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Abstract
● AIM: To conduct a classification study of high myopic 
maculopathy (HMM) using limited datasets, including 
tessellated fundus, diffuse chorioretinal atrophy, patchy 
chorioretinal atrophy, and macular atrophy, and minimize 
annotation costs, and to optimize the ALFA-Mix active 
learning algorithm and apply it to HMM classification.
● METHODS: The optimized ALFA-Mix algorithm (ALFA-
Mix+) was compared with five algorithms, including ALFA-Mix. 
Four models, including ResNet18, were established. Each 
algorithm was combined with four models for experiments on 
the HMM dataset. Each experiment consisted of 20 active 
learning rounds, with 100 images selected per round. The 
algorithm was evaluated by comparing the number of rounds 
in which ALFA-Mix+ outperformed other algorithms. Finally, 
this study employed six models, including EfficientFormer, 
to classify HMM. The best-performing model among these 
models was selected as the baseline model and combined 
with the ALFA-Mix+ algorithm to achieve satisfactory 
classification results with a small dataset. 
● RESULTS: ALFA-Mix+ outperforms other algorithms 
with an average superiority of 16.6, 14.75, 16.8, and 16.7 

rounds in terms of accuracy, sensitivity, specificity, and 
Kappa value, respectively. This study conducted experiments 
on classifying HMM using several advanced deep learning 
models with a complete training set of 4252 images. The 
EfficientFormer achieved the best results with an accuracy, 
sensitivity, specificity, and Kappa value of 0.8821, 0.8334, 
0.9693, and 0.8339, respectively. Therefore, by combining 
ALFA-Mix+ with EfficientFormer, this study achieved results 
with an accuracy, sensitivity, specificity, and Kappa value of 
0.8964, 0.8643, 0.9721, and 0.8537, respectively.
● CONCLUSION: The ALFA-Mix+ algorithm reduces 
the required samples without compromising accuracy. 
Compared to other algorithms, ALFA-Mix+ outperforms 
in more rounds of experiments. It effectively selects 
valuable samples compared to other algorithms. In HMM 
classification, combining ALFA-Mix+ with EfficientFormer 
enhances model performance, further demonstrating the 
effectiveness of ALFA-Mix+.
● KEYWORDS: high myopic maculopathy; deep learning; 
active learning; image classification; ALFA-Mix algorithm
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INTRODUCTION    

H igh myopic maculopathy (HMM) is one of the main 
causes of blindness[1-2]. The severity and progression 

rate of the disease are closely related to the degree and duration 
of myopia[3-4]. With the continuous increase in the proportion of 
high myopia patients[5], the incidence of HMM is showing an 
upward trend year by year. Studies have shown that the risk of 
developing HMM increases significantly in patients with high 
myopia worldwide, with a probability ranging from 13.3% to 
72.7%[6-7]. For patients with HMM, there will be gradual vision 
loss, blurred central vision, distortion, and other symptoms, 
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which greatly affect their daily life and work. Therefore, 
prevention and early detection are of great significance for the 
prevention and treatment of myopic maculopathy.
In recent years, the application of artificial intelligence in 
the medical field has become one of the research hotspots[8]. 
Many scholars have conducted in-depth research[9-16]. And 
deep learning technology has gradually been applied to the 
prevention and early detection of HMM. Tan et al[17] developed 
a deep learning system based on XGboost and DenseNet to 
predict refractive error, high myopia, and HMM, achieving 
an area under curve (AUC) of 0.955 in the detection of 
HMM. Du et al[18] proposed a deep learning algorithm for 
classifying HMM, achieving an overall accuracy of 0.9208. 
These algorithms were also used to develop a pathological 
myopia research classification system by adding specific 
processing layers, which helped to screen pathological myopia. 
Rauf et al[19] used convolutional neural networks (CNNs) 
to automatically detect pathological myopia, and the best-
performing CNN model achieved an AUC of 0.9845. Tang et 
al[20] developed a deep learning model based on ResNet50 and 
DeepLabV3+ using color fundus photographs to classify and 
segment HMM, achieving a classification accuracy of 0.937 
and a segmentation F1 score of 0.95, effectively achieving the 
classification and monitoring of HMM progression. Sun et 
al[21] introduced a prior knowledge extraction module to extract 
prior knowledge to determine the rough lesion areas in fundus 
images, and integrated the obtained prior knowledge into 
the deep learning network, achieving an accuracy of 0.8921 
in the five-classification experiment of HMM. To achieve 
good performance, deep learning training often requires a 
large amount of labeled dataset. Currently, the scale of HMM 
datasets is small, and annotators are often required to have high 
professional quality and experience, making annotation costs 
very high[22]. Therefore, it is difficult to obtain large datasets for 
neural network learning. To achieve good results with a small 
amount of data, a series of methods and strategies have been 
proposed, among which one strategy is active learning[23].
Active learning can improve the performance of deep learning 
models when labeled data is limited. It dynamically selects 
the most valuable samples to be labeled during the deep 
learning training process, thereby reducing the amount and 
cost of manual labeling data. Currently, active learning can 
be roughly divided into three categories: uncertainty-based, 
diversity-based, and hybrid active learning algorithms[24]. 
Uncertainty-based[25-26] active learning selects data that is 
difficult to distinguish in the model for labeling, thus achieving 
the ability to improve the model’s performance. Uncertainty-
based active learning methods are easy to adapt to various 
tasks, but they may not perform well in extremely imbalanced 
sample situations due to considering only the information 

