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Abstract 
● AIM: To explore a more accurate quantifying diagnosis 
method of diabetic macular edema (DME) by displaying 
detailed 3D morphometry beyond the gold-standard 
quantification indicator-central retinal thickness (CRT) and 
apply it in follow-up of DME patients. 
● METHODS: Optical coherence tomography (OCT) scans 
of 229 eyes from 160 patients were collected. We manually 
annotated cystoid macular edema (CME), subretinal fluid 
(SRF) and fovea as ground truths. Deep convolution neural 
networks (DCNNs) were constructed including U-Net, sASPP, 
HRNetV2-W48, and HRNetV2-W48+Object-Contextual 
Representation (OCR) for fluid (CME+SRF) segmentation 
and fovea detection respectively, based on which the 
thickness maps of CME, SRF and retina were generated 
and divided by Early Treatment Diabetic Retinopathy Study 
(ETDRS) grid.
● RESULTS: In fluid segmentation, with the best DCNN 
constructed and loss function, the dice similarity coefficients 
(DSC) of segmentation reached 0.78 (CME), 0.82 (SRF), 
and 0.95 (retina). In fovea detection, the average deviation 
between the predicted fovea and the ground truth reached 
145.7±117.8 μm. The generated macular edema thickness 

maps are able to discover center-involved DME by intuitive 
morphometry and fluid volume, which is ignored by the 
traditional definition of CRT>250 μm. Thickness maps could 
also help to discover fluid above or below the fovea center 
ignored or underestimated by a single OCT B-scan.
● CONCLUSION: Compared to the traditional unidimensional 
indicator-CRT, 3D macular edema thickness maps are 
able to display more intuitive morphometry and detailed 
statistics of DME, supporting more accurate diagnoses and 
follow-up of DME patients.
● KEYWORDS: diabetic macular edema; fluid segmentation; 
fovea detection; 3D macular edema thickness maps; deep 
learning
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INTRODUCTION

A ccording to the ninth edition of the global diabetes 
atlas from the International Diabetes Federation (IDF) 

in 2019, there were 463 million of people with diabetes in 
the world, and 116.4 million in China[1]. Li et al[2] showed 
that prevalence of diabetes among adults living in China 
was 12.8% using 2018 diagnostic criteria from the American 
Diabetes Association. Diabetic retinopathy is one of the most 
common and serious complications of diabetes[3], in which 
diabetic macular edema (DME) is the main cause of visual 
impairment or even complete loss in diabetic patients[4].
The measurement of macular edema is critical for the diagnosis 
and treatment of DME. Measured by optical coherence 
tomography (OCT), central retinal thickness (CRT) is the gold 
standard for quantitative evaluation of DME. In the guidelines 
from the European Retinal Society in 2017 and the American 
Ophthalmology Society in 2020, CRT is an important indicator 
for DME severity and treatment response[5-6]. Center-involved 
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DME (CI-DME) is defined as CRT of more than 250 μm and 
requires anti-VEGF treatment[6].
However, as a unidimensional indicator (the retinal thickness 
across the fovea center), CRT is insufficient to present overall 
morphological changes of macula. Fluid is actually observed 
in some patients with normal CRT (<250 μm, according to 
the definition of CI-DME) and require treatments, indicating 
the limitation of CRT as an indicator. Furthermore, given that 
retina is a three-dimensional (3D) tissue, an OCT B-scan only 
shows a cross section of retina, which may leave the fluid on 
other cross sections ignored or underestimated. More effective 
approaches are required to improve the accuracy of DME 
diagnosis for better treatments.
We propose the concept of 3D macular edema thickness 
maps. We performed fluid segmentation and fovea detection 
using a deep convolution neural network (DCNN) called 
HRNetV2-W48, based on which we calculated the volume 
and average thickness of retina, cystoid macular edema 
(CME) and subretinal fluid (SRF) separately on the Early 
Treatment Diabetic Retinopathy Study (ETDRS) grid of 
fundus photograph to generate thickness maps. Compared 
to traditional indicators, macular edema thickness maps are 
able to support more accurate diagnoses by presenting the 3D 
morphometry of fluid (CME and SRF), and have the potential 
to be applied in follow-up of DME patients.
SUBJECTS AND METHODS
Ethical Approval  The images used in the research were 
provided by Beijing Hospital. This study received formal review 
and approval from the Ethics Committee of Beijing Hospital and 
adhered to the tenets of the Declaration of Helsinki.
Dataset  A total of 229 completely anonymized OCT cube 
scans (Spectralis OCT, Heidelberg Engineering, Heidelberg, 
Germany) of 229 eyes from 160 patients affected by 
DME were collected consecutively from Department of 
Ophthalmology, Beijing Hospital since 2010. Inclusion 
criteria: patients diagnosed as DME based on history of diabetes, 
fundus photograph and OCT scans. Exclusion criteria: 
patients with other retinal diseases (e.g., age-related macular 
degeneration, retinal vein occlusion or retinal breaks); patients 
with incomplete OCT scans or unsatisfied image quality (e.g., 
off-center, blocked signal or missing signal). Each cube scan 
includes 25 consecutive B-scans. The image resolution of each 
B-scan is 512×496 pixels, covering a scanning field of 20°×20° 
(approximately 6×6 mm2). 

