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Abstract
● AIM: To study the effect of palmitoylethanolamide 
(PEA) on apoptosis of retinal pigment epithelial (RPE) cells 
induced by all-trans retinal (atRAL) and to explore the 
possible molecular mechanism.
● METHODS: CellTiter 96® Aqueous One Solution Cell 
Proliferation Assay (MTS) was used to detect the effect of 
PEA on human-derived retinal epithelial cells (ARPE-19) viability 
induced by atRAL. A Leica DMi8 inverted microscope was 
used to observe cell morphology. Reactive oxygen species 
(ROS) production was evaluated with 2’,7’-dichlorodihydrof-
luorescein diacetate (H2DCFDA) staining and fluorescence 
microscopy. Expression of c-Jun N-terminal kinase (JNK), 
phosphorylated JNK (p-JNK), c-Jun, phosphorylated c-Jun 
(p-c-Jun), Bak, cleaved caspase-3, C/EBP homologous 
protein (CHOP), and binding (Bip) protein levels were tested 
by Western blot. Abca4-/-Rdh8-/- mice, mouse models of 
atRAL clearance defects which displays some symbolic 
characteristics of dry age-related macular degeneration 
(AMD) and Stargardt disease (STGD1). In the animal 
models, PEA was injected intraperitoneally. The full-field 

electroretinogram was used to detect visual function under 
scotopic conditions traced from mice. Optical coherence 
tomography showed reconstitution or thickening of the 
retinal pigment epithelium layer. Effect of PEA on fundus 
injury induced by light in Abca4-/-Rdh8-/- mice was observed 
by fundus photography.
● RESULTS: PEA ameliorated ARPE-19 cells apoptosis 
and inhibited ROS (including mitochondrial ROS) production 
induced by atRAL. PEA improved the retinal functional, 
prohibited both RPE and photoreceptor from death, 
ameliorates light-induced fundus impairment in Abca4-/-

Rdh8-/- mice. In vitro and in vivo, PEA inhibited JNK, p-JNK, 
c-Jun, p-c-Jun, Bak, cleaved caspase-3, CHOP, and Bip 
protein levels induced by all-trans retinal in ARPE-19 cells.  
● CONCLUSION: PEA has effect on treating RPE cells 
apoptosis in retinopathy caused by atRAL accumulation. 
PEA is a potential treatment strategy for dry AMD and 
STGD1. The molecular mechanism is affecting the ROS-JNK-
CHOP signaling pathway partly.
● KEYWORDS: palmitoethanolamide; ARPE-19; fundus; 
all-trans retinal; apoptosis
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INTRODUCTION

A ge-related macular degeneration (AMD), is the main 
reason leading to irreversible and severe vision damage 