content of the sample itself. At the same time, the selectors 
used in uncertainty-based sampling strategies are often shallow 
and may not work well on complex datasets. Diversity-
based[27-28] query strategies select representative sample sets, 
which once selected can represent the entire dataset. However, 
a single query strategy may cause sampling bias and easily 
query outliers, making it difficult to select the most valuable 
sample set. Hybrid active learning algorithms[29-30] consider 
both uncertainty and diversity of samples, making it easier to 
select valuable samples. The development of active learning 
has also promoted its application in the medical field. Smit 
et al[31] combined active learning with meta-learning for 
selective annotation in medical image interpretation. The 
deep learning selector compared image embeddings obtained 
from pre-training to determine which images needed to be 
labeled and classified unlabeled images using cosine similarity. 
Shi et al[32] designed dual criteria for selecting informative 
samples. They proposed an active learning method for skin 
lesion analysis, which belongs to the category of post-labeling 
enhancement. The framework consists of sample selection and 
sample aggregation. In order to effectively use the selected 
samples, they designed an aggregation strategy by adding 
intra-class images in the pixel space, to capture more rich 
and clear features from these valuable but unclear samples. 
Zhang et al[22] used virtual adversarial perturbation and model 
density-aware entropy to find informative samples as labeling 
candidates and designed a balanced class selector to reduce 
redundancy in sample selection.
This study builds upon the ALFA-Mix[33] active learning 
algorithm and proposes an improved version, called ALFA-
Mix+, which is integrated with a deep learning model for 
automatic classification of HMM. The application of ALFA-
Mix+ is expected to reduce annotation costs and facilitate the 
detection and screening of HMM.
MATERIALS AND METHODS
Data Source  This study conducted experiments using an 
HMM dataset provided by a collaborating hospital. The study 
adhered to the principles of the Helsinki Declaration. The 
Medical Ethics Committee of Shenzhen Eye Hospital has 
approved this study with approval number 2022KYPJO45. 
To protect the privacy of the data providers, all data was de-
identified prior to inclusion in the study. The specific details of 
the HMM dataset are shown in Table 1.
ALFA-Mix Algorithm  The ALFA-Mix algorithm is a concise 
and effective active learning algorithm, which consists of 
two main stages. In the first stage, the algorithm utilizes the 
feature extraction module of a model to compute the average 
features for each labeled category and extract features from the 
unlabeled images. The unlabeled images are then mixed with 
the average features of each labeled category. Subsequently, 
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predictions are made for both the unlabeled and mixed images, 
and samples with different prediction results are selected. In the 
second stage, the algorithm employs the K-means clustering 
algorithm to identify the most representative samples from the 
selected samples in the first stage, which are then submitted to 
experts for annotation. 
ALFA-Mix+ Algorithm  In the early stages of training, the 
ALFA-Mix algorithm may encounter a situation where a small 
number of selected samples can result in a significant number 
of inconsistent classification results before and after feature 
mixing. At this time, it is easy to ignore some samples that 
are difficult to distinguish but more helpful for improving the 
model performance during diversity selection. Therefore, in 
this study, we introduce the gradient norm to represent the 
selected samples. In the second stage, the algorithm modifies 
the sample selection process by computing gradients. Instead 
of selecting samples with significant differences, the algorithm 
now chooses samples that can produce diverse gradient vector 
directions. The sensitivity and confidence of the model towards 
the input data are represented by calculating the gradient 
magnitude of the model’s loss function with respect to the 
output. If the gradient value is large, the sample is considered 
to have higher uncertainty. The gradient calculation formula is 
shown in Equation 1.

  
            ( ) ( )( )1 2logn

x
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p x q x
grad
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=∂ −

=
∂

∑         (1)

This study utilizes pseudo-labels predicted by the model for 
gradient computation. In the above equation, p(x) represents 
the probability distribution of pseudo-labels, q(x) represents 
the probability distribution predicted by the model, and Wlast 

represents the parameters of the last layer of the model. When 
selecting representative samples using clustering algorithms, 
the gradient vectors of images will be used for clustering. 
Samples that can generate different gradient vector directions 
to update model parameters will be selected instead of samples 
with different features. The flowchart of the ALFA-Mix+ 
algorithm is shown in Figure 1.
The steps of the ALFA-Mix+ algorithm are shown as follows:
1) Extract the features of all training images using the feature 

extraction module of a deep model.
2) Calculate the average features of each labeled image 
category.
3) Interpolate the features of the unlabeled images with the 
labeled images’ average features using the interpolation 
formula as shown in equation 2, where the interpolation ratio 
α ∈ [0,1).

                 λmix=αλclass+ (1–α)λunlabel                              (2)

In the above equation, λclass represents the average feature 
of each class in step 2), λunlabel represents the feature of the 
unlabeled image, and λmix represents the mixed feature. 
For the selection of α, in order to ensure the effectiveness 
of interpolation, α is chosen to maximize the loss of the 
interpolation point. The loss of the interpolation point is 
calculated by the formula in Equation 3).

l ( fc (λmix), ŷ ) – l ( fc (λunlabel), ŷ ) ≈ (α (λclass – λunlabet))
T. △

λunlabel
 

l ( fc (λunlabel), ŷ )                                                                     (3)

In the equation above, ŷ represents the pseudo-labels predicted 
by the current model, and fc is the classifier of the model.
4) Classify the mixed features obtained in step 3) and the 
features of unlabelled images using the classifier, and select the 
samples with inconsistent classification results.
5) Use gradients to represent the selected samples.
6) Use the Kmeans algorithm to annotate the selected m 
samples.
7) Add the labeled samples to the training set.
Repeatedly execute steps 1) to 7) until a stopping criterion is met.
Statistical Analysis  In this study, active learning algorithms 
were combined with models in pairs for experiments. Each 
experiment was set to have 20 active learning rounds, and 
100 images were selected for annotation in each round. 
The algorithm was evaluated by comparing ALFA-Mix+’s 
accuracy, sensitivity, specificity, Kappa value, and the number 
of rounds where it outperformed other algorithms. In the 
classification of HMM, accuracy, sensitivity, specificity, and 
Kappa values were used to evaluate each classification model.
RESULTS
Comparison Experiment of Active Learning Algorithms  
This study employed five active learning algorithms, including 
ALFA-Mix, CoreSet[34], BALD[35], EntropySampling[36], and 
CDAL[37], as controls, and conducted experiments on four 
models: ResNet18, DenseNet169, VGG19, and AlexNet. 
Each experiment was set with 20 active learning rounds. The 
experimental results are shown in Figures 2–5, and Tables 
2–6 displays the performance of each model under different 
amounts of data. Accuracy, sensitivity, specificity, and Kappa 

Table 1 Dataset of high myopic maculopathy

Category Training set Test set
Non-myopic retinopathy 585 252
Tessellated fundus 1950 836
Diffuse chorioretinal atrophy 774 332
Patchy chorioretinal atrophy 646 278
Macular atrophy 297 128
Total 4252 1826