OCT images were randomized into training set (125 eyes), 
validation set (47 eyes), and testing set (57 eyes) with a ratio 
of approximately 2:1:1 of patients (Table 1). In the fluid 
segmentation task, three to five B-scans with visible fluid were 
selected for manual annotation. Internal limiting membrane 
(ILM), retinal pigment epithelium (RPE), CME, SRF were 
manually annotated by trained ophthalmologists at pixel-
level in each B-scan. Contrast limited adaptive histogram 
equalization, a method of image enhancement, was applied 
to help ophthalmologists recognize the boundary of fluid. In 
the fovea detection task, only one B-scan was selected and 
annotated with foveal coordinates in each cube scan. 
A consensus grading program and a review system were 
performed after manual annotation. The training set was 
annotated by a single ophthalmologist. The testing set was 
annotated independently by two ophthalmologists and then 
reviewed by a supervisor.
3D Macular Edema Thickness Maps Calculating Workflow  
The architecture of workflow is illustrated in Figure 1. To 
obtain macular edema thickness maps, three main modules are 
embedded: 1) macular fluid segmentation module (DCNN), 2) 
macular fovea detection module (DCNN), 3) macular edema 
thickness map generation module. Given a cube of OCT 
B-scans, the fluid segmentation module predicts the retinal 
region and edema region. Meanwhile, the macular fovea 
detection module predicts foveal coordinates. Subsequently, 
in the macular edema thickness map generation module, 
the fluid region and foveal coordinates in OCT are mapped 
onto the colored fundus photograph based on the positional 
correspondence relationship. Finally, 3D macular edema 
thickness maps with ETDRS grid are obtained.
Macular fluid segmentation module  A DCNN of HRNetV2-
W48+Object-Contextual Representation (OCR) architecture[7-9] 
was used in the segmentation module. There are 25 B-scans 
in one cube. This module takes B-scan as input, resizes each 
B-scan to 512×512, and determines whether each pixel belongs 
to CME, SRF, retina or background. 
In the training process, data augmentation was used to increase 
the generalization ability, including random horizontal flipping, 
rotation, random cropping and aspect ratio changing. The 
maximum number of training epochs was 100. The learning 
rate was divided by 10 if the performance did not improve in 
10 consecutive epochs. Once the rate reached 10-8, early stop 
occurred.

