Cx3cr1 leads to microglia 
neurotoxicity and neuronal vulnerability[31]. Following the 
loss of Cx3cr1 in microglia, a selective worsening of axon 
transport dysfunction in RGCs can be caused in glaucoma 
mouse model[32]. Similarly, Cx3cr1 deficiency evokes 
subretinal microglia accumulation and leads to age-related 
macular degeneration (AMD)[33]. On the other hand, Cx3cr1 
deficiency showed a prevention of neuron loss in Alzheimer’s 
disease (AD), a neurodegenerative condition[34]. Therefore, 
under different conditions of neuroinflammatory, inhibition of 
the receptor have different effects on proinflammatory role of 
microglia. Thus, suppression of neuroinflammatory responses 
could be a potential treatment for glaucoma.
Microglia and Cytokines in Glaucoma  Microglia are 
thought to play important roles in the inflammatory response 
of glaucoma. Over activation of microglia would result in 
the production of proinflammatory cytokines and increase 
the oxidation and nitrification reactions, thereby endangering 
the retinal neurons[35]. Indeed, stimulating by these cytokines, 
fibroblasts, endothelial cells and macrophages could produce 
chemokines, recruit neutrophils and macrophages to the 
retina, which leads to more severe tissue damage and chronic 
inflammatory response.
Tumor necrosis factor-alpha (TNF-α), which is produced 
by macrophage and microglia in the optic nerve and 
ONH[36], is related with innate immune respondence[37-39]. 
TNF-α was considered to be an important mediator of RGC 
death in glaucoma, and the up-regulation of TNF-α and 
its receptor were involved in the process of glaucomatous 
neurodegeneration[40]. Indeed, further in vitro studies have 
shown that anti-TNF-α attenuates ischemia or ocular 
hypertension-induced RGC apoptosis[41]. Moreover, while 
TNF-α antagonized by etanercept, inflammation and RGC loss 
in a glaucoma animal model was attenuated[42]. 
Other investigations supported that TNF-α is beneficial and 
protective to neurons. TNF-α appears to protect RGCs in the 
early stage of optic nerve crushed in mice, perhaps with some 
indirect mechanisms[43-46]. 
Interleukin-1β (IL-1β) has been considered to be an essential 
pro-inflammatory cytokine which produced by activated 
microglia in glaucoma patients, and are thought to promote the 
progression of glaucoma[47-48]. IL-1β has also been reported to 
increase the generation of ROS[49] and nitric oxide synthesis 
(NOS)[50] and is involved in RGC damage which leads to 
neurodegeneration[51-52]. Indeed, tetrandrine can effectively 
suppress the activity of microglia[53] and inhibit the production 
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of IL-1β and TNF-α, suggesting that it may be effectively 
suppressing over activated microglia and protecting RGCs in 
glaucoma[49,54].
Interleukin-6 (IL-6) is a key component of pressure-induced 
retinal microglia response[55-57]. In animal models of glaucoma 
and aging retina, stressor-dependent of IL-6 and IL-6 receptors 
have been detected[58]. Similarly, in the iris specimens from 
patients of neovascular glaucoma, mRNA level of IL-6 
was significantly increased[59]. Nevertheless, it has been 
demonstrated that IL-6 increased the survival of RGCs 
challenged with pressure, and the stimulus for IL-6 synthesis 
arose from axonal injury rather than ocular hypertension[57].
Microglia and Adenosine Receptors  Adenosine is a 
neuromodulator, which also exerts important functions 
in the immune-inflammatory system[60]. Microglial cells 
express all subtypes of adenosine receptors, A1, A2A, A2B, 
and A3 receptors and particular attention has been paid to 
adenosine A2A receptors (A2AR).
A2AR is associated with neurodegeneration as the blockade 
of A2AR providing protection against a variety of deleterious 
conditions[61-65]. It is speculated that the neuroprotective effect 
of A2AR antibodies is thought to control microglia-mediated 
neurodegeneration[66-67].
A2AR blockade was provided to prevented retinal microglia 
reactivity and neuroinflammation[67-68]. This might be concerned 
with the ability of A2AR controlling the formation and release 
of cytokines such as IL-1β and/or TNF, as previously observed 
in different brain preparations[69-73].
Microglia and Oxidative Stress  Nitric oxide (NO) is known 
to be secreted by microglia[74] and inflammation upregulated 
inducible nitric oxide synthase (iNOS) can raise the production 
of NO[75]. Upregulated iNOS and increased NO levels were 
found in the ONH of glaucomatous patients[76] and in the retina 
and ONH of glaucoma animal models[77-79]. Inhibition of iNOS 
with aminoguanidine confers neuroprotection to RGCs in an 
animal model of glaucoma[80], supporting the existence of a 
role of NO in the pathophysiology of glaucoma.
Nicotinamide-adenine dinucleotide phosphate (NADPH) 
oxidase, which is closely related to microglial cells, is capable 
of generating reactive oxygen species ROS that also associated 
with microglia-mediated neurotoxicity in photoreceptor cells[81].
Microglia and Complement  The complement system is part of 
innate immune defense, consists of a number of small proteins 
that can eliminate alien cells and debris[82]. Complement 
proteins are expressed in the normal physiological processes 
of the retina[83], and complement activation would increase in 
pathological conditions like inflammation[84] and ageing[85].
The classical pathway is triggered by activation of the C1-
complex and the upregulation of complement protein C1q 
was detected in some neurodegenerative diseases including 
glaucoma[86-87]. Most of the secreted C1q is released by microglia, 

which express C1q mRNA strongly. The complement cascade 
is thought to present a target for subsequent elimination by 
microglial engulfment[87]. Besides, dendritic and synaptic 
architecture can be protected in genetic knockout of C1qa 
[D2.C1qa (-/-) mouse] or pharmacological inhibition of C1[88]. 
In complement depleted rats model with increased IOP, the 
apoptosis of RGCs in retina was decreased and the activation 
of both caspase-8 and caspase-9 was inhibited[89]. These 
findings suggested that complement mediated apoptosis plays 
a pivotal role in glaucomatous neurodegeneration.
Microglia and Fas Ligand  Fas ligand (FasL) is associated 
with activation of microglia-induced RGCs. FasL could be 
divided into two types, the truncated soluble product (sFasL) 
and membrane-bound FasL (mFasL). Considerable data 
proved that in animal models the mFasL is proinflammatory 
and proapoptotic, while sFasL is anti-inflammatory 
and non-apoptotic[90-91]. In the animal model of chronic 
glaucoma, ectogenic sFasL provided complete and sustained 
neuroprotection, reduced production of TNF-α, and decreased 
apoptosis of RGCs and loss of axons[92]. The opposing 
activities of mFasL and sFasL further suggest that FasL 
cleavage, mediated primarily by matrix metalloproteinases 
(MMPs) and their inhibitors (TIMPs), is a major mechanism 
for limiting the neurotoxic activity of FasL in the eye[93]. 
In addition, MMPs and TIMPs were expressed by retinal 
microglia, RGCs, and their axons[94], indicated that microglia 
participates in the division of FasL.
M1/M2 Polarization of Microglia  Similar to macrophages, 
microglia can be categorized into at least two phonotypes: M1 
and M2. The activation of different phenotypes depending on 
the disease stages and severity can produce either cytotoxic or 
neuroprotective effects[95]. Microglia conduct similar functions 
in CNS compared with peripheral macrophages. Therefore, 
different phenotypes of microglia are considered to participate 
in the degeneration of the CNS. In AD models, the convertion 
of microglia from M1 to M2 lead to decreased toxicity, while 
the ability to swallow β-amyloid increased[96]. Furthermore, 
M1 activation may have association with dopaminergic cell 
death in Parkinson's disease[97]. Aiming at the transformation 
of different subtypes of microglia could also provide new 
therapeutic targets. Further investigations should be made in 
the roles played by M1/M2 microglia in glaucoma.
However, recently some opinions claimed that the evidence 
of microglial M1/M2 polarization is inadequate[98]. There 
are other transcriptional profiles failed to fit with these two 
phenotypes[99]. New markers to distinguish microglia from 
macrophages will be a significant task in future[100].
Microglia and MicroRNAs  MicroRNAs (miRNAs), 
as important epigenetic regulators, are small noncoding 
single-stranded RNA molecules regulating gene expression 
post transcriptionally[101]. In an animal model of acute ocular 



146

hypertension (AOH), the loss of RGCs was associated with an 
activation of retinal microglial cells and thirty-one miRNAs 
significantly changed. For instance, miR-350/MAPK14, miR-
539/MAP3K8 and miR-93/MAPK9 altered in AOH eyes 
could regulate the mitogen-activated protein kinases (MAPKs) 
signaling pathways, which could lead to inflammation and 
RGCs death[102].
CONCLUSION
Microglia, involved in inflammatory factors, cytokine 
activation, complement cascade as well as FasL cleavage, are 
closely related to glaucoma neurodegeneration (Figure 1). In the 
early stages of the disease, microglia-mediated inflammatory 
response may have protective effects on glaucoma in patients 
with RCG injury. While in the process of chronic disease, 
inhibition of microglia activity and its metabolites, can reduce 
glaucoma progress. Although its subtype classification is still 
controversial, microglial cells could be potential targets in 
treating glaucoma, especially normal-tension glaucoma.
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