998

coefficient are commonly used evaluation metrics. A higher 
value for these metrics indicates better model performance.
Figure 2 displays the number of active learning rounds in 
which the accuracy results of ALFA-Mix+ exceeded those of 
the control algorithms within 20 rounds of active learning.
The accuracy results of different active learning algorithms 
on different models under different sample sizes are shown in 
Table 2.
Figure 3 displays the number of active learning rounds in 
which the sensitivity results of ALFA-Mix+ exceeded those of 
the control algorithms within 20 rounds of active learning.
The sensitivity results of different active learning algorithms 
on different models under different sample sizes are shown in 
Table 3.
Figure 4 displays the number of active learning rounds in 
which the specificity results of ALFA-Mix+ exceeded those of 
the control algorithms within 20 rounds of active learning.
The specificity results of different active learning algorithms 
on different models under different sample sizes are shown in 
Table 4.
Figure 5 shows the number of active learning rounds in which 
the Kappa values of ALFA-Mix+ exceeded those of the control 
algorithms within 20 rounds of active learning.
The Kappa value of different active learning algorithms on 
different models under different sample sizes are shown in 
Table 5.
According to the experimental results, using active learning 
algorithms can significantly improve the model performance, 
with good results achieved by using only 50% of the original 
dataset. In addition, increasing the amount of data can 
improve the model’s accuracy, specificity, sensitivity, and 
Kappa value. However, as the amount of data increases, the 
growth rate of these indicators gradually slows down. This 
suggests that increasing the number of samples can improve 
model performance, but the growth rate may not increase 
significantly, and unnecessary labeling errors may sometimes 
occur. The ALFA-Mix+ proposed in this study compared with 
other active learning algorithms can achieve better results in 
most experiments when the same training samples are used, 
demonstrating the effectiveness of this research method.

The confusion matrices obtained by each active learning 
algorithm on the four models are shown in Figures 6–8. We 
selected the best-performing rounds of each algorithm in their 
respective experiments for calculation.

Figure 1 Flowchart of the ALFA-Mix+ algorithm.

Figure 2 Number of active learning rounds in which ALFA-Mix+ 

outperformed the corresponding control algorithm in terms of 

accuracy within 20 rounds of active learning.

Figure 3 Number of active learning rounds in which ALFA-Mix+ 

outperformed the corresponding control algorithm in terms of 

sensitivity within 20 rounds of active learning.

Figure 4 Number of active learning rounds in which ALFA-Mix+ 

outperformed the corresponding control algorithm in terms of 

specificity within 20 rounds of active learning.

Active learning retinal fundus classification
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Experiment on HMM Classification Using ALFA-
Mix+  We implemented the classification of HMM using 
EfficientFormer[38], EfficientNetV2[39], VisionTransformer[40], 
DenseNet201[41], ResNet152[42], and SwinTransformer[43]. 
Among these six models, DenseNet201, EfficientNetV2, 
and ResNet152 belong to deep convolutional neural 
networks, while EfficientFormer, VisionTransformer, and 
SwinTransformer use neural network structures based on 
attention mechanisms. We evaluated the performance of these 
six models using accuracy, sensitivity, specificity, and Kappa 
values. The performance of the 6 models on the HMM dataset 
is shown in Table 6.
Based on the comprehensive evaluation of various metrics, this 
study combined EfficientFormer with ALFA-Mix+ to achieve 
satisfactory classification results for HMM with a small 

amount of data. EfficientFormer is an efficient deep learning 
model composed of 4D convolutional neural network modules 
and 3D Transformer modules.
After combining with ALFA-Mix+, EfficientFormer achieved 
a classification accuracy of 0.8964, sensitivity of 0.8643, 
specificity of 0.9721, and Kappa value of 0.8537 on the dataset 
of HMM. It is evident that the performance of EfficientFormer 
was improved with the use of ALFA-Mix+ algorithm. The 
confusion matrix of EfficientFormer after combining with 
ALFA-Mix+ is shown in Figure 9.
DISCUSSION
The incidence of HMM has been increasing year by year. The 
annotation of HMM requires high accuracy and often requires 
annotators with high professional qualifications and experience. 
Therefore, the annotation process requires a great deal of cost. 
Using active learning algorithms can effectively select samples 
with high information content and representativeness in the 
dataset, which reduces annotation costs.
This study constructed an HMM classification model based 
on the ALFA-Mix+ algorithm. To fully demonstrate the 
effectiveness and advantages of the active learning algorithm, 
four classic classification models were used for experiments. 
As the number of data samples increased, the accuracy, 
specificity, sensitivity, and Kappa value of the model also 
gradually increased, but the rate of increase gradually slowed 
down. This indicates that as the number of samples increases, 
the number of new features learned by the model decreases, 

Table 2 Accuracy results of each algorithm on ResNet18

Model Data (%) ALFA-Mix CoreSet BALD EntropySampling CDAL Ours
ResNet18 10 0.7200 0.7215 0.7227 0.7118 0.7258 0.7311a

20 0.7725 0.7627 0.7447 0.7737 0.7765 0.7775a

30 0.7918 0.7858 0.7611 0.7742 0.7922 0.7945a

40 0.8069 0.8071 0.7600 0.7907 0.8049 0.8077 a

50 0.7953 0.8005 0.7995 0.8066 0.8153a 0.8126
DenseNet169 10 0.7458 0.7244 0.7468 0.7123 0.7466 0.7534a

20 0.7918 0.7803 0.7721 0.7923 0.7874 0.7995a

30 0.8049 0.8005 0.7819 0.7929 0.8099 0.8137a

40 0.8138 0.8186 0.7868 0.8351a 0.8049 0.8142
50 0.8301 0.8285 0.7989 0.8356 0.8378 0.8433a

VGG19 10 0.7277 0.6877 0.7321 0.7216 0.7277 0.7392a

20 0.7814 0.7715 0.7847 0.7715 0.7945 0.7991a

30 0.8060a 0.8011 0.7764 0.7945 0.8025 0.8038
40 0.8016 0.8027 0.8082 0.8103 0.8011 0.8159a

50 0.8247 0.8286 0.8137 0.8279 0.8153 0.8310a

AlexNet 10 0.7463 0.7501 0.7688 0.7436 0.7666 0.7748a

20 0.7978 0.8099 0.8099 0.7940 0.8055 0.8159a

30 0.8241 0.8186 0.8335 0.8225 0.8323 0.8340a

40 0.8411 0.8214 0.8504 0.8405 0.8367 0.8521a

50 0.8445 0.8427 0.8526a 0.8384 0.8405 0.8449
aSuperior performance of the algorithm.