Table 1 Information of datasets for training, validation, and testing

Parameters
Training set Validation set Testing set

Patients Eyes Annotated B-scans Patients Eyes Annotated B-scans Patients Eyes Annotated B-scans
Fluid segmentation 87 125 426 36 47 143 37 57 162
Fovea detection 87 125 125 36 47 47 37 57 57

3D DME thickness maps based on deep learning
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To reach the best performance, we compared following DCNNs: 
1) U-Net. Most of the existing fluid segmentation literature 
used U-Net[10-12] or its variants[13-16] as the segmentation 
network. 2) sASPP. Hu et al[17] proposed stochastic atrous spatial 
pyramid pooling (sASPP) method based on Deeplabv3+[18], 
which improved the performance and stability of fluid 
segmentation. 3) HRNetV2-W48, HRNetV2-W48+OCR, and 
HRNetV2-W48+OCR (WDice). In recent years, HRNet and its 
variant HRNet+OCR showed excellent performance in natural 
scene segmentation tasks[7-9].
As common practice, dice similarity coefficient (DSC) was 
applied as the performance metric. Its definition is 

where X is the segmentation result and Y is the ground truth. 
TP represents the number of true positives. FP is the false 
positives, and FN is the false negatives.
The network was implemented by PyTorch (V1.6.0) framework 
and Python (V3.7.7). The experimental environment was 
Linux OS and hardware of Intel(R) Core(TM) i7-6850K CPU 
@ 3.60GHz, GeForce GTX 1080 Ti.
Macular fovea detection module  The network backbone, 
training process and environment configuration of macular 
fovea detection module were the same as the retinal fluid 
segmentation module. Like Liefers et al[19], a circle with a 
radius of 20 pixels around the manually annotated macular 
fovea center was set as the ground truth. The data augmentation 
only contained random horizontal flipping.
Every B-scan of one cube was fed into the network and the 
probability of fovea of each pixel was calculated. Two hundred 

pixels with highest probability were selected as candidate 
points. Then the candidate points with probability lower than 
a prescribed threshold were removed. Eventually, foveal 
coordinates were determined by the mean coordinates of 
reserved candidate points.
Macular edema thickness maps generation module  Each 
cube includes 25 consecutive B-scans. Through the two 
modules above, the fluid in each B-scan was segmented, and 
the fovea in each cube was detected. The thickness of macular 
edema was measured from segmentation results and mapped 
on the fundus photograph to generate thickness maps of 
CME, SRF and retina using bilinear interpolation algorithm 
(Figure 2). And then the foveal coordinates were mapped onto 
the fundus photograph. Thickness maps were divided by the 
ETDRS grid into central fovea (1-mm diameter), parafovea 
(1-3 mm), and lateral macular area (3-6 mm). The middle 
ring and the outer ring of the grid were further divided into 4 
quadrants: superior, inferior, nasal, and temporal. The volume 
and average thickness of retina, CME and SRF in different 
zones could be calculated separately (Figure 2).
Sometimes, the cube scan center deviated from the center 
of the macula because of eccentric fixate or actual scanning 
requirements. To match the position of ETDRS grid, an offset 
should be considered. If part of the ETDRS grid was not 
covered by the cube scan, it would be estimated by bilinear 
interpolation algorithm. 
RESULTS
Fluid Segmentation  First we compared the performance of 
different DCNNs, in which the cross entropy was as the loss 
function (Table 2). The best backbone was selected. Then 

Figure 1 Training of macular fluid segmentation module and macular fovea detection module, and workflow of 3D macular edema 
thickness maps generation  Red dot: Predicted fovea center; Blue dot: Scan center.
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different loss functions (CE, CE with weights, binary CE, Dice, 
Dice with weights) were compared to select the loss function 
with best performance. 
The DSC of CME, SRF, and retina was calculated on the test 
dataset. The DSC of fluid (mean of CME and SRF) was used 
to compare different experiments more intuitively. HRNetV2-
W48+OCR trained with weighted Dice loss function had the 
best performance in all DCNNs. In most networks, the DSC of 
SRF is usually higher than of CME. A possible explanation is 
that usually SRF has a clearer boundary in B-scans than CME 
and is thus easier to be recognized. 

Fovea Detection  The average deviation of fovea detection is 
as short as 145.7 μm (±117.8 μm). Given the foveal diameter 
is typically 1.0-1.5 mm, more than 98% (56/57 cases of the 
testing set) of the deviation distances are within 0.5 mm from 
the fovea center, indicating a satisfactory fovea detection. 
Generation of 3D Macular Edema Thickness Map and Its 
Clinical Applications  Based on automated fluid segmentation 
and fovea detection, thickness maps of CME, SRF and retina 
were generated, and divided by ETDRS grid (Figure 2). 
This retinal thickness map shows the topography of macula, 
while CME thickness map and SRF thickness map show the 
thickness and distribution of intraretinal and subretinal fluid 
separately in the fundus photograph, whose 3D display is more 
intuitive to evaluate the severity of macular edema than CRT, 
the traditional unidimensional indicator. In the nine zones of 
ETDRS grid, the volume and average thickness of retina, CME 
and SRF in different zones could be calculated separately 
(Figure 2). 
Compared to mere OCT B-scans and CRT (traditional 
indicator), our 3D macular edema thickness maps are more 
intuitive to display the distribution and thickness of macular 
edema and its distance to the fovea, and thereby better evaluate 
the severity of macular edema. Center-involved DME is 
defined as CRT of more than 250 μm. Figure 3 shows four 
cases with normal CRT (<250 μm), but fluid in the central 
zone is observable in thickness maps, indicating the superiority 
of thickness maps upon CRT in diagnoses. Furthermore, 
when evaluated by a single OCT B-scan, fluid above or below 
the fovea center might be ignored or underestimated, while 
are observable in thickness maps (Figure 4). In these cases, 
thickness maps are more intuitive and accurate to evaluate the 
distribution and severity of edema.
We applied follow-up thickness maps for DME patients before 
and after anti-vascular endothelial growth factor (anti-VEGF) 
treatment. Changes of CME, SRF, and retinal thickness in the 
four-month follow-up were summarized from thickness maps, 
providing more details for clinical evaluations than simple 
CRT. The anti-VEGF treatments were performed in months 2, 
3 and 4. We demonstrated changes of average CME, SRF and 
retinal thickness in the central 1 mm (Figure 5). Compared to 
simple CRT, thickness maps are able to display CME and SRF 
thickness individually and exclusively from retinal tissues.
DISCUSSION
A lot of traditional methods and networks have been applied 
in macular fluid segmentation based on OCT. Breger et al[20], 
Samagaio et al[21], and Jemshi et al[22] applied traditional 
methods to detect macular edema. However, studies from 
Schlegl et al[23], Lee et al[11], Roy et al[13], Hu et al[17], Bogunovic 
et al[24], Guo et al[14], Liu et al[15] showed that DCNNs achieved 
better performance in fluid segmentation task compared 

Table 2 DSC of fluid, CME, SRF, and retina in different DCNNs

DCNNs Fluid CME SRF Retina
U-Net 0.66 0.70 0.63 0.94
sASPP 0.74 0.71 0.76 0.95
HRNetV2-W48 0.76 0.74 0.77 0.95
HRNetV2-W48+OCR 0.77 0.75 0.78 0.95
HRNetV2-W48+OCR (WDice) 0.80 0.78 0.82 0.95

DCNN: Deep convolution neural network; CME: Cystoid macular 
edema; SRF: Subretinal fluid; OCR: Object-Contextual Representation.

Figure 2 An example of 3D macular edema thickness maps with 
ETDRS grid  Red font shows the volume (mm3) and black font 
shows the average thickness (μm) of each grid zone.

3D DME thickness maps based on deep learning
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Figure 4 DME cases with observable fluid in CME thickness map (and in B-scans above or below the fovea center) might be ignored by 
a single OCT B-scan across the center  Red font shows the volume (mm3) and black font shows the average thickness (μm) of each grid zone.

Figure 3 DME cases with normal CRT (<250 μm, incorrectly defined as normal by CRT), indicating the limitation of CRT Red font 
shows the volume (mm3) and black font shows the average thickness (μm) of each grid zone.
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with traditional methods. Most of the existing literature used 
U-Net or its variants as the segmentation network. Hu et 
al[17] proposed sASPP method based on Deeplabv3+, which 
improved the performance and stability of fluid segmentation 
comparing to 2D and 3D U-net. In recent natural scene 
segmentation, HRNet and its variant HRNet+OCR showed 
excellent performance[7-9]. We compared the performance of 
different networks. HRNetV2-W48+OCR showed the best 
performance in different kinds of edema and fluid compared to 
U-Net, sASPP, and HRNetV2-W48, and only failed in images 
of poor-quality or with artifacts.
In cases of macular edema, the retina usually loses its 
structure, which leads to biases in fovea detection in most OCT 
devices. Niu et al[25] detected the fovea successfully in normal 
eyes and AMD patients based on changes in retinal thickness 
but failed in cases of macular edema. Wu et al[26] segmented 
the retina according to the graph theory method, detected the 
fovea according to thickness of the optic nerve fiber layer, 
and got an average deviation of 162.3 μm in CME caused 
by branch retinal vein occlusion (BRVO) and central retinal 
vein occlusion (CRVO), which is close to our results in DME 
patients (145.7±117.8 μm). Liefers et al[19] first proposed a deep 
learning method for fovea detection by identifying the marked 
area of 60×20 μm2 around the fovea as a segmentation task, 
and obtained an average deviation of 215 μm in DME patients. 
Different from methods above, we applied HRNetV2-W48 to 
detect the fovea and achieved a higher accuracy.
In 1991, ETDRS proposed a fast macular topography to 
calculate average retinal thickness and volume in nine zones, 
which is called ETDRS grid and widely applied in current 
OCT devices. However, errors occur in automatic prediction 
of the fovea and retina structures in cases of macular edema. In 
our study, we propose the concept of macular edema thickness 
map, and calculate the volume and average thickness of retina, 

CME and SRF separately on the ETDRS grid. Compared to 
the traditional evaluation method of observing OCT B-scans 
directly, 3D macular edema thickness maps present distribution 
of the intraretinal and subretinal fluid more intuitively and 
present the volume and average thickness of different types of 
edema in each grid zone. The average thickness of the central 
CME and SRF might be more sensitive compared to CRT as 
indicators in follow-ups, which requires further exploration. 
3D macular edema thickness maps of patients will help doctors 
in treatment strategies, evaluation of treatment effects, and the 
timing of retreatment. In future studies, we would also include 
diffuse macular edema, hard exudation, etc. in the assessment 
of macular edema, and even include macular edema caused by 
other diseases such as BRVO and CRVO.
The current study still has several limitations. The amount of 
data in this study was small. The images in the test set and 
training set were from only one OCT device. In further study 
we could try to expand the dataset and include other devices. 
The current network only had a good performance in clear 
OCT images, showing significant errors in images with poor 
clarity due to cataracts, vitreous turbidity, artifacts, etc. The 
network needs further improvement and optimization. This 
research only included images of DME patients. Further 
study could collect images of macular edema caused by 
BRVO, CRVO and other diseases, to test the performance 
of the current network. Macular edema includes not only 
cystoid macular edema and subretinal fluid, but also sponge-
like diffuse retinal thickening, hard exudation and other 
manifestations. Currently our network is not able to identify 
those kinds of lesions. 3D macular edema thickness maps and 
calculation of the fluid volume and average thickness are based 
on the cube mode in the OCT device. The construction of 3D 
macular edema thickness maps based on other scanning modes 
(such as star scans) needs further study.
In summary, we developed a deep learning network with 
better performance in macular fluid segmentation and fovea 
detection, based on which we generated 3D macular edema 
thickness maps, presenting more intuitive 3D morphometry 
and detailed statistics of retina, CME and SRF compared to 
the existing unidimensional indicator CRT, supporting more 
accurate diagnoses and follow-up of DME patients.
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