over 60 years old all over the world[1]. AMD is a multivariate 
fundus disease affecting the maculae, photoreceptors and 
retinal pigment epithelium (RPE) deprive the function owing 
to the late-onset progressive neurodegeneration. Many factors 
are relevant to AMD pathogenesis, including immunity, 
metabolic disorders, oxidative stress, inflammation, and so on. 
AMD divides two types including dry AMD and wet AMD[2]. 
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The more general form is dry AMD about 88% in AMD 
patients. 
In recent years, people used the aggressive and combined 
therapy methods, such as laser coagulation, vascular 
endothelial growth factor (VEGF) receptors, anti-oxidants, 
gene therapy, etc. However, there is no effective cure to treat 
dry AMD, the blindness rate continue rises[3-5]. Stargardt’s 
disease (STGD) is an inherited eye disease of adolescent 
macular dystrophy[6]. STGD caused by Abca4 gene mutation, 
which is called STGD1[7]. STGD1 children may be blindness 
when they are adults, however there is no effective treatment. 
So, it’s necessary to find new therapeutic agents with less 
toxicity. To study its molecular mechanisms to cure dry AMD 
and STGD1.
Palmitoylethanolamide (PEA), an endocannabinoid mimetic 
amide, is used in the anti-inflammatory, analgesic characteristic 
specifically in humans[8-9]. PEA has been demonstrated safety 
and tolerability[9-11]. PEA is indicated hopefully to use in many 
therapeutic fields both in preclinical and clinical studies as 
an endogenous cell protective lipid, such as eczema, pain, 
and neurodegeneration[12-17]. In the 70s of the 20th century, 
PEA was evaluated as a preventive and therapeutic agent for 
the treatment of influenza and colds[18-19]. Besides its anti-
inflammatory and analgesic characteristic, PEA is a natural 
retinoprotectant[20-25]. PEA has been evaluated for glaucoma, 
diabetic retinopathy, and uveitis, pathological states based 
on chronic inflammation, respiratory disorders, and various 
pain syndromes in a number of clinical trials[26]. But by now, 
the role of PEA on all-trans retinal (atRAL) induced retinal 
denaturation has not been reported.
In the current study, we investigated effects of PEA on atRAL 
caused retinal denaturation. We used a mouse model of 
Abca4-/-Rdh8-/-, an animal model with photoreceptor loss and 
RPE dystrophy[27-29]. PEA improved the retinal functional, 
prohibited both RPE and photoreceptor from death, ameliorates 
light-induced fundus impairment in Abca4-/-Rdh8-/- mice. PEA 
inhibits RPE c-Jun N-terminal kinase (JNK), phosphorylated 
JNK (p-JNK), c-Jun, phosphorylated c-Jun (p-c-Jun), Bak, 
cleaved caspase-3, the transcription factor C/EBP homologous 
protein (CHOP) and binding (Bip) protein levels in vitro 
(induced by atRAL) and in vivo (Abca4-/-Rdh8-/- mice) 
experiments. PEA may favor for RPE cell apoptosis therapy in 
the presence of retinopathies caused by atRAL accumulation. 
It has potential as a therapeutic strategy for dry AMD and 
STGD1. The molecular mechanism may affect reactive oxygen 
species (ROS)-JNK-CHOP signaling. 
MATERIALS AND METHODS 
Ethical Approval  The Animal Care and Utilization 
Committee of School Medicine Xiamen University approved 
all the animal experiments. All animal operations strictly 

according to Chinese Association for Research in Vision 
and Ophthalmology (CARVO). The Institutional Review 
Board approved the study is “The occurrence and mechanism 
of photoreceptor iron death in dry age-related macular 
degeneration” and the approval number is XMULAC 
20200072.
Reagents  Hoechst 33342, atRAL bought in Sigma-Aldrich 
(St. Louis, MO, USA). The 2’,7’-dichlorodihydrofluoresce
in diacetate (H2DCFDA) reagent was bought in Thermo 
Fisher Scientific (Eugene, OR). Antibodies including cleaved 
caspase-3 (9664S and 9661S), p-JNK (9255S), JNK (9252S), 
p-c-Jun (9261S), c-Jun (9165S), Bak (12105S), CHOP 
(D46F1; 5554S), BiP (C50B12; 3177) and GAPDH (5174S) 
were purchased in Cell Signaling Technology (Danvers, MA). 
p-JNK (4821) was bought in Abcam. Horseradish peroxidase–
conjugated goat anti-rabbit IgG (H L; 31460) and donkey anti-
rabbit IgG (H L; A21207) secondary antibodies were provided 
by Thermo Fisher Scientific (Rockford, IL). 
Animals  In this experiment, we used Abca4-/-Rdh8-/- mice 
model which had been described before[29]. Four weeks old of 
Abca4-/-Rdh8-/- mice, being 48h dark-adapted, 1% tropicamide 
dilated the pupils, then exposed to10 000 lx light emitting 
diode (LED) light with 450–460 wavelength range for 1h. 
The control mice of Abca4-/-Rdh8-/-, feed at normal darkness 
with 5d without 10 000 lx LED exposed. Additionally, after 
48h dark adaptation, 4 weeks old mice of Abca4-/-Rdh8-/- 
were intraperitoneally injected with 4 mg/kg body weight 
PEA or vehicle dimethyl sulfoxide (DMSO). An hour later, 
1% tropicamide dilated the mice pupils and then PEA or 
vehicle DMSO-treated mice layed bare in 10 000 lx LED 1h. 
PEA or vehicle DMSO intraperitoneally injected the control 
Abca4-/-Rdh8-/- mice which were without light exposure. After 
treatment PEA or vehicle DMSO for 4d once-daily, the mice 
were euthanized and the eyeballs collected for follow-up study 
at 5d after illumination.
As previously mentioned[30], dissolved PEA in solution: DMSO 
with 0.01%, Tween 80 with 10% (SigmaAldrich, St. Louis, 
MO, USA), 20% polyethylene glycol 400, 69.9% physiological 
saline. To study PEA roles on Abca4-/-Rdh8-/- mice RPE, PEA 
(30 mg/kg body weight) was injected intraperitoneally in 
Abca4-/-Rdh8-/- mice.
Fundus Imaging  The mice fundus images were performed 
as what mentioned before[29]. All mice were induced sufficient 
pupil dilation by 1% tropicamide and were anesthetized deeply 
during testing. The mice placed on the lifting platform, applied 
carbomer to the cornea. A fundus imaging system (OptoProbe; 
OPIMG-L, UK) used to collect data. The position of the eye 
was adjusted to ensure the fundus image was clear. After data 
collection, normal saline and levofloxacin eye drops were 
administered to prevent infection. 