Figure 5 The number of times ALFA-Mix+ outperformed the control 

algorithm in terms of Kappa values within 20 rounds of active 

learning.
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resulting in limited or no improvement in performance after 
adding samples. This situation may be because new samples 
do not contain too much new information or because the model 
has already learned and captured the potential features of the 
data well after a certain number of samples. Therefore, further 

increasing the sample size may have limited performance 
improvement on the model and may not significantly improve 
the classification results. The experimental results show that 
the ALFA-Mix+ algorithm can effectively select high-quality 
samples without sacrificing the final accuracy and reduce 

Table 3 Sensitivity results of each algorithm on ResNet18

Model Data (%) ALFA-Mix CoreSet BALD EntropySampling CDAL Ours
ResNet18 10 0.6400 0.6259 0.6209 0.6373 0.6439 0.6479a

20 0.7174a 0.6736 0.6662 0.7098 0.7007 0.6795
30 0.7268 0.6879 0.6856 0.7007 0.7354a 0.7013
40 0.7426 0.7314 0.6769 0.7147 0.7366 0.7454a

50 0.7424 0.7424 0.7407 0.7182 0.7449 0.7534a

DenseNet169 10 0.6630 0.6585 0.6547 0.6515 0.6781 0.6823a

20 0.6908 0.7181 0.6626 0.7209 0.6983 0.7219a

30 0.7117 0.7386 0.6815 0.7224 0.7282 0.7523a

40 0.7203 0.7471 0.6948 0.7768a 0.7594 0.7208
50 0.7483 0.7609 0.7227 0.7668 0.7668 0.7862a

VGG19 10 0.6229 0.6252 0.6351 0.6317 0.6518 0.6708a

20 0.7252 0.7515a 0.7132 0.6766 0.7286 0.7192
30 0.7382 0.7409 0.7179 0.7246 0.7407 0.7439a

40 0.7258 0.7596 0.7260 0.7660 0.7495 0.7719a

50 0.7782 0.7804 0.7639 0.7764 0.7441 0.7836a

AlexNet 10 0.6391 0.7000a 0.6976 0.6833 0.6824 0.6834
20 0.7089 0.7487 0.7415 0.7155 0.7328 0.7538a

30 0.7640 0.7776 0.7816 0.7509 0.7855a 0.7662
40 0.7919 0.7581 0.7939 0.7774 0.7896 0.7942a

50 0.7819 0.7845 0.7872 0.7956 0.7976 0.8057a

aSuperior performance of the algorithm.

Table 4 Specificity results of each algorithm on ResNet18

Model Data (%) ALFA-Mix CoreSet BALD EntropySampling CDAL Ours
ResNet18 10 0.9227 0.9212 0.9170 0.9207 0.9261 0.9279a

20 0.9394a 0.9343 0.9273 0.9382 0.9375 0.9349
30 0.9453 0.9415 0.9319 0.9391 0.9466a 0.9396
40 0.9484a 0.9476 0.9305 0.9444 0.9460 0.9484a

50 0.9456 0.9438 0.9449 0.9433 0.9431 0.9483a

DenseNet169 10 0.9317 0.9266 0.9277 0.9239 0.9339 0.9345a

20 0.9427 0.9404 0.9358 0.9439 0.9440 0.9465a

30 0.9487 0.9451 0.9401 0.9452 0.9496 0.9499a

40 0.9505 0.9510 0.9402 0.9546a 0.9488 0.9510
50 0.9549 0.9544 0.9463 0.9520 0.9556 0.9568a

VGG19 10 0.9219 0.9128 0.9238 0.9224 0.9231 0.9273a

20 0.9419 0.9396 0.9415 0.9375 0.9419 0.9421a

30 0.9464 0.9438 0.9409 0.9428 0.9464 0.9466a

40 0.9476 0.9463 0.9486 0.9503a 0.9476 0.9497
50 0.9541 0.9534 0.9513 0.9513 0.9512 0.9553a

AlexNet 10 0.9296 0.9328 0.9343 0.9330 0.9357 0.9385a

20 0.9452 0.9503a 0.9476 0.9432 0.9484 0.9486
30 0.9542 0.9536 0.9554a 0.9522 0.9546 0.9554a

40 0.9586 0.9526 0.9589 0.9572 0.9579 0.9592a

50 0.9584 0.9576 0.9554 0.9577 0.9583 0.9586a

aSuperior performance of the algorithm.

Active learning retinal fundus classification
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annotation costs. To classify HMM more accurately, this study 
finally used six models that performed well in other image 
classification tasks for experiments. From the experimental 
results, it can be seen that EfficientFormer achieved better 
performance on the HMM dataset and obtained more excellent 
results after applying the ALFA-Mix+ algorithm to this model. 
This further proves the effectiveness of the ALFA-Mix+ 
algorithm.
By comparing the experimental results with other active 
learning algorithms, it can be clearly seen that the algorithm 
proposed in this study is significantly superior in performance 
to those that only consider uncertainty or diversity. This 
indicates that the proposed algorithm can better balance 
uncertainty and diversity when selecting samples, thereby 
improving classification accuracy. However, compared to 
algorithms that consider both, the method of selecting diverse 

samples in this study has some shortcomings, which results 
in not fully utilizing the diversity information of the samples. 
Therefore, in future research, more effective sample selection 
strategies will be designed to fully utilize the diversity 
information in the data and improve classification performance.
Currently, some scholars have conducted research on the 
detection of HMM. Sogawa et al[44] applied deep learning 
technology to ophthalmic disease screening and proposed a 
new CNN classification model. The model performed well 
on classification accuracy, sensitivity, specificity, and AUC 
indicators, and the accuracy of diagnosis for different types 
of myopic eye diseases was above 77.9%, with an average 
accuracy of 88.9%. It can help prevent blindness, make disease 
screening more automated and efficient. Li et al[45] achieved 
higher classification accuracy than professional doctors in four 
disease classification tasks using Focal Loss and ImageData 
Generator techniques, and achieved automatic classification 
of OCT fundus macular scan images. This method has high 
accuracy and robustness and can effectively eliminate operator 
subjectivity. In addition, the study evaluated the model’s 
performance using indicators such as the receiver operating 
characteristic (ROC) curve, demonstrating its high diagnostic 
accuracy and good clinical application prospects. Wang et al[46] 
used deep learning technology to screen high myopia patients 
with maculopathy through color fundus photographs, dividing 
all color fundus photographs into four categories: normal 

