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Abstract
● Glycolysis produces large amounts of adenosine 
triphosphate (ATP) in a short time. The retinal vascular 
endothelium feeds itself primarily through aerobic glycolysis 
with less ATP. But when it generates new vessels, aerobic 
glycolysis provides rapid and abundant ATP support 
for angiogenesis, and thus inhibition of glycolysis in 
endothelial cells can be a target for the treatment of 
neovascularization. Aerobic glycolysis has a protective effect 
on Müller cells, and it can provide with a target for visual 
protection and maintenance of the blood-retinal barrier. 
Under physiological conditions, the mitochondria of RPE 
can use lactic acid produced by photoreceptor cells as an 
energy source to provide ATP for survival. In pathological 
conditions, because RPE cells avoid their oxidative damage 
by increasing glycolysis, a large number of glycolysis 
products accumulate, which in turn has a toxic effect on 
photoreceptor cells. This shows that stabilizing the function 
of RPE mitochondria may become a target for the treatment 
of diseases such as retinal degeneration. The decrease of 
aerobic glycolysis leads to the decline of photoreceptor cell 
function and impaired vision; therefore, aerobic glycolysis 
of stable photoreceptor cells provides a reliable target for 
delaying vision loss. It is of great significance to study the 

role of glycolysis in various retinal cells for the targeted 
treatment of ocular fundus diseases.
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INTRODUCTION

G lucose is an important energy source in cells, and its 
homeostasis is maintained by glycolysis, tricarboxylic 

acid cycle, and oxidative phosphorylation coordination[1]. 
The oxidative phosphorylation of glucose is a thorough and 
highly productive metabolic process, whereas glycolysis 
is the opposite, but it produces large amounts of adenosine 
triphosphate (ATP) in a short period. Aerobic glycolysis is the 
process by which cells choose to undergo glycolysis even in an 
aerobic environment[2]. This phenomenon was first observed 
in tumor cells, and studies have linked cell proliferation in 
tumor tissue to aerobic glycolysis[3]. And the phenomenon of 
aerobic glycolysis is also found in retinal endothelium[4]. As 
Wanet et al[5] says, the pattern of cell metabolism is related to 
its fate[5]. Aerobic glycolysis is closely related to cell division, 
and the rate of glycolysis growth is closely related to the rate 
of retinal growth in chicken embryos[6]. Among the retinal 
cells, only vascular endothelial cells rely on aerobic glycolysis 
to provide ATP. Due to the different tissue environment, other 
cells cannot carry out the process of aerobic glycolysis, but 
the effect of glycolysis on these cells is still very important 
and has been proved to be an effective target for the treatment 
of many retinal diseases. Our latest research shows that 
pyrimidine bundle-binding protein-associated splicing factors 
(PSF) compounds control angiogenesis by influencing cell 
metabolism and vascular endothelial growth factor (VEGF) 
expression[7]. At the same time, we also found that PSF could 
inhibit angiogenesis by recombining mitochondrial bioenergy 
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and glycolysis to reduce the effect of reactive oxygen species[8]. 
Based on these understandings, this review focuses on the 
metabolic patterns of glucose in various types of retinal cells, 
focusing on the important role of glycolysis in various types of 
cells.
METABOLIC PATTERN OF VARIOUS RETINAL CELLS
The capillary endothelium area of the retina is undoubtedly 
the most oxygen-rich, but it has been found that the energy 
expenditure of endothelial cells is satisfied by glycolysis 
alone[2]. On the one hand, endothelial cells normally proliferate 
very little and require only a small amount of energy from 
glycolysis[9]; on the other hand, the absence of aerobic 
oxidation of glucose also contributes to the availability of 
more oxygen to deeper tissue cells and reduces the effects 
of oxidative stress on endothelial cells themselves[10-11]. 
Retinal pigment epithelium cells (RPE), optic nerve cells, 
and Müller cells are metabolically integrated and depend on 
each other[12-13]. The outer segments of photoreceptor cells 
rely mainly on glycolysis for energy metabolism[14-15], and the 
lactic acid produced is transferred to RPE by monocarboxylic 
acid transporter 1 (MCT1), which is oxidized and metabolized 
to provide energy for RPE[16], some of the lactic acids 
were transferred to the Müller cells[1]. Far from the blood 
vessels, the optic nerve cells produce energy mainly through 
lactic acid oxidation produced by glycolysis in the Müller 
cells[17-19]. Lactic acid, which enters RPE cells, is transferred to 
mitochondria to provide energy for oxidative phosphorylation, 
and it inhibits glycolysis in RPE cells[20]. The RPE is close 
to the choroidal vessels, and the glucose in the blood passes 

through the glucose transporter 1 (GLUT1) from the blood 
through the RPE cells to the photoreceptor cells. Unlike the 
RPE, the Müller cells obtain energy mainly by the glycolytic 
process[21] (Figure 1).
In 2001, the National Institutes of Health’s Institute of 
Neurological Diseases and Stroke introduced the concept of 
a neurovascular unit, emphasizing the relationship between 
brain nerve cells and the cerebrovascular system (https://
www.ninds.nih.gov/About-ninds/Strategic-Plans-Evaluations/
Strategic-Plans/Stroke-Progress-Review-Group). In the 
retina, endothelium, pericytes, retinal nerve cells, and 
neuroglia (mainly Müller cells) make up the neurovascular 
units. Neurodegeneration and microvascular damage are 
interdependent[22], highlighting the role that certain cells play 
in the whole. Retinal endothelium needs only a small amount 
of energy from glycolysis to meet its needs[2]. The rest of the 
glucose in the retinal vessels is transported to Müller cells, 
where it is converted into glycogen and stored in Müller 
cells, in addition to consuming the glucose itself to supply its 
ATP[21]. Lactic acid is transferred from endothelial cells and 
Müller cells to optic nerve cells, where it supplies ATP to 
the nerve cells via the tricarboxylic acid cycle[23]. Glycolysis 
plays an important role in neurovascular units. Glutamate 
is an excitatory neurotransmitter in the retina. If glutamate 
accumulates between synapses, it will cause excitotoxicity. 
The Müller cells convert glutamate into non-toxic L-glutamine 
through glycolysis, plays an important role in maintaining the 
stability of the neuroendocrine environment[24]. The induction 
of aerobic glycolysis and the stabilization of endothelial cells 

Figure 1 The metabolic pattern of retinal cells  The outer segment of photoreceptor cells, the Müller cells and the endothelium cells all 
produce adenosine triphosphate through glycolysis. The retinal pigment epithelium cells and nerve cells of the outer segment of photoreceptor 
cells produce adenosine triphosphate through oxidative phosphorylation lactate. In addition, Müller cells penetrate the entire retina, it takes the 
glutamate between nerve cells, converts it into L-glutamine, and then transports it to the presynaptic cells. GLUT1: Glucose transporter 1; MCT: 
Monocarboxylic acid transporter; Kreb: Tricarboxylic acid cycle; RPE: Retinal pigment epithelium.
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can significantly decrease the activation of hypoxia-inducible 
factor-1α (HIF-1α) and thus stabilize the neurovascular 
units[25].
ROLE OF GLYCOLYSIS IN RETINAL VASCULAR 
E N D O T H E L I U M  A N D  A S  A TA R G E T  F O R 
TREATMENT OF NEOVASCULARIZATION
Pathologic neovascularization is an important cause of vision 
loss in many fundus diseases, such as proliferative diabetic 
retinopathy, age-related macular degeneration, and neonatal 
retinopathy[26]. Pathological neovascularization has many 
defects, such as vascular insufficiency and leakage, which can 
lead to complications such as retinal hemorrhage, exudation, 
and retinal detachment. Proliferation and germination of 
endothelial cells are one of the important steps to induce 
pathological neovascularization[27-28]. It is found that glycolysis 
plays an important role in the pseudopodia of neovascular 
tip cells. Because of the small size of the pseudopodia, 
which cannot bear the volume of mitochondria, glycolysis 
is the only way to obtain ATP, the differential expression of 
glycolysis between the tip cells and their adjacent cells induced 
the tip effect in favor of neovascularization[29]. In budding 
angiogenesis, the tip of the endothelial cell and the stalk cell 
remodel their cell-to-cell connections to allow the budding 
organism to migrate and extend and maintain the integrity 
of the blood vessels, deletion of the glycolytic key enzyme 
pyruvate kinase M2 reduced the amount of ATP required for 
the internalization/transport of VE-cadherin at the endothelial 
cell-cell junction[30]. Both hyperglycemia and hypoxia 
aggravate glycolysis, VEGF has long been recognized as an 
important factor in promoting neovascularization, and plays 
an important role in diabetic retinopathy (DR), especially in 
the pathogenesis of proliferative DR[31]. VEGF was found to 
double the amount of glycolysis induced by endothelium[32-33]. 
In addition to the above-mentioned advantages of glycolysis, 
which is the major source of energy metabolism for 
endothelium, glycolysis also provides the necessary conditions 
for the rapid generation of new blood vessels[29].
Energy metabolism of endothelial cells is an important 
regulator of angiogenesis[34]. Hypoxia-inducible factors play 
an important role in retinal pathology and are implicated in 
both endothelium and neuronal dysfunction[35-36], glycolysis 
is a downstream effect of hypoxia-inducible factors[37]. 
VEGF induces the proliferation and migration of endothelial 
cells[38], which more than doubles the amount of glycolysis 
endothelium[32-33]. The increased glycolysis has a significant 
effect on VEGF expression in DR patients[39]. At the same 
time, the researchers suggest that glycolysis disorder could 
be an early predictor of DR vascular disease[39]. Not only in 
mature endothelial cells, but some studies have also found 
that knock-out of peroxisome proliferator-activated receptor 

(PPAR) α, the expression of threonine kinase (Akt) and its 
downstream signal [nuclear respiratory factor 1 (NRF), NRF2, 
SIRT1, and GLUT1] decreased, which caused endothelial 
progenitor cell injury[40]. The absence of endothelial progenitor 
cells is thought to be associated with neovascularization[41]. 
Wnt signaling plays an important role in both physiological 
and pathological neovascularization, and it was found that Wnt 
signaling affects endothelial progenitor cells by up-regulating 
the function of mitochondria and reducing glycolysis[42]. 
Many key enzymes in glycolysis are hypoxia downstream 
factors. In oxygen-induced retinopathy, adenosine A2A 
receptors increase glycolysis levels in the retina by acting 
on HIF-1α, thus driving neovascularization[43]. Extracellular 
regulated protein kinase (ERK)/Akt/HIF-1α adenosine A2A 
receptor signaling pathway plays an important role in ischemic 
diseases[43]. High expression of adenosine A2A receptor was 
found in vitreous neovascularization. Glucose is transported to 
the cell via glucose transporter 1, an important speed-limiting 
substance in glycolysis. It was found that the interference 
of uncoupling protein with glucose transporter 1 resulted in 
impaired glucose uptake and delayed the development of 
physiological retinal blood vessels in oxygen-induced and 
room-cultured neonatal mice[44]. Some of the substances that 
inhibit glycolysis in endothelial cells, 3-(3-pyridinyl)-1-(4-
pyridinyl)-2-protein-1-one (3PO) not only inhibits the activity 
of phosphofructokinase-2/fructose-2,6-bisphosphonate 3, an 
important rate-limiting enzyme activator for glycolysis but 
also acts on the Notch-VEGF signaling pathway and inhibits 
neovascularization[45]. Endothelium relies heavily on glycolysis 
to produce ATP, and many studies have pointed to glycolysis 
as a therapeutic target for neovascularization, but the role of 
mitochondrial oxidative phosphorylation remains significant. 
Oxidative respiratory chain complex III knock-out studies 
have shown that endothelial cells breathe less, with decreased 
endothelial cell proliferation and retinal neovascularization[46].
As noted above, in the physiological state of the retina, 
endothelial cell primarily provides energy to itself through 
aerobic glycolysis because of its low ATP requirements; 
in the pathological state, primarily neovascularization, 
aerobic glycolysis provides rapid and abundant ATP support 
for angiogenesis and inhibits glycolysis in endothelial 
cells or provides an important target for the treatment of 
neovascularization.
ROLE OF GLYCOLYSIS IN MÜLLER CELLS AND 
FOR NEUROPROTECTION AND MAINTENANCE OF 
THE BLOOD-RETINAL BARRIER
Müller cells are the neuroglia cells in the human retina, which 
run through the entire retina and play an important role in 
supporting nerve cells[47]. Müller cells not only maintain 
the stability of intercellular glutamate but also decompose 
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stored glycogen into retinal nerve cells to provide nutrients 
and produce antioxidants and neurotrophin[48-49]. The lactic 
acid produced by the photoreceptor cells mentioned above is 
transferred to the Müller cells, and the number of literature 
also considers that the Müller cells metabolize energy through 
glycolysis, and lactic acid can be used as an energy source[21]. 
Aspartic acid-glutamic acid carriers transfer glycolytic products 
into mitochondria and completely oxidize glucose, but these 
carriers are highly expressed in retinal neuron carriers and less 
or absent in Müller cells, lactic acid produced by glycolysis 
in Müller cells was transferred to optic nerve cells and 
completely oxidized[50]. ATP produced by glycolysis plays an 
important role in maintaining glutamate uptake by Müller cells, 
glutamate is an important excitatory transmitter between the 
retina, and glutamate homeostasis will produce excitotoxicity to 
the optic nerve cells[51]. However, the mitochondria of Müller cells 
also play an important role in metabolism[52]. Oxygen-induced 
Müller cells reduced glycolysis into mitochondria, and increased 
L-glutamine consumption resulted in increased ammonia 
release and retinal tissue damage[53].
Recently study found that the changes in energy metabolism 
in macroglial cells, such as Müller cells, may have an 
important effect on the support function of the DR mice 
model, causing retinal leakage and loss of visual potential in 
optic nerve cells[54]. Selective excision of Müller cells revealed 
the disappearance of proteins involved in glycolysis and the 
sirolimus target protein (mTOR) pathway in the extracellular 
segments of photoreceptor cells, the ablation of Müller cells 
was also accompanied by destruction of blood-retinal barrier 
and neovascularization[55-56]. Glucose transporters transfer 
glucose from one side of the cell membrane to the other, 
and glucose transporters undoubtedly play a primary role in 
intracellular glucose metabolism. GLUT1 is also an important 
downstream target for controlling the energy metabolism 
pathway. Inhibition of glucose uptake by GLUT1 has been 
found to slow the development of retinal neovascularization[44]. 
Retinal binding protein, a retinal transporter secreted by 
photoreceptor cells, plays an important role in the protection 
of DR. By binding to GLUT1, resulting in decreased glucose 
uptake, to prevent inflammatory factors from damaging the 
retinal endothelium and Müller cells[57]. Müller cells protect 
endothelial cells from HIF-1α damage by inhibiting glycolysis 
in the mTOR signaling pathway and stabilizing glycolysis in 
the endothelium in hypoxic retinal nerve endothelial cells[25].
The Müller cells are the neuroglia cells in the retina, which 
play an important role in supporting the optic nerve cells 
as well as maintaining the blood-retinal barrier. Aerobic 
glycolysis has a protective effect on Müller cells, and the 
aerobic glycolysis of Müller cells provides targets for visual 
protection and maintenance of the blood-retinal barrier.

ROLE OF GLYCOLYSIS IN RPE CELLS AND 
AS A TARGET FOR TREATMENT OF RETINAL 
DEGENERATION 
Retinal nerve cells are oxygen-intensive cells, and glucose in 
retinal blood vessels enters retinal nerve cells through GLUT1 
of RPE cells[58]. Under physiological conditions, unused 
glucose entering the RPE is transferred to photoreceptor 
cells along a concentration gradient[13,20]. Photoreceptor cells 
produce energy by aerobic glycolysis, and lactic acid, the 
product of glycolysis, is transferred to RPE cells through 
MCT1. Lactic acid inhibits the glycolysis in RPE cells and 
is oxidized to provide energy for RPE cells[1,59]. Therefore, 
mitochondrial oxidative phosphorylation is very important for 
RPE in the physiological state. The researchers observed the 
process by which electron transport chain III inhibitors block 
oxidative phosphorylation, and found mitochondrial edema 
and damage to RPE cells[60]. Mitochondria are the oxidative 
phosphorylation of cells, and they are involved in the glucose 
tricarboxylic acid cycle, lipid oxidation, and lactic acid 
oxidation, so mitochondrial function is critical for the survival 
of RPE cells. miRNA-451a has been found to have protective 
effects on mitochondria of RPE cells and may provide a 
therapeutic target for pathological changes of DR RPE cells[61]. 
On the other hand, metabolic disorders also play an important 
role in retinal degenerative diseases, retinal degeneration is 
delayed by adenosine monophosphate which can stabilize 
energy metabolism in RPE cells by increasing the copy number 
of mitochondrial DNA and ATP level in RPE cells[62].
The glycolytic gene expression of RPE cells was up-
regulated according to RNA analysis in retinal degenerative 
diseases[63]. To resist oxidative damage, RPE cells promote 
aerobic glycolysis to produce less reactive oxygen species[64]. 
With the increase of aerobic glycolysis metabolism, a large 
amount of lactic acid is transported to photoreceptor cells[1]. 
The endogenous coding factor H protein helps to maintain 
the transcriptional and metabolic homeostasis of RPE cells, to 
protect RPE cells from oxidative stress, or by up-regulating 
glycolysis when RPE cells were exposed to mild hydrogen 
peroxide, the level of glycolysis was decreased by knock-
out of complement protein-encoding factor H protein, the 
researchers suggest that endogenous coding factor H may 
protect RPE cells from oxidative stress by up-regulating 
glycolysis expression[65]. Retinal metabolism and remodeling 
are early features of age-related macular degeneration. NAD+ 
induces filamentous phagocytosis to restore homeostasis in 
RPE cells, mitotic phagocytosis is important for promoting 
glycolysis, which is necessary for metabolic differentiation[66]. 
However, lactic acid, a product of glycolysis, is cytotoxic. 
Excessive lactic acid is transported to RPE cells by MCT, and 
immature MCT binds to the basic protein encoded by Bsg to 
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mature and be transported to RPE cell membrane, RPE cells, 
and cones/rods in Bsg deficient mice[67].
In the physiological state, the ATP required for the survival of 
RPE cells is oxidized by lactic acid produced by photoreceptor 
cells in RPE mitochondria. In the pathological state, RPE cells 
increase the expression level of glycolysis to avoid oxidative 
damage, however, a large number of glycolysis products have 
toxic effects on photoreceptor cells, which can stabilize the 
function of RPE mitochondria and provide a feasible target for 
retinal degeneration and other diseases.
ROLE OF GLYCOLYSIS IN PHOTORECEPTOR 
CELLS FOR DELAYING VISION LOSS
Photoreceptor cells are energy-consuming cells, they are 
the main sites of light transmission in the retina. Although 
photoreceptor cells contain a large number of oxidative 
phosphorylation enzymes and mitochondria, they consume 
most of their glucose in glycolysis first[15]. In photoreceptor 
cells, much of the glucose consumed is metabolized not 
by oxidative phosphorylation but by aerobic glycolysis[14]. 
When oxygen is reduced, it can be observed that glycolysis 
significantly increases Na+ transport in compensatory 
dark current, but when oxygen is completely deprived, the 
disappearance of light-induced nerve impulses in retinal nerve 
cells other than photoreceptors can be observed[23]. Blocking 
aerobic glycolysis for further compensation in a mouse model 
of glaucoma revealed that the axonal mitochondria of the optic 
nerve could not maintain the function of the cells because of 
its efficient ATP production, although it could make up for the 
high energy demands of some cells[68]. It has also been reported 
that aerobic glycolysis in cone and rod cells is not a necessary 
metabolic option for cell survival, but the function of rod 
cells is affected[69]. A study of type 2 diabetes has shown a 
significant association between metabolic disorders associated 
with increased lactic acid and decreased vision[70]. Age-related 
degeneration of the optic nerve was accelerated by glycolysis 
deficiency and endoplasmic reticulum unfolded protein effect 
in photoreceptor cells, bipolar cells and retinal ganglion cell 
cells in a mouse model[71]. The results showed that the increase 
of glycolysis, photoreceptor cell death, and Wnt signal 
activation during DR proliferation promote the survival of 
retinal cells[72].
Aerobic glycolysis was found in photoreceptor cells to 
have the same protective effect as endothelial cells against 
oxidative stress, Wnt/β-catenin signaling pathway protects 
photoreceptor cells by stimulating P13K/Akt signaling 
pathway to activate glycolytic key the enzyme of HIF-1α[73]. 
The lack of hexokinase, the first rate-limiting enzyme in 
glycolysis, is significantly associated with neurodevelopmental 
disorder and visual impairment[74]. Hexokinase-mediated 
aerobic glycolysis is essential to maintain the function of 

photoreceptor cells. Long-term inhibition of aerobic glycolysis 
leads to photoreceptor cell degeneration[15]. Pyruvate kinase 
is one of the key enzymes in glycolysis, and the pyruvate 
kinase M2 subtype regulates visual function by regulating 
phosphodiesterase 6β, in mice with the pyruvate kinase M2 
subtype knocked out, the decrease in both pyruvate kinase 
M2 and phosphodiesterase 6β was accompanied by a decrease 
in rod cell function, whereas in mice with pyruvate kinase 
M2 subtype enhanced, the reduced/oxidized redox ratio 
reduced[75]. Also, the absence of pyruvate kinase M2 leads 
to a reduced glycolysis rate, and the segments of cone cells 
lacking pyruvate kinase M2 are significantly shorter than those 
of normal cone cells[76]. Mitochondrial pyruvate carriers link 
glycolysis and mitochondrial metabolism, and the absence of 
mitochondrial pyruvate carriers in the retina leads to the loss of 
function of cone and rod cells in the retina, which leads to the 
loss of vision[77]. The binding of glucose with GLUT1 induces 
the increase of glucose in the cone cells. The cone active 
factor is a protective factor secreted by the cone cells and has a 
protective effect on them, cone-active factors act by binding to 
base proteins, promote the survival of cone cells by increasing 
aerobic glycolysis, and are also found to supplement glucose in 
rod cells[78-80].
The integrity of retinal nerve cells is related to vision. 
Photoreceptor cells produce ATP mainly through aerobic 
glycolysis. The decrease of aerobic glycolysis leads to the 
decline of photoreceptor cell function and impaired vision, 
therefore, aerobic glycolysis of stable photoreceptor cells 
provides a reliable target for delaying vision loss in disease 
states.
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