Role of PEA on RPE degeneration
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Optical Coherence Tomography  Before optical coherence 
tomography (OCT) imaging was performed, each animal 
was anesthetized and the pupils were dilated with a drop 
of 1% tropicamide. Then, a drop of 0.2% carbomer was 
applied to each cornea to keep the tissue moist. An adjustable 
custom-made platform was used for maintaining appropriate 
positioning of the mice. After altering the position and angle 
of the mice, the retinal OCT images of each eye were acquired 
with the optic nerve head centered on the corresponding box 
by using a Small Animal Retinal Imaging System (OptoProbe, 
OPIMG, UK). The neural retinal thickness and thickness of 
the outer nuclear layer (ONL) were analyzed with using OCT 
Image Analysis software (Version 2.0, Optoprobe, UK).
Electroretinography  Before the electroretinogram (ERG) 
recordings, mice were dark-adapted at least 12h, and all 
operation processes were performed under dim red-light 
conditions. The pupils were dilated with a drop of 1% 
tropicamide, next, animals were anesthetized with inhalation 
(0.6 L/min) of 2% isoflurane for induction phase and then 
1.5% isoflurane for maintenance phase. The gold electrode was 
placed at the center of the cornea. Scotopic ERG recordings 
were obtained at the following increasing light intensities: 
0.01, 0.1, 1, 10 cd·s/m2. Flash ERGs responses were recorded 
using the Diagnosys Espion E2 ERG system (Diagnosys, LLC, 
Lowell, USA) and acquired data were analyzed using Espion 
software. Immediately after ERG recording, imaging of the 
fundus was performed as previously described above.
Cell Culture  Human-derived retinal epithelial cells (ARPE-19) 
bought in Fudan IBS Cell Center (Shanghai, China) and 
cultured as what mentioned before[28]. 
Treat with Palmitoylethanolamide and All-trans Retinal  
The 1.5×104 cells per well of ARPE-19 cells inoculated in 
96-well plates or 3×105 cells per well cells in 6-well plates, 
cultured them overnight. PEA (2.5, 5, 10, and 20 µmol/L) 
pretreated ARPE-19 cells for 2h. Then, atRAL (2.5, 5, 15, and 
20 µmol/L) or blank control treated ARPE-19 cells for 6h.
Cell Viability  As mentioned earlier, the MTS method was 
used to evaluate cytotoxicity[29].
Measurement of Intracellular Reactive Oxygen Species  
atRAL with 15 μmol/L treated ARPE-19 cells for 6h. After 
incubation with 10 μmol/L H2DCFDA or 5 μmol/L MitoSOX 
Red at 37°C for 10min, Hochest 33342 labeled the nuclei. 
After PBS washed, used confocal microscope to examine the 
cells. 
Western Blot  Cell and tissue extraction manipulate by 
Western blot analysis as previously described[29]. 
Statistical Analysis  The software of GraphPad Prism software 
(Version 5.0; La Jolla, CA, USA) analyzed all data. The data 
with three separate tests were averaged from to compute mean 
and standard deviation (mean±SD). Single-factor or two-factor 