Table 6 Performance of different models on the HMM dataset

Model Accuracy Sensitivity Specificity Kappa

EfficientNetV2 0.7989 0.7154 0.9432 0.7107

VisionTransformer 0.8121 0.7392 0.9493 0.7338

DenseNet201 0.8367 0.7593 0.9543 0.7661

ResNet152 0.7874 0.6966 0.942 0.6968

SwinTransformer 0.7688 0.6634 0.9344 0.666

EfficientFormer 0.8821 0.8334 0.9693 0.8339

EfficientFormer+ALFM+ 0.8964a 0.8643a 0.9721a 0.8537a

aSuperior performance of the algorithm. HMM: High myopic maculopathy.

Table 5 Kappa value results of various algorithms on ResNet18

Model Data (%) ALFA-Mix CoreSet BALD EntropySampling CDAL Ours
ResNet18 10 0.6012 0.6095 0.5925 0.5915 0.6206a 0.6014

20 0.6894a 0.6615 0.6308 0.6791 0.6812 0.6765
30 0.7145 0.6949 0.6549 0.6802 0.7142 0.7213a

40 0.7202 0.7259 0.6512 0.7041 0.7217 0.7276a

50 0.7235 0.7332 0.7064 0.7084 0.7300 0.7383a

DenseNet169 10 0.6055 0.5577 0.6133 0.6013 0.6108 0.6285a

20 0.6928 0.6824 0.6944 0.6743 0.7058 0.7090a

30 0.7248 0.7159 0.6854 0.7065 0.7231 0.7258a

40 0.7207 0.7214 0.7277 0.7401a 0.7208 0.7389
50 0.7506 0.7481 0.7363 0.7457 0.7385 0.7570a

VGG19 10 0.6055 0.5577 0.6133 0.6013 0.6108 0.6285a

20 0.6928 0.6824 0.6944 0.6743 0.7058 0.7090a

30 0.7248 0.7159 0.6854 0.7065 0.7231 0.7258a

40 0.7207 0.7214 0.7277 0.7401a 0.7208 0.7389
50 0.7506 0.7481 0.7363 0.7457 0.7385 0.7570a

AlexNet 10 0.6357 0.6485 0.6676 0.6412 0.6674 0.6788a

20 0.7113 0.7326 0.7317 0.7055 0.7255 0.7360a

30 0.7528 0.7477 0.7660 0.7479 0.7629 0.7675a

40 0.7770 0.7478 0.7874 0.7739 0.7710 0.7894a

50 0.7803 0.7770 0.7820 0.7734 0.7771 0.7861a

aSuperior performance of the algorithm.
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or mild snowflake fundus, severe snowflake fundus, early 
pathological myopia, and late pathological myopia. Its accuracy 

and recall AUC reached 0.922 and 0.781, respectively. The 
above experiments have achieved good results, but these 
methods all require a large amount of annotated dataset. This 
study combined active learning to achieve the classification of 
HMM, which improved classification accuracy with a small 
amount of annotated data, and reduced the cost and quantity 
of annotated data, providing convenience and support for the 
analysis and diagnosis of HMM.
Regarding the limitations and future research directions of 
the experiment, it is believed that the algorithm proposed in 
this study can still be optimized and improved in practical 
applications to further enhance its ability to select high-
quality samples. In addition, in order to further improve the 
practicality of the algorithm, issues such as scalability and 
computational efficiency need to be considered. In future 
research, image segmentation will also be included, and active 

Figure 6 Confusion matrices for ALFA-Mix+ (A) and ALFA-Mix (B) on AlexNet.

Figure 7 Confusion matrices for CoreSet (A) and EntropySampling (B) on AlexNet.

Figure 8 Confusion matrices for BALD (A) and CDAL (B) on AlexNet.

Figure 9 Confusion matrix of EfficientFormer after combining with 

ALFA-Mix+ algorithm.

Active learning retinal fundus classification
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learning algorithms will be applied to image segmentation.
In conclusion, this study proposes an ALFA-Mix+ active 
learning algorithm, which builds upon the ALFA-Mix 
algorithm by incorporating the images selected in the first 
stage of the gradient representation algorithm. This allows 
the algorithm to select samples in the second stage that can 
produce different gradient vector directions, taking into 
account the uncertainty and diversity of the selected samples. 
Experimental results showed that the proposed ALFA-Mix+ 
algorithm can reduce the number of training samples required 
without sacrificing accuracy. Compared with other active 
learning algorithms, the ALFA-Mix+ algorithm performed 
better in more experiments with the same number of rounds, 
and could more effectively select valuable samples than 
other active learning algorithms. When combined with 
EfficientFormer in the task of HMM classification, ALFA-
Mix+ algorithm improved the model performance and further 
demonstrated the effectiveness of the ALFA-Mix+ algorithm.
ACKNOWLEDGEMENTS 
Authors’ contributions: Zhu SJ, Wu MN, and Zheng B 
supervised this study. Zhan HD did the experiments. Zhang 
SC, Yang WH, and Liu BQ contributed to the conception and 
design of the work. 
Foundations: Supported by the National Natural Science 
Foundation of China (No.61906066); the Zhejiang 
Provincial Philosophy and Social Science Planning Project 
(No.21NDJC021Z); Shenzhen Fund for Guangdong Provincial 
High-level Clinical Key Specialties (No.SZGSP014); Sanming 
Project of Medicine in Shenzhen (No.SZSM202011015); 
Shenzhen Science and Technology Planning Project (No.
KCXFZ20211020163813019); the Natural Science Foundation 
of Ningbo City (No.202003N4072); the Postgraduate 
Research and Innovation Project of Huzhou University 
(No.2023KYCX52).
Conflicts of Interest: Zhu SJ, None; Zhan HD, None; Wu 
MN, None; Zheng B, None; Liu BQ, None; Zhang SC, 
None; Yang WH, None.
REFERENCES 

1 GBD 2019 Blindness and Vision Impairment Collaborators; Vision 

Loss Expert Group of the Global Burden of Disease Study. Causes 

of blindness and vision impairment in 2020 and trends over 30 years, 

and prevalence of avoidable blindness in relation to VISION 2020: the 

Right to Sight: an analysis for the Global Burden of Disease Study. 

Lancet Glob Health 2021;9(2):e144-e160. 

2 Chen YX, Han XT, Gordon I, Safi S, Lingham G, Evans J, Li JY, He 

MG, Keel S. A systematic review of clinical practice guidelines for 

myopic macular degeneration. J Glob Health 2022;12:04026.

3 Wong YL, Sabanayagam C, Ding Y, et al. Prevalence, risk factors, and 

impact of myopic macular degeneration on visual impairment and 

functioning among adults in Singapore. Invest Ophthalmol Vis Sci 

2018;59(11):4603.

4 Choudhury F, Meuer SM, Klein R, et al. Prevalence and characteristics 

of myopic degeneration in an adult Chinese American population: the 

Chinese American eye study. Am J Ophthalmol 2018;187:34-42.

5 WHO. World report on vision. 2019. https://www.who.int/publications/

i/item/9789241516570. html

6 Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB. Prevalence and 

progression of myopic retinopathy in Chinese adults: the Beijing Eye 

Study. Ophthalmology 2010;117(9):1763-1768. 

7 Wong YL, Zhu XJ, Tham YC, et al. Prevalence and predictors of 

myopic macular degeneration among Asian adults: pooled analysis 

from the Asian Eye Epidemiology Consortium. Br J Ophthalmol 

2021;105(8):1140-1148.

8 Cao YT, Pan YL, Lu YL, et al. Artificial intelligence improves accuracy, 

efficiency, and reliability of a handheld infrared eccentric autorefractor 

for adult refractometry. Int J Ophthalmol 2022;15(4):628-634.

9 Zheng B, Jiang Q, Lu B, He K, Wu MN, Hao XL, Zhou HX, Zhu SJ, 

Yang WH. Five-category intelligent auxiliary diagnosis model of 

common fundus diseases based on fundus images. Trans Vis Sci Tech 

2021;10(7):20.

10 Zhu SJ, Lu B, Wang CH, et al. Screening of common retinal diseases 

using six-category models based on EfficientNet. Front Med 

2022;9:808402.

11 Zheng B, Shen YF, Luo YX, et al. Automated measurement of the disc-

fovea angle based on DeepLabv3+. Front Neurol 2022;13:949805.

12 Yang WH, Zheng B, Wu MN, Zhu SJ, Fei FQ, Weng M, Zhang X, 

Lu PR. An evaluation system of fundus photograph-based intelligent 

diagnostic technology for diabetic retinopathy and applicability for 

research. Diabetes Ther  2019;10(5):1811-1822.

13 Wan C, Chen YS, Li H, Zheng B, Chen N, Yang WH, Wang CH, Li Y. 

EAD-net: a novel lesion segmentation method in diabetic retinopathy 

using neural networks. Dis Markers 2021;2021:1-13.

14 Wu MN, Lu Y, Hong XQ, Zhang J, Zheng B, Zhu SJ, Chen NM, Zhu ZT, 

Yang WH. Classification of dry and wet macular degeneration based 

on the ConvNeXT model. Front Comput Neurosci 2022;16:1079155.

15 Xu JG, Yang WH, Wan C, Shen JX. Weakly supervised detection of 

central serous chorioretinopathy based on local binary patterns and 

discrete wavelet transform. Comput Biol Med 2020;127:104056.

16 Zhu SJ, Fang XW, Zheng B, Wu MN, Yang WH. Research on 

segmentation of pterygium lesions based on convolutional neural 

networks. Guoji Yanke Zazhi(Int Eye Sci) 2022;22(6):1016-1019. 

17 Tan TE, Ting DSW, Liu Y, et al. Artificial intelligence using a deep 

learning system with transfer learning to predict refractive error and 

myopic macular degeneration from color fundus photographs. Invest 

Ophthalmol Vis Sci 2019;60(9):1478.

18 Du R, Xie S, Fang Y, et al. Deep learning approach for automated 

detection of myopic maculopathy and pathologic myopia in fundus 

images. Ophthalmol Retina 2021;5(12):1235-1244.

19 Rauf N, Gilani SO, Waris A. Automatic detection of pathological 

myopia using machine learning. Sci Rep 2021;11(1):16570.



1004

20 Tang J, Yuan MZ, Tian KB, et al. An artificial-intelligence-based 

automated grading and lesions segmentation system for myopic 

maculopathy based on color fundus photographs. Trans Vis Sci Tech 

2022;11(6):16.

21 Sun Y, Li Y, Zhang FJ, Zhao H, Liu HR, Wang NL, Li HQ. A deep 

network using coarse clinical prior for myopic maculopathy grading. 

Comput Biol Med 2023;154:106556.

22 Zhang WQ, Zhu L, Hallinan J, Zhang SY, Makmur A, Cai QP, Ooi 

BC. BoostMIS: boosting medical image semi-supervised learning 

with adaptive pseudo labeling and informative active annotation. 2022 

IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR), New Orleans, LA, USA, 2022:20634-20644, 

23 Ren P, Xiao Y, Chang X, et al. A survey of deep active learning. ACM 

Computing Surveys (csur) 2021;54(9):1-40.

24 Herde M, Huseljic D, Sick B, Calma A. A survey on cost types, 

interaction schemes, and annotator performance models in selection 

algorithms for active learning in classification. IEEE Access 

2021;9:166970-166989.

25 Ash JT, Zhang C, Akshay Krishnamurthy A, Langford J, Agarwal 

A. Deep batch active learning by diverse, uncertain gradient lower 

bounds. Eighth International Conference on Learning Representations 

(ICLR) 2020. https://www.microsoft.com/en-us/research/publication/

deep-batch-active-learning-by-diverse-uncertain-gradient-lower-

bounds/

26 Wan CB, Jin FS, Qiao Z, Zhang WW, Yuan Y. Unsupervised active 

learning with loss prediction. Neural Comput Appl 2023;35(5):3587-

3595.

27 Citovsky G, DeSalvo G, Gentile C, et al. Batch active learning at scale. 

Neural Information Processing Systems (NeurIPS), 2021. http://www.

sanjivk.com/BatchActiveLearning_NeurIPS21.pdf

28 Hacohen G, Dekel A, Weinshall D. Active learning on a budget: 

opposite strategies suit high and low budgets. arXiv e-prints 2022.

29 Gao MF, Zhang ZZ, Yu G, Arık SÖ, Davis LS, Pfister T. Consistency-

based semi-supervised active learning: towards minimizing labeling 

cost. 2020. https://arxiv.org/pdf/1910.07153.pdf

30 Tya B, Nla B, Han S. Self-paced active learning for deep CNNs via 

effective loss function. Neurocomputing 2021;424:1-8.

31 Smit A, Vrabac D, He Y, Ng AY, Beam AL, Rajpurkar P. MedSelect: 

selective labeling for medical image classification combining meta-

learning with deep reinforcement learning. 2021. https://arxiv.org/

pdf/2103.14339.pdf

32 Shi XY, Dou Q, Xue C, Qin J, Chen H, Heng PA. An active learning 

approach for reducing annotation cost in skin lesion analysis. Lecture 

Notes in Computer Science 2019:628-636.

33 Parvaneh A, Abbasnejad E, Teney D, Haffari R, Van Den Hengel A, 

Shi JQ. Active learning by feature mixing. 2022. https://arxiv.org/

pdf/2203.07034.pdf

34 Sener O, Savarese S. Active learning for convolutional neural 

networks: a core-set approach. 2017. https://arxiv.org/pdf/1708.00489.

pdf

35 Gal Y, Islam R, Ghahramani Z. Deep Bayesian active learning with 

image data. 2017. https://arxiv.org/pdf/1703.02910.pdf

36 Wang D, Shang Y. A new active labeling method for deep learning. 

International Joint Conference on Neural Networks. IEEE, 2014. 

37 Sharat A, Himanshu A, Saket A, Chetan A. Contextual diversity for 

active learning. 2020. https://www.ecva.net/papers/eccv_2020/papers_

ECCV/papers/123610137.pdf

38 Li Y, Yuan G, Wen Y, et al. Efficientformer: Vision transformers at 

mobilenet speed. 2022. https://arxiv.org/pdf/2206.01191.pdf

39 Tan M, Le QV. EfficientNetV2: smaller models and faster training. 

2021. https://arxiv.org/pdf/2104.00298.pdf

40 Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 

words: transformers for image recognition at scale. 2021. https://arxiv.

org/pdf/2010.11929.pdf

41 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely 

c o n n e c t e d  c o n v o l u t i o n a l  n e t w o r k s .  h t t p s : / / a r x i v. o rg /

pdf/1608.06993.pdf

42 He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image 

recognition. 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Las Vegas, NV, USA, 2016:770-778.

43 Liu Z, Lin YT, Cao Y, Hu H, Wei YX, Zhang Z, Lin S, Guo BN. Swin 

transformer: hierarchical vision transformer using shifted windows. 

2021 IEEE/CVF International Conference on Computer Vision 

(ICCV), Montreal, QC, Canada, 2021:9992-10002.

44 Sogawa T, Tabuchi H, Nagasato D, Masumoto H, Ikuno Y, Ohsugi 

H, Ishitobi N, Mitamura Y. Accuracy of a deep convolutional 

neural network in the detection of myopic macular diseases 

using swept-source optical coherence tomography. PLoS One 

2020;15(4):e0227240.

45 Li YH, Feng WB, Zhao XJ, et al. Development and validation of a 

deep learning system to screen vision-threatening conditions in high 

myopia using optical coherence tomography images. Br J Ophthalmol 

2022;106(5):633-639.

46 Wang RN, He JN, Chen QY, et al. Efficacy of a deep learning system 

for screening myopic maculopathy based on color fundus photographs. 

Ophthalmol Ther 2023;12(1):469-484.

Active learning retinal fundus classification


	_Hlk136594751
	_Hlk135058370
	_Hlk131337305
	_Ref129852721
	_Hlk135298599
	_Hlk136610055
	_Hlk497904036
	_Hlk136605709
	_Hlk123339823
	_Hlk129951347
	_Hlk123340013
	_Hlk117868500
	_Hlk497904036
	_Hlk98749378
	OLE_LINK9
	OLE_LINK1
	_Hlk134714608
	_Hlk134714134
	_Hlk134714073
	_Hlk134795508
	_Hlk134795583
	_Hlk117700701
	OLE_LINK4
	OLE_LINK2
	_Hlk118061750
	OLE_LINK24
	OLE_LINK25
	_Hlk497904036
	_Hlk136943205
	OLE_LINK5
	OLE_LINK6
	_Hlk112432962
	_Hlk136767753
	_Hlk136436077
	OLE_LINK7
	OLE_LINK1
	_Hlk136436072
	_Hlk108183234
	OLE_LINK11
	OLE_LINK13
	OLE_LINK10
	OLE_LINK14
	OLE_LINK16
	OLE_LINK17
	OLE_LINK18
	OLE_LINK15
	OLE_LINK19
	OLE_LINK9
	OLE_LINK2
	OLE_LINK20
	OLE_LINK25
	OLE_LINK6
	OLE_LINK27
	OLE_LINK26
	OLE_LINK31
	OLE_LINK29
	OLE_LINK30
	OLE_LINK28
	OLE_LINK4
	_Hlk136012064
	OLE_LINK19
	_Hlk108183234
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	_Hlk133333513
	_Hlk790823
	_Hlk89787106
	OLE_LINK1
	OLE_LINK2
	_Hlk136591864
	OLE_LINK19
	OLE_LINK20
	OLE_LINK38
	OLE_LINK39
	_Hlk108183234
	OLE_LINK31
	OLE_LINK32
	OLE_LINK11
	OLE_LINK12
	OLE_LINK9
	OLE_LINK10
	OLE_LINK37
	OLE_LINK40
	OLE_LINK43
	OLE_LINK44
	OLE_LINK45
	OLE_LINK3
	OLE_LINK4
	OLE_LINK13
	_Hlk16518107
	_Hlk790823
	_Hlk89787106
	_Hlk136435286
	_Hlk40421564
	_Hlk497904036
	_Hlk40344164
	OLE_LINK1
	_Hlk123584332
	_Hlk40011282
	OLE_LINK2
	_Hlk137886359
	_Hlk138065408
	Research on classification method of high myopic maculopathy based on retinal fundus images and optimized ALFA-Mix active learning algorithm
	Shao-Jun Zhu1,2, Hao-Dong Zhan1,2, Mao-Nian Wu1,2, Bo Zheng1,2, Bang-Quan Liu3, Shao-Chong Zhang4, Wei-Hua Yang4

	Predicting visual acuity with machine learning in treated ocular trauma patients
	Zhi-lu Zhou1,2, Yi-fei Yan3,4, Jie-min Chen2, Rui-jue Liu2, Xiao-ying Yu2, Meng Wang2, Hong-xia Hao2,5, Dong-mei Liu2, Qi Zhang3,4, Jie Wang1, Wen-tao Xia2 

	Identification of hub genes for glaucoma: a study based on bioinformatics analysis and experimental verification 
	Rui-Ling Xie1, Hai-Yan Nie1, Yu-Xin Xu2

	Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via Keap1/Nrf2 pathway
	Ming Zhou, Xin-Qi Ma, Yi-Yu Xie, Jia-Bei Zhou, Xie-Lan Kuang, Huang-Xuan Shen, Chong-De Long

	Effects of endogenous dopamine induced by low concentration atropine eye drops on choroidal neovascularization in high myopia mice
	Yan-Yan Ji1,2,3, Shi-Xi Zhang4, Ye Kang5, Song Chen1,2

	Differential analysis of aqueous humor cytokine levels in patients with macular edema secondary to diabetic retinopathy or retinal vein occlusion
	Ke-Ke Hu1, Chao-Wei Tian1, Man-Hong Li1, Tong Wu1, Min Gong1, Xin-Li Wei1, Yu-Ru Du2, Yan-Nian Hui1, Hong-Jun Du1

	Subcutaneous pedicled propeller flap technique for microscopic reconstruction of eyelid defects
	Lei Zhong, Qian-Yi Lu, Pei-Rong Lu

	Lid scrubbing with a gel combining natural extracts for dry eye treatment
	Blanca Diaz-Vega1, Carlos Rodriguez-Fabuel2, Sofia Vitores-Mate3, Carlos Carpena-Torres4

	Effect of intubation in patients with functional epiphora after endoscopic dacryocystorhinostomy
	Xue-Mei Han1, Wen-Hao Jiang2, Wen-Can Wu3, Bo Yu3

	Two-step strategy—conjunctival flap covering surgery combined with secondary deep anterior lamellar keratoplasty for the treatment of high-risk fungal keratitis
	Yu-Chen Wang, Jia-Song Wang, Bei Wang, Xi Peng, Hua-Tao Xie, Ming-Chang Zhang

	Posterior scleral application of a mitomycin C-soaked sponge during trabeculectomy
	Kun Hu1, Yun-He Song1, Feng-Bin Lin1, Ying-Zhe Zhang1, Ling Jin1, Meng-Yin Liang1, Robert N. Weinreb2, Xiu-Lan Zhang1

	Technique of using Cionni-Modified capsular tension ring in the management of severely traumatic lens subluxation
	Hao Jiang, Wei Zhang, Yan-Hua Chu

	Corneal astigmatic outcomes after femtosecond laser-assisted cataract surgery combined with surface penetrating arcuate keratotomies
	Nick Stanojcic1,2,3, David O’Brart1,3, Chris Hull2, Vijay Wagh1, Elodie Azan1, Mani Bhogal1, Scott Robbie1, Ji-Peng Olivia Li3

	Rare manifestation of familial vitreous amyloidosis caused by Gly103Arg transthyretin
	Yan-Bing Feng1,2, Yan-Bo Shi2,3, Yan-Yan He1,2, Zhen-Yi Ma4, Yi-Xing Zhu5, Wen-Qing Weng1,2

	Structural measurements and vessel density of spectral-domain optic coherence tomography in early, moderate, and severe primary angle-closure glaucoma
	Wei Jiang, Nan Jiang, Gui-Bo Liu, Jing Lin, Cui Li, Gui-Qiu Zhao

	Predictive factors of epiretinal membrane in complicated rhegmatogenous retinal detachment tamponaded with silicone oil
	Yuan-Jie Qian, Wu Xiang, Yi-Meng Sun, Alfira Mijit, Zhi-Hao Jiang, Yan-Tao Wei

	Comparison of total corneal power measurements obtained with different devices after myopic keratorefractive surgery
	Zi-Yang Wang, Yan-Zheng Song, Wen-Li Yang, Qian Liu, Yi-Feng Li, Rui Cui, Lin Shen, Chang-Bin Zhai

	Long-term observation on safety and visual quality of implantable collamer lens V4c implantation for myopia correction: a 5-year follow-up
	Xiao Chen1,3, Li Li3,4, Jing Rao3, Yue-Xi Chen2, Yang Gao3, Rui-Xue Huang3, Qi-Zhi Zhou1,3,4

	Clinical features, radiological imaging, and treatment strategies of nonmetallic intraorbital foreign bodies: a retrospective analysis
	Guang-Rui Chai, Ming Chen, Zi-Xun Song, Lu Liu

	Ocular manifestations and quality of life in patients after hematopoietic stem cell transplantation
	Shu-Xian Fan1, Wen-Hui Wang1, Peng Zeng1, Ke-Zhi Huang2, Yu-Xin Hu1, Jing Wang1, Yi-Qing Li2, Jian-Hui Xiao1

	Comparison of efficacy of conbercept, aