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Abstract
● The incidence of diabetes mellitus (DM) and its 
complications have increased considerably worldwide. 
Diabetic keratopathy is the major complication of the 
cornea characterized by delayed corneal wound healing, 
decreasing corneal epithelial sensitivity, and recurrent 
corneal ulcers. There is accumulating evidence that 
diabetic keratopathy is correlated with the hyperglycemic 
state. Different corneal components may produce different 
alterations under hyperglycemia. In addition, diabetic 
nerve alteration may become a novel biomarker of early-
stage DM. Abnormalities of the corneal nerve plexus have 
been associated with diabetic inflammatory states. There 
is rapidly growing evidence based on investigations 
of diabetic corneal nerves through in vivo confocal 
microscopy. Understanding the molecular pathogenesis 
caused by hyperglycemia may assist in the identification 
of novel biomarkers, as well as therapeutic targets for 
early treatment. This review mainly summarizes recent 
findings on corneal alteration and pathogenesis in DM.
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INTRODUCTION

W ith the rapid increase in the prevalence of diabetes 
mellitus (DM), diabetic ocular complications [i.e., 

diabetic keratopathy (DK), diabetic cataract, dry eye, and 

diabetic retinopathy (DR)] may lead to severe vision damage 
and blindness in adults worldwide[1]. In recent years, DK has 
gained increasing attention. The main clinical manifestations 
include loss of corneal sensitivity, recurrent erosions of 
the corneal epithelium, dry eye, and neurotrophic corneal 
ulceration. The primary pathological manifestations include 
basement membrane abnormality, lacrimal functional unit 
(LFU) dysfunction, corneal neuropathy, and endothelial 
decompensation. In addition, diabetic neuropathy occurs even 
in the pre-diabetic states, and worsens with the development 
of DM. Loss of nerve innervation may result in the delay 
of corneal wound healing or neurotrophic ulceration. 
Persistent hyperglycemia triggers the expression of various 
cytokines, chemokines, and cell adhesion molecules (Figure 1). 
Over-expression of cytokines, chemokines, and other pro-
inflammatory proteins and pro-apoptotic genes is a key 
contributor to developing DK[2]. This review summarizes 
the current findings and knowledge regarding the corneal 
complications of DM (i.e., the morphology, pathophysiology, 
and cellular mechanism).
DIABETIC CORNEAL NEUROPATHY
Diabetic corneal neuropathy is a potential visual impairment 
condition caused by damage to the trigeminal nerve under 
chronic hyperglycemia, and results in reduction or loss 
of corneal innervation. Diabetic corneal neuropathy is 
characterized by photophobia, ocular irritation, or pain. The 
majority of corneal symptoms are the result of damage to the 
small Aδ and C nerve fibers of the cornea[3]. The loss of corneal 
sensory innervation causes corneal epithelial breakdown, 
delayed wound healing, and subsequently progresses to corneal 
ulceration, melting, and perforation. However, those symptoms 
may not correlate with the severity of corneal neuropathy. 
A number of patients with diabetic corneal neuropathy often 
present without symptoms; this may be due to the decreased 
innervation of the cornea (Figure 2). 
In vivo confocal microscopy (IVCM) has revealed several 
significant findings in the epithelial nerve. The long nerve 
fiber bundles in the corneal sub-basal nerve plexus had 
significantly decreased in patients with DM and corneal 
sensitivity was negatively correlated with long nerve fiber 
length[4]. In addition, the corneal sub-basal nerves in diabetic 
patients showed pronounced thickening than those observed 
in control subjects[5]. Some studies showed that patients with 
DM had significantly decreased corneal sub-basal nerve fiber 
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Figure 2 Transected view of the entire corneal nerve alterations  The epithelial innervation (yellow arrow) is supplied by two nerve networks, 
namely the limbal superficial nerve network and sub-conjunctiva nerve network (black arrows). Corneal stromal nerves originate from the sclera 
and branch into the epithelium (red arrow). Representative IVCM images are shown for A: Sub-basal nerves; B: Corneal epithelial nerves; C: 
Corneal stromal nerves in patients with DM. 

Figure 1 Schematic showing the pathogenesis of diabetic keratopathy  Hyperglycemia has distinct effects on different parts of the cornea, 
including advanced glycation end products, oxidative stress, diabetic neuropathy, inflammatory reaction, and immunocyte activation. These 
effects eventually lead to defective wound healing in the corneal epithelium, abnormalities of sub-basal and stromal nerves, and corneal stromal and 
endothelial dysfunction. NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells transcription factor; MMP: Matrix metalloproteinase.

Corneal alteration and pathogenesis in DM
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length and branch density[6]. Changes in nerve fibers correlated 
with the development of DR. Patients with proliferative DR 
showed significantly thicker, tortuous, and lower density 
nerve measurements than those without proliferative DR[7]. 
Kallinikos et al[8] reported that reduction of corneal sub-basal 
nerve tortuosity may predict the severity of somatic neuropathy 
in patients with DM. Recent IVCM studies conducted by Deák 
et al[9] showed a significant reduction in corneal nerve fiber 
density in patients with DR.
Most studies are focused on the diabetic changes in corneal 
sub-basal nerves, with limited research focusing on the 
corneal stromal nerves. Patel and McGhee[10] found that the 
mean stromal nerve thickness and the proportion of curved 
stromal nerves were significantly higher in patients with DM. 
Moreover, they confirmed that patients with proliferative 
retinopathy had thicker stromal nerves than patients with 
background retinopathy. Nevertheless, the stromal nerve 
density can not calculated, because it has course obliquely in 
the corneal stroma and cannot be imaged through confocal 
microscopy. According to corneal immunofluorescence 
staining, stromal nerve fiber loops are one of the striking 
changes observed in corneal stromal nerves. Under hyperglycemia, 
the basement membrane may resist the stromal nerves entering 
the epithelium, leading to the occurrence of nerve fiber loops. 
Moreover, the alteration of the extracellular matrix in the 
diabetic corneal stroma may also result in the formation of 
nerve fiber loops[11]. 
Pathogenesis of Diabetic Corneal Neuropathy  Multiple 
mechanisms, such as hyperglycemia-mediated inflammation, 
oxidative stress, and signal pathways, may play an important 
role in diabetic neuropathy. Advanced glycation end-products 
(AGEs) are reactive metabolites produced by the non-
enzymatic glycosylation of sugar molecules, which are caused 
by hyperglycemia in DM[12]. Recent studies have demonstrated 
that the accumulation of AGEs may result in retinal diabetic 
neuropathy[13-14]. AGEs and their receptors (RAGE) cause 
the formation of oxygen radicals and the release of pro-
inflammatory cytokines[15].
Some studies have confirmed that poly (ADP-ribose) 
polymerase plays an important role in corneal neuropathy, 
which may trigger the mechanism of oxidative stress both in 
the diabetic rat and mouse model[16]. Chronic hyperglycemia 
can lead to the generation of reactive oxygen species (ROS), 
which results in mitochondrial damage[17]. Yagihashi et al[18] 
showed that mitochondrial damage in nerve fibers may lead 
to demyelination and conduction dysfunction. In that study, 
immune mechanisms were suggested to play a prominent 
role in the progression of diabetic corneal neuropathy. The 
presence of immunocytes in the cornea can be observed via 
confocal microscopy. Studies have reported that the proportion 

of dendritic cells and Langerhans cells (LCs) was significantly 
increased in diabetic patients compared with control subjects. 
Furthermore, LC density was significantly increased in diabetic 
patients, and was significantly correlated with the severity of 
neuropathy[19]. 
The corneal nerve plexus plays an essential role in maintaining 
epithelial homeostasis and promoting wound healing through 
secretion of neuropeptides, growth factors, and cytokines. 
Chronic hyperglycemia may impair corneal nerve secretion 
of neuropeptides[20]. Notably, the ciliary neurotrophic factor 
(CNTF) may promote epithelial wound healing and nerve 
regeneration[21]. Interestingly, the proportion of dendritic cells 
is decreased in the diabetic cornea, which is the primary source 
of CNTF. As a systemic metabolic disease, DM may disrupt 
both the immune and neuroendocrine systems[22]. Recently, in 
the diabetic mice model, treatment with pigment epithelium-
derived factor, docosahexaenoic acid, and ω-3 fatty acid 
was shown to promote epithelial wound healing and nerve 
regeneration[23]. 
CORNEAL EPITHELIUM ABNORMALITY
The corneal epithelium consists of cell layers and the basement 
membrane. The epithelium is an important barrier to the 
cornea, which can resist attacks from pathogens. However, 
diabetic patients are vulnerable to corneal epithelium 
dysfunctions, such as superficial puncture keratitis and 
epithelium erosion. Corneal epithelium abnormality is one of 
the most common and long-term complications of DM. 
Corneal Epithelial Basal Cells  Corneal epithelial basal cells 
(CEBCs) are derived from the corneal stem cells at the limbus, 
and play an important role in forming the basement membrane. 
Under physiological conditions, CEBCs are presented as 
alternately dark and bright dense cluster polygonal cells, with 
a high reflective cell border and low reflective cytoplasm 
using IVCM. In DM, abnormal hyper-signals were detected at 
the interface between the epithelium and the anterior stroma. 
These abnormalities may reflect the accumulation of AGEs[24]. 
Qu et al[25] showed an increase in LCs and decrease in CEBCs 
in patients with type 2 DM.
There is a significant reduction of central corneal thickness 
(CCT) in severely diabetic rat models, indicating disruption 
of the normal homeostasis of the corneal epithelium[4]. 
However, this reduction was observed only in severe diabetic 
neuropathy[26]. Chang et al[27] revealed that changes in corneal 
epithelial parameters, including reduction of CEBC density, 
increased variability in cell size, and wider intracellular space 
were observed in patients with DM. In addition, they reported 
that reduction in the CEBC density was significantly correlated 
with nerve branch density and nerve fiber density. Other 
studies using high-frequency ultrasound revealed changes 
occurring in the corneal epithelium during hyperglycemia, 
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which can be useful for the early detection of damage to the 
corneal epithelium[28].
Alteration of innervation may be a major cause of CEBC 
decrease in patients with DM. As mentioned earlier in this 
review, corneal nerve fibers release multiple neuropeptides 
to maintain corneal epithelial homeostasis. Accumulating 
evidence suggests that neurotrophic factors, as pivotal 
regulatory molecules, play an important role in DK[29]. Nerve 
growth factor and CNTF may also reverse corneal pathologic 
alteration and accelerate corneal epithelial wound healing 
by attenuating apoptosis and inflammation in the diabetic 
cornea[30-31]. Similarly, fibronectin-derived peptide (PHSRN) 
eye drop significantly facilitated the healing of corneal 
epithelial wounds in diabetic rats[32]. Other studies have shown 
that nerve growth factor promoted human corneal epithelial 
wound healing by stimulating phosphorylation of the Akt 
pathway. This finding suggests that the PI3K-Akt pathway 
is involved in corneal epithelial wound healing[33]. Akhtar et 
al[34] reported that Substance P–a neuropeptide mainly secreted 
by sensory nerve fibers–promoted diabetic corneal epithelial 
wound healing. This effect was exerted through the substance 
P-neurokinin 1 receptor signal pathway by recovering the 
activation of Akt, epidermal growth factor receptor (EGFR), 
and silent mating type information regulation 2 homolog 
1 (SIRT1), ameliorating the mitochondrial function, and 
increasing the ROS scavenging capacity. In addition, a number 
of miRNAs showed a close relationship with the corneal 
wound healing process. For example, miR-204-5p mediated 
regulation of SIRT1 contributes to the delay of epithelial cell 
cycle traversal in DK[35]. Furthermore, overexpression of 
SIRT1 strongly promoted wound healing in Ins2 mice[36]. The 
miR-34c was found to repair diabetic corneal nerve endings[37]. 
Other animal studies revealed the detrimental effects of soluble 
epoxide hydrolase on the corneal epithelium, which may 
contribute to reduced corneal epithelial wound healing. Thus, 
pharmacologically targeting soluble epoxide hydrolase may be 
a potential therapy for DK[38]. 
Corneal Epithelial Basement Membrane  Delayed epithelial 
wound healing and abnormal epithelial adhesion is attributed 
to alteration in the basement membrane by DM. Using 
transmission electron microscopy, Taylor and Kimsey[39] 
reported that the thickness of the corneal basement membrane 
was greater in diabetic patients. However, Morishige et al[32] 
reported that the Z-scan may provide a light-scattering index 
(LSI), a quantitative parameter of the light reflectivity of 
tissues at the basement membrane. The LSI was significantly 
increased in diabetic patients; this parameter is relatively 
reproducible and correlated with the severity of diabetes. These 
results imply that measurement of the LSI may be a marker for 
the early detection of DM[40].

Multiple mechanisms have been proposed to play a role 
in pathological alteration of the basement membrane in 
DM. Ljubimov et al[41] reported a reduction in the CEBC 
layer occupied by hemidesmosomes in the diabetic cornea. 
Diminished expression of the components of the basement 
membrane (e.g., nidogen-1/entactin, laminins, and binding 
partner integrin α3β1) was observed in patients with DM[42]. 
These alterations may be attributable to abnormal basement 
membrane metabolism. Accumulating evidence has suggested 
that a number of matrix metalloproteinases (MMPs) play 
a pivotal role in corneal wound healing. In particular, the 
expression of MMP-10/stromelysin-2 is attributed to the 
proteolytic degradation of basement membrane components in 
DM[43-44]. In addition, the expression of MMP-9 was enhanced 
in diabetic corneal epithelium wound healing models. It may 
also damage the type IV collagen and deteriorate its normal 
interaction with other proteins involved in cell attachment[45]. 
It is widely established that AGEs play an important role in 
diabetic epitheliopathy[46]. Ishida et al[47] were the first to detect 
elevated corneal autofluorescence in diabetic patients compared 
with healthy individuals. The corneal autofluorescence was 
correlated with deposition of AGEs in the diabetic cornea. 
Accumulation of AGEs has been detected at the site of the 
corneal epithelium and the epithelial basement membrane in 
diabetic rats[48]. The AGEs are particularly distributed on the 
basement membrane laminin[49]. Furthermore, Sato et al[35] 
reported the corneal AGE autofluorescence corresponding 
to the severity of DR. AGEs may induce apoptosis in human 
corneal epithelial cells through activation of the c-Jun 
N-terminal kinase and p38 mitogen-activated protein kinase 
pathways and generation of ROS[50].
CORNEAL STROMA ABNORMALITY
DM may also cause alterations in the corneal stroma leading 
to corneal stroma disorder. DM may induce both structural 
and functional alterations in the corneal stroma, and these 
processes result in loss of corneal transparency and threaten 
the vision of the patients[51]. Studies showed that CCT 
increases in parallel with the severity of diabetic peripheral 
neuropathy due to an increase in stromal thickness, suggesting 
that the increase in CCT is an important clinical implication[52]. 
Using transmission electron microscopy, it was shown that 
the organization of the anterior stroma matrix was different 
in the diabetic cornea. In the center of diabetic corneas, 
although the structure of collagen lamellae was similar to that 
observed in the normal cornea, the basal epithelial lamina 
appeared thicker than that reported in the normal cornea. In 
the peripheral cornea, an abnormally tile-shaped collagen fibril 
appeared in the anterior epithelial basal lamina[24]. According 
to a long-term streptozotocin-induced diabetic monkey 
model, stroma changes affect the transparency of the cornea. 

Corneal alteration and pathogenesis in DM
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Abnormal collagen fibril bundles with different thickness and 
variable spacing can be found in the corneal stroma, and AGE 
immune reactivity may also be observed in the corneal stroma. 
Importantly, AGE immune reactivity was detected throughout 
the corneal stroma, which may lead to collagen crosslinking 
and contribute to the stromal abnormality[53]. Additionally, 
keratocyte cell density in the posterior stroma was higher 
in young patients with type 1 DM, and the accumulation of 
ROS and several growth factors induces the proliferation and 
activation of keratocytes[7,54]. However, Kalteniece et al[55] 
demonstrated that a reduction in keratocyte cell density, which 
was associated with damage to the corneal sub-basal nerve 
plexus. Furthermore, treatment with an EGFR inhibitor may 
reverse corneal stroma abnormality by modulating the level of 
AGEs. In particular, it reverses the abnormality of the collagen 
fibrils and proteoglycans. This study suggests that the EGFR 
signal pathway contributes to the development of diabetes-
induced corneal stroma remodeling[34]. The MMPs and tissue 
inhibitors of metalloproteinases (TIMPs) play a crucial role in 
the synthesis and degradation of the extracellular matrix. DM 
destroys the delicate balance between MMPs and TIMPs; in 
DR corneas, MMP-3 and MMP-10 were upregulated, whereas 
TIMPs-4 was downregulated[43,56] (Figure 3).
Schwarz et al[57] observed an increased biophysical adhesion 
strength of the endothelium-Descemet membrane complex in 
the diabetic cornea. The increased adhesive interface between 
the Descemet membrane and the underlying stroma may be 
associated with chronic hyperglycemia, and this study provided 
a novel direction for further investigations. Moreover, using 
complete metabolism and liposome analysis, Priyadarsini et 
al[58] identified potential novel biomarkers in the corneal stroma 
(e.g., aminoadipic acid, pipecolic acid, and dihydroorotate). 
These potential biomarkers are significantly up-regulated in 
diabetic corneas, indicating that they may be involved in the 
corneal stroma response to a chronic hyperglycemic insult. 
Such biomarkers may be indicative of diabetes-induced 
stromal damage, allowing the prompt prediction of DM 
complications.
CORNEAL ENDOTHELIUM ABNORMALITY  
DM also exerts a profound effect on the corneal endothelium. 
Changes in endothelial morphological parameters, such as 
endothelial cell density (ECD), hexagonality, and CCT have 
been reported in DM[48]. Liaboe et al[59] showed that patients 
with DM had a markedly lower mean ECD. The coefficient 
of variation of the cell area was higher in the diabetic cornea. 
Although the lower percentage of hexagonal cells was not 
statistically significant, it may reflect the abnormality of 
the corneal endothelial recovery process[60-63]. Functional 
disturbances may lead to increased endothelial permeability 

and endothelial autofluorescence, which subsequently result 
in the impairment of cornea dehydration and lead to corneal 
swelling with increased CCT[64]. Moreover, the lower ECD was 
associated with a higher level of hemoglobin A1c[65], and ECD 
was significantly reduced in patients with DR[66]. Some studies 
showed a significant increase in CCT[60]; however, other studies 
did not[61-62]. Moreover, the number of endothelial cells with 
polymegethism and pleomorphism was significantly higher 
among the eyes of diabetic patients[66]. Of note, polymegethism 
and pleomorphism are the independent quantitative parameters 
of endothelial cells under DM[67]. Urban et al[64] reported 
that ECD is decreased and CCT is increased in children and 
adolescents with DM, suggesting the duration of diabetes 
affects ECD and CCT. The controversial results are likely due 
to differences in the duration of DM, age, and measurement 
methods.
The endothelium contains many immune and inflammatory 
factors, such as vascular endothelial growth factor, tumor 
necrosis factor-α, interleukin (IL), and MMP. These factors 
may also insult the corneal endothelium and lead to alterations 
in endothelial function and morphology, as well as changes 
at the molecular level. Of note, the function of the corneal 
endothelial barrier is impaired, and recovery of endothelial 
cells becomes slower and weaker[68-69]. 
Hyperglycemia causes non-enzymatic glycosylation of proteins 
and abnormal accumulation of sorbitol. Accumulation of AGEs 
may cause a decrease in corneal endothelial cells with aging 
and disturbing endothelial cell metabolism[49,70]. Other probable 
mechanisms of changes in the corneal endothelium include 
mitochondrial dysfunction, which results in the accumulation 
of ROS and mitochondrial injury[71-72]. In addition, glycation 
of membrane adenosine triphosphatase may play a role in the 
disorders of oxygen metabolism[64].
The Descemet membrane is the basement membrane of the 
corneal endothelium, which plays a vital role in withstanding 
greater shear stresses from biological and mechanical 
pathogenic factors[73]. Using confocal microscopy, hyper-
reflective and rod-shaped structures were detected in the 
peripheral Descemet membrane of the diabetic cornea; these 
structures have been identified as long-spacing collagen 
fibril. The abnormal secretion of long-spacing collagen fibril 
may also occur due to the deposition of AGEs[24]. However, 
confocal microscopy provided poorly contrasted images of 
these abnormalities and lacked specificity. At present, second 
harmonic generation (SHG) microscopy is a new imaging 
technique for the detection of collagen-rich tissues. SHG can 
overcome these disadvantages and SHG microscopy can show 
the deposition in the Descemet membrane[74]. Using electron 
microscopy and laser confocal microscopy, Akimoto et al[75] 
have also reported that the abnormal long-spacing collagen 
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Figure 3 Schematic showing changes in the components of the stroma in diabetes mellitus  Abnormally aggregated collagen fibrils 
scattered in the corneal stroma. The accumulation of AGEs in the stroma causes abnormal cross-linking between the collagen fibers. Moreover, 
significantly higher keratocyte cell density was found in diabetes. The abnormal accumulation of AGEs, ROS, MMP, and some growth factors 
may result in the activation or proliferation of keratocytes. 

fibril bundles were frequently observed in the Descemet 
membrane of the diabetic rat model. Interestingly, several 
diabetic alterations in collagen-rich tissue (e.g., age-like 
changes) and the diabetic rat model showed an age-dependent 
increase in the density of long-spacing collagen. Moreover, 
the formation of long-spacing collagen may be suppressed 
by antidiabetic agents. Thus, long-spacing collagen may be a 
new biomarker for measuring the effect of antidiabetic agents 
(Figure 4).

CORNEAL LIMBAL STEM CELL ABNORMALITY
Corneal limbus is a narrow band of tissue that encircles 
the cornea. Under physiological conditions, corneal limbal 
epithelial stem cells (LESCs) give rise to progeny (transit 
amplifying cells), which differentiate into mature corneal 
epithelium during their radial migration towards the central 
cornea. The renewal of the corneal epithelium by LESCs 
may explain the clinically observed delays in diabetic wound 
healing.

Figure 4 Schematic showing the pathogenesis of corneal endothelium and Descemet membrane in diabetes mellitus showing 
morphological and functional changes, including accumulation of AGEs, glycation of membrane ATPase, overproduction of ROS, and 
accumulation of sorbitol pathway products  A: Functional disturbances may lead to increased endothelial permeability, damage to cellular 
components, and stromal edema; B: Representative confocal microscopy image of low ECD and endothelial cells with polymegethism and 
pleomorphism in diabetic patients. 
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Using the IVCM, the limbus of the cornea showed loss of the 
regular limbal epithelium, presence of intraepithelial cystic 
changes, and a mosaic pattern of cells of differing morphology. 
In addition, the more profound stroma of limbal palisades of 
Vogt showed irregularly arranged fibrous strands with scattered 
islands of basal limbal epithelial cells[76].
In DM, a reduction in the expression of LESC markers and 
slower wound healing in cultured diabetic LESCs have been 
observed, which may account for diabetic LESC dysfunction[77]. 
Overexpression of c-met, MMP-10, and cathepsin F gene in 
LESCs was shown to normalize wound healing, and increase 
diabetes-altered staining for putative markers of LESCs (i.e., 
ΔNp63α, ABCG2, keratins 15 and 17, and laminin γ3 chain)[78-79]. 
Furthermore, treatment with insulin-like growth factor-1 exerts 
a preventive effect, which can protect against corneal damage 
in diabetes[80]. A study performed by Kulkarni et al[81] identified 
miR-10b as one of the most abundant miRNAs in corneal 
limbal, which may control corneal epithelial homeostasis and 
stem cell functions. Such miRNAs may be a new tool for the 
treatment of DK.
TEAR FILM ABNORMALITY
The tear film is the primary interface between the ocular 
surface and the external environment, and plays pivotal roles 
in maintaining the morphological and functional integrity of 
the cornea. In addition, the lacrimal glands, lacrimal drainage 
system, and interconnecting innervation work together as the 
LFU.
DM is also associated with film abnormality and LFU 
insufficiency, which can deteriorate corneal components. 
Owing to the lack of tearing or abnormal tear dynamics, the 
diabetic patients are more prone to suffer from dry eye syndrome 
(DES)[82]. DES is very common in diabetic patients, especially 
in those with DR. DES is a potential visual impairment 
syndrome and can lead to superficial punctuate keratopathy, 
secondary bacterial infection, and even perforation. The 
decrease in lacrimal gland secretory function is the cardinal 
problem in DES[83].
Many mechanisms contribute to the onset and progression 
of the tear film abnormality in diabetic patients. Notably, 
chronic inflammation and peripheral neuropathy in diabetes 
play a vital role in DES. Chronic hyperglycemia is the main 
causative mechanism underlying the pathogenesis of tear film 
abnormality[84]. In addition, there was a significant elevation 
of inflammation or pre-inflammation markers in the tears and 
conjunctiva of diabetic patients, such as IL-1α, IL-1β, IL-6, and 
tumor necrosis factor-α[85]. As previously stated, MMP is an 
important mediator of inflammation in diabetes and contributes 
to tissue impairment. It was reported that elevated MMP-9 was 
significantly correlated with ocular surface inflammation[86]. 
In addition, the level of substance P was significantly lower 

in the tears of diabetic patients[20]. A recent study showed that 
the increasing level of metallic elements in the tears of patients 
with DM may be an indicator of ocular damage[87]. In addition, 
oxidative stress in the diabetic rat model leads to pathological 
alteration of the lacrimal gland acinar cells. An experimental 
study demonstrated that overexpression of SIRT1 in the 
diabetic dry eye model was evident for the DES oxidative 
stress mechanism[88]. Furthermore, chronic hyperglycemia 
may eventually lead to tearing film hyperosmolarity. Exposure 
of corneal structures, including the corneal epithelium and 
corneal limbus, to tear film hyperosmolarity leads to a cascade 
of inflammatory reactions[89]. Additionally, the elevated 
volume of the tear film of patients with DM may be attributed 
to tear film instability and rapid evaporation of tear, which 
lead to tear secretion in a reflex action. Usually, secretion of 
tears in patients with DM is reduced[90-91]. Furthermore, tear 
film instability and tear film hyperosmolarity play significant 
roles in the vicious cycle of the diabetic tear film abnormality 
(Figure 5).
Lacrimal nerve fibers play a pivotal role in the maintenance of 
tear production and integrity of the LFU. Diabetic neuropathy 
may compromise the innervation of the LFU. Moreover, 
impairment of the LFU sensory nerve may also inhibit tear 
secretion associated with the reduced threshold of corneal 
sensitivity[92]. Interestingly, using confocal microscopy, 
the number of corneal sub-basal nerves was significantly 
correlated with Schirmer test values[93]. Such a phenomenon 
may indirectly reveal alterations in the corneal innervations 
in DES patients with diabetes. Furthermore, exposure to 
high levels of glucose is deleterious for human meibomian 
gland epithelial cells, and may help explain the importance of 
hyperglycemia for LFU in patients with DM (Figure 6)[94].
FUTURE PERSPECTIVES
The prevalence of DM has increased in recent years as a 
metabolic disease that can influence all structures of the 
eye. The clinical manifestations of DK are variable and 
mainly concern epithelial lesions, neuropathy, and tear 
film abnormalities. The molecular mechanisms responsible 
for DK remain to be elucidated. As summarized in this 
review, numerous underlying pathophysiologic mechanisms 
participated in changes to the cornea. Several novel and 
accurate methods have been developed to investigate 
alterations in the diabetic cornea. There is increasing research 
regarding the use of IVCM in corneal morphological 
alterations in diabetic patients. Therefore, such parameters 
may be noninvasive biomarkers for diabetic peripheral 
neuropathy. An improved understanding of both alterations and 
pathogenesis of the DK would be important for the optimal 
management of DM.
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Figure 5 Schematic showing changes in components of the tear film in diabetes mellitus  As a result, the levels of tear proteins and 
neuropeptides (secreted by trigeminal sensory nerves on the cornea) in diabetics are often significantly lower than those reported in healthy 
individuals, whereas the levels of some inflammation factors are higher. The osmolarity of diabetic tears also increases. Regarding the tear fluid 
itself, the higher glucose concentration in tears alters the capability for corneal epithelial wound healing.

Figure 6 Schematic depiction of the key components of the LFU  The LFU consists of the lacrimal gland, conjunctival goblet cells, 
meibomian gland, as well as sensory and motor nerves. DM exerts distinct effects on different parts of the LFU, resulting in LFU dysfunction. 
Diabetic neuropathy may damage both corneal afferent fibers and efferent nerves. The concomitant inflammatory response with DM may also 
affect the meibomian gland, lacrimal gland, and conjunctival goblet cells. 
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