analysis of variance (ANOVA) was used for statistical analysis, 
using Tukey’s test as shown in legends. Significance marked 
by P<0.05.
RESULTS   
Palmitoylethanolamide Ameliorates ARPE-19 Cells 
Apoptosis Induced by All-trans Retinal   To examined the 
health ARPE-19 cells viability which layed bare to atRAL 
6h. ARPE-19 cells viability decreased in a concentration 
dependent way causing by atRAL (Figure 1A). atRAL cultured 
with ARPE-19 cells, its IC50 value was 18 µmol/L for 6h. 
Besides, ARPE-19 cells culturing under (2.5, 5, 15, and 20 µmol/L)
atRAL for 6h, reduced cell survival rate significantly about 
10%, 28%, 45%, 65%, respectively. According to the cell 
viability tests results, 15 µmol/L atRAL induced ARPE-19 
cells with following tests. MTS results indicated that PEA 
protected ARPE-19 cells from apoptosis at 2.5, 5, 10, and 
20 µmol/L concentration dependent and effectively induced 
by 15 µmol/L atRAL (Figure 1B). When exposed to atRAL for 
6h at concentrations 15 μmol/L, ARPE-19 cells morphology 
changed significantly assuming roundness, contraction, 
and cytoplasmic rupture. PEA ameliorates ARPE-19 cells 
morphology caused by atRAL (Figure 1C).
Immunoblot analysis indicated that PEA diminished pro-
apoptotic protein Bak level ARPE-19 cells induced by atRAL 
(Figure 1D). ARPE-19 cells were treated by 15 µmol/L atRAL 
or 15 μmol/L atRAL 6h with 10 μmol/L PEA or DMSO 
serving as a blank control for Bak immunoblot analysis. The 
expression of Bak decreased dramatically (Figure 1E) in 
atRAL with PEA-loaded ARPE-19 cells, which showed PEA 
suppressed Bak protein. 
PEA Suppresses  Reactive Oxygen Species Yield Cause by 
atRAL in ARPE-19 Cells  ROS leads to apoptosis, intracellular 
ROS production was detected by fluorescence microscopy 
ARPE-19 cells being atRAL-loaded which cultured in 
H2DCFDA. The intracellular ROS generation significantly 
increased in ARPE-19 cells cultured with 15 µmol/L atRAL 
for 6h, about 26 times as many as the control cells (Figure 2A, 
2B). ARPE-19 cells ROS production effectively lessen, when 
treated 10 µmol/L PEA exposing 15 µmol/L atRAL after 6h 
(Figure 2A, 2B). Immunoblot analysis showed that 10 µmol/L 
PEA markedly reduced CHOP protein level in ARPE-19 cells 
caused by atRAL accumulation (Figure 2C, 2D).
PEA Ameliorates ARPE-19 Cell Apoptosis by Affecting 
JNK Signaling Induced by atRAL   ARPE-19 cells treated 
by 15 µmol/L atRAL for 6h, Western blotting analyses 
displayed that p-JNK protein levels were significantly up-
regulated. It demonstrated that atRAL actived ARPE-19 cells 
JNK signaling.
However, results showed that PEA down-regulated ARPE-19 
cells p-JNK protein levels which treated by 15 µmol/L atRAL 
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Figure 1 PEA ameliorates ARPE-19 cell apoptosis induced by atRAL   A: MTS method tested ARPE-19 cell viability when ARPE-19 cells exposure 
to atRAL (2.5, 5, 15, and 20 µmol/L) for 6h. B: MTS assay measured ARPE-19 cell viability, incubated in 15 μmol/L atRAL with PEA (2.5, 5, 10, 
and 20 µmol/L) 6h. C: Leica DMi8 inverted microscope imaged cellular morphology. The scale bars, 100 μm. D: Bak immunoblot analysis ARPE-
19 cells lysates with 15 μmol/L atRAL or 15 μmol/L atRAL at 10 μmol/L PEA or vehicle. E: Bak protein levels, showed folding changes relative to 
DMSO control. aP<0.05; bP<0.01; cP<0.001. PEA: Palmitoylethanolamide; atRAL: All-trans retinal; ARPE: human-derived retinal epithelial cells; 
DMSO: Dimethyl sulfoxide; MTS: CellTiter 96® Aqueous One Solution Cell Proliferation Assay.

Figure 2 PEA suppresses ROS (including mitochondrial ROS) generation in ARPE-19 cells caused by atRAL  A: Intracellular ROS production, 
H2DCFDA staining tested by fluorescence microscopy. Scale bars, 50 μm. B: Ratio of H2DCFDA positive cells by fluorescence microscopy. C: 
Immunoblot analysis of CHOP in ARPE-19 cells cultured to atRAL 15 μmol/L or atRAL 15 μmol/L with 10 μmol/L PEA or DMSO 6h. D: Expression 
levels of CHOP protein relative to control. cP<0.001. PEA 10 μmol/L pretreated the cells for 2h. PEA: Palmitoylethanolamide; atRAL: All-trans 
retina; ROS: Reactive oxygen species; H2DCFDA: 2’,7’-dichlorodihydrofluorescein diacetate; CHOP: C/EBP homologous protein.

Role of PEA on RPE degeneration
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for 6h (Figure 3A, 3B). Since phosphorylation of C-Jun, the 
JNK direct substrate, which is the JNK activation indicator, 
we use Western blotting to test ARPE-19 cells c-Jun activated 
state induced by atRAL. ARPE-19 cells treatment with 
atRAL, protein level of p-c-Jun, which is JNK downstream 
transcription factor, was significantly increased. However, PEA 
down-regulated ARPE-19 cells p-c-Jun protein levels treated 
by atRAL15 µmol/L 6h (Figure 3C, 3D). Results showed 
PEA suppressed ARPE-19 cells apoptosis induced by atRAL 
through inhibition JNK signaling. Western blotting analysis 
indicated that 10 μmol/L PEA obviously decreased p-JNK, p-c-
Jun, cleaved caspase-3 protein levels in ARPE-19 cells caused 
by atRAL (Figure 3E, 3F). Collectively, these findings disclose 
that PEA diminishes ARPE-19 apoptosis evoked by atRAL 
partly by affecting JNK signaling pathway.
PEA Ameliorates Photoreceptor and RPE Degeneration 
Effectively in Light-exposed Abca4-/- Rdh8-/- Mice  PEA 
(4 mg/kg body weight) treated Abca4 -/-Rdh8 -/- mice 
by intraperitoneal injection. PEA effectively relieved 
photoreceptor atrophy, prevented the ONL and the whole 
neural retina thickness reduction from light-exposed of 
Abca4-/-Rdh8-/- mice using histological assessment with OCT 
(Figure 4A-4B). In addition, in vivo, fundus retinal imaging 
showed that intraperitoneal injection of PEA eliminated 
RPE degeneration in Abca4-/-Rdh8-/- mice on day 5 after light 
exposure (Figure 4C). The ultimate goal of retinal degeneration 
is to preserve visual function. Full-field electroretinal imaging 
(ERG) was used to measure the response of rod photoreceptors 
to light stimulation under dark patch conditions (Figure 4D). 
The retinal function of DMSO-treated and the absence of 
light exposure groups showed the same strong scotopic ERG 
curve as the normal control group, while the retinal function 
ERG curve of Abca4-/-Rdh8-/- mice upon light exposure group 
significantly decreased, indicating retinal damage. Fortunately, 
PEA treatment effectively prevented light-induced drop in a- 
and b-waves under scotopic conditions, reflecting improved 
retinal function after PEA treatment. The quantification of 
a- and b-wave amplitudes under scotopic condition further 
clearly demonstrated PEA improved the retinal functional 
(Figure 4E, 4F). Together, these datas suggest that PEA has 
a strong protective effect on light-induced photoreceptor and 
RPE atrophy in Abca4-/-Rdh8-/- mice, suggesting its promising 
therapeutic strategy.
PEA Ameliorates RPE Cell Apoptosis by Affecting ROS-
JNK-CHOP Signaling in Light-induced Abca4-/-Rdh8-/- 
Mice  Intraperitoneally injection of PEA ameliorated 
Abca4-/-Rdh8-/- mice RPE degeneration after day 5 irradiation 
imaging by in vivo retinal fundus (Figure 4). To verify PEA 
suppressed JNK signaling pathway and its relative proteins in 
RPE with illumination of Abca4-/-Rdh8-/- mice, p-c-Jun, p-c-

Jun, Bak, CHOP, and Bip protein levels were used to detect 
by immunoblot. Western blotting analysis displayed p-JNK 
protein levels significantly increased in RPE illumination of 
Abca4-/-Rdh8-/- mice (Figure 5A, 5B). Additionally, p-c-Jun, 
Bak, CHOP, and Bip protein levels, which function relative 
to the JNK signaling, markably increased in Abca4-/-Rdh8-/- 
mice neural retina with illumination (Figure 5C–5J). The study 
showed that PEA administration obviously reduced p-c-Jun, 
Bak, CHOP, and Bip protein levels in Abca4-/-Rdh8-/- mice RPE 
with light exposure (Figure 5C–5J).
DISCUSSION
There are some Food and Drug Administration (FDA) 
approved therapies to treat wet AMD. However, there is no 
approved therapies to treat dry AMD. AMD pathogenesis is 
very complex and isn’t understood yet. Different therapeutic 
approaches to treat retinal damage are varied and debated 
in dry AMD[31-32], including visual cycle modulation, gene 
therapy, complement inhibition, neuroprotection, anti-
inflammatory therapy, cell-based treatments, prosthetic 

Figure 3 PEA ameliorates RPE cell apoptosis via affecting JNK 

signaling induced by atRAL  A: Western blotting to analyze JNK and 

p-JNK; B: p-JNK/JNK protein level ratios; C: Immunoblot to analyze 

c-Jun and p-c-Jun protein level; D: c-Jun and p-c-Jun protein level 

ratios. E: Western blotting to analyse cleaved caspase-3. F: Cleaved 

caspase-3 protein level ratios. cP<0.001. PEA: Palmitoylethanolamide; 

atRAL: All-trans retina; JNK: c-Jun N-terminal kinase; p-JNK: 

Phosphorylated JNK; p-c-Jun: Phosphorylated c-Jun; RPE: Retinal 

pigment epithelium.
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devices, photobiomodulation. None of the methods described 
is without shortcomings. Such as, the concerns with stem 
cell-based therapies include immune rejection, differentiation 
into undesired cell types, damage to surrounding tissues, 
and tumor formation. Visual cycle modulators with oral 
route of administration are appealing to patients, but the 
downside of these treatments is that dark adaptation and 
low-light vision can be adversely affected by modulating 
the visual cycle. Fortunately, PEA is abioactive endogenous 
acyl ethanolamine lipid. Different from the secretion of other 
endogenous signaling molecules, PEA is synthesized and 
released by membrane phospholipids “on demand” only 
when the cell membrane is stimulated by external stimuli, and 
exerts physiological and pharmacological effects. PEA does 

not accumulate in the body after it has taken effect. It will 
be re-absorbed by the corresponding transporter to retrieve 
intracellular hydrolytic inactivation. It has been demonstrated 
with the high safety and tolerability. PEA is indicated hopefully 
to use in many therapeutic fields both in preclinical and clinical 
studies, such as eczema, pain, and neurodegeneration. PEA 
might be a natural retinoprotectant. 
Central visual damaged in AMD patients partly caused 
by RPE cells degeneration[33], which becomes a major 
public health issue[34-35]. STGD1 and dry AMD patients had 
typical manifestations of retinal dystrophy which caused 
photoreceptors and the RPE atRAL accumulation[27-29]. So, 
vision sustaining is important to clear the released atRAL 
timely[2,36]. Evidence demonstrate that transient amassing of 

Figure 4 Effects of PEA on photoreceptor and RPE degeneration in light-exposed Abca4-/-Rdh8-/- mice  A: Examination of mouse retina 

morphology by using OCT. PEA or vehicle (DMSO; 4 mg/kg body weight) were intraperitoneally injected into 48h dark-adapted Abca4-/-

Rdh8-/- mice at 4 weeks of age. One hour later, the mice were irradiated by 10 000 lx LED light for 1h after their pupils were dilated with 1% 

tropicamide, followed by once-daily administration of PEA or vehicle for 4d. Control Abca4-/-Rdh8-/- mice were intraperitoneally injected with 

PEA or vehicle in the absence of light exposure. Representative OCT images taken at day 5 upon light exposure. B: Thickness of ONL, and whole 

retina was quantified by OCT image analysis software. Data are presented as mean±SD (n=6). Statistical analyses were conducted by one-way 

ANOVA with Tukey’s multiple comparison test. cP<0.001. C: Typical fundus image. D: Representative dark-adapted ERG wave forms at 10 cd·s/m2 

in mice. E: Implicit times for scotopic a-wave were calculated at flash intensities of 0.01, 0.1, 1, and 10  cd·s/m2. F: Implicit times for scotopic b-wave 

were calculated at flash intensities of 0.01, 0.1, 1, and 10 cd·s/m2. Data are expressed as mean±SEM (n=6). Statistical analyses were performed 

with one-way ANOVA with Tukey’s multiple comparison test. cP<0.001, (DMSO+light) vs (PEA+light), cP<0.001, DMSO vs (DMSO+light). PEA: 

Palmitoylethanolamide; atRAL: All-trans retina; OCT: Optical coherence tomography; DMSO: Dimethyl sulfoxide; ONL: Outer nuclear layer; RPE: 

Retinal pigment epithelium. 
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atRAL by delayed clearance from the retina is one of the key 
mechanisms in light-induced retinal degeneration[27,37-38]. In 
the visual (retinoid) cycle, ABCA4 and RDH8’s responsibility 
are to clear up the retina atRAL[39-40]. And the Abca4-/-Rdh8-/- 
mice model exhibit the photoreceptor loss and RPE dystrophy, 
which are STGD1 and dry AMD primary features[27,37-38]. 
Previous studies findings demonstrate photoreceptor/RPE 

dystrophy was related to atRAL toxicity[29,31]. 
The stress stimuli, growth factors, and inflammatory cytokines 
may activate c-Jun N-terminal kinases[41-47]. JNK signaling 
activation linked to apoptosis[46], some degenerative illness, 
such as, Parkinson’s and Alzheimer’s diseases involves the 
development[48-49]. Our earlier research suggested atRAL 
promotes ARPE-19 cells apoptosis by mitochondrial 
damage[50-51], nucleotide oligomerization domain-like receptor 
thermal protein domain associated protein 3 (NLRP3) 
inflammasome activated lead to ARPE-19 cells death via 
promote caspase-3/GSDME-mediated pyroptosis caused by 
atRAL[28]. Recently, studies found RPE cells apoptosis relative 
to JNK activation caused to caspase-3/DNA injure dependent 
by atRAL[31]. 
PEA concentration is lower than normal subjects in glaucoma 
patients ciliary body[52]. PEA levels are lower in retina of AMD 
and diabetic retinopathy than healthy[24]. PEA remarkablely 
decreased splanchnic artery occlusion (SAO) shock cell 
death[53]. Nitric oxide (NO) and ROS levels decreased by 
PEA regulation the main cytokines in the COVID-19 infected 
induced by lipopolysaccharide (LPS) injure [54].
In this study, we explored PEA effects in retinal degeneration 
induced by atRAL. In vitro cell tests, studies indicated 
that 15 µmol/L atRAL induced ARPE19 cells apoptosis 
significantly via upregulating JNK signaling. Meanwhile, 
PEA downregulated JNK signaling which induced by 
atRAL. Previous studies showed stress and ROS production 
caused by atRAL in ARPE-19 cells[38,50-51], activation of JNK 
induced RPE cells apoptosis. As expected, PEA suppressed 
ARPE-19 ROS (including mitochondrial ROS) generation 
induced by atRAL in our study. Bak plays a main role in 
apoptotic cell death[55]. Currently, study reviewed that NLRP3 
inflammasome was activated by atRAL to induce ARPE-
19 cell death and promotes caspase-3/Gasdermin domain-
containing protein (GSDME)-mediated pyrodeath[28]. Bak and 
cleaved caspase-3 proteins expression reduced, which revealed 
that PEA repressed atRALR caused RPE cell apoptosis. 
Researches indicated stress of ER marker proteins such as 
Bip upregulation related to CHOP expression upregulation[56]. 
CHOP is downstream of JNK[57]. Our study showed in ARPE-19 
cells, PEA remarkablely reduced Bip and CHOP protein levels 
in JNK signaling pathway by atRAL accumulation.
Abca4-/-Rdh8-/- mice after light exposure revealed dry AMD and 
STGD1 characteristics with photoreceptor/RPE degeneration 
caused by rapid elevation of atRAL levels in the retina[32]. In 
the retina, Abca4-/-Rdh8-/- mice were exposed to fluorescent 
light at 10 000 lx resulting in rapid accumulation of atRAL[58], 
and promoted photoreceptor cell death and retinal damage[59]. 
Similar data were found in in vivo studies, studies showed 
that Abca4-/-Rdh8-/- mice which irradiated by light activated 

Figure 5 PEA ameliorates RPE cell apoptosis by affecting ROS-JNK-

CHOP signaling in Light-induced Abca4-/-Rdh8-/- mice A: p-JNK and 

JNK Western blotting analysis. B: p-JNK/JNK protein level ratios. 

C: Immunoblot analysis p-c-Jun/c-Jun protein level. D: p-c-Jun/

c-Jun ratio. E: Western blotting analysis of Bak protein level. F: Bak 

protein level ratios. G: Western blotting analysis of CHOP protein 

level. I: CHOP protein level ratios. H: Western blotting analysis of 

Bip protein level. J: Bip protein level ratios. bP<0.01; cP<0.001. PEA: 

Palmitoylethanolamide; atRAL: All-trans retina; ROS: Reactive oxygen 

species; JNK: c-Jun N-terminal kinase; p-JNK: Phosphorylated JNK; 

p-c-Jun: Phosphorylated c-Jun; RPE: Retinal pigment epithelium; 

CHOP: C/EBP homologous protein; Bip: Binding protein. 
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JNK signaling in the neuro-retina[29]. More importantly, 
intraperitoneal injection of PEA effectively ameliorated 
Abca4-/-Rdh8-/- mice RPE degeneration and apoptosis after 
light irradiation. PEA effectively relieved photoreceptor 
atrophy and prevented the reduction in the thickness of ONL 
and whole neural retina from light-exposed Abca4-/-Rdh8-/- 
mice. PEA treatment effectively prevented light-induced drop 
in a- and b-waves under scotopic conditions, reflecting an 
improvement in retinal function by PEA administration.
PEA also inhibits JNK, p-JNK, c-Jun, p-c-Jun, Bak, cleaved 
caspase-3, CHOP, and Bip protein levels in RPE partly. Thus, 
PEA may be favor in the therapy of RPE cell death of retinal 
degeneration caused by atRAL accumulation.
Our results indicated that PEA may be a therapeutic to treat dry 
AMD and STGD1. However, the mechanism of PEA action 
is not clear yet. In the future, we will continue to study the 
mechanism of PEA in dry AMD and STGD1.
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CORRIGENDUM

Role of the ultra-wide-field imaging system in the diagnosis of pigmented paravenous 
chorioretinal atrophy
Ya-Ling Liu, Ya-Rou Hu, Miao-Hong Chen, Zhen Yu, Guo-Ming Zhang
(Int J Ophthalmol 2022;15(11):1878-1880. DOI:10.18240/ijo.2022.11.21)

The authors would like to make the following changes to the above article:
1. The word “FAF” that exists in Figures 1 and 2 and the DISCUSSION should be modified as “red-UWF”. 
2. The figure legend “FAF: Fundus auto-fluorescence” in Figures 1 and 2 should be deleted. 
3. The word “auto-fluorescence (FAF)” in the DISCUSSION should be modified as “red-UWF”. 
The authors apologize for any inconvenience caused by this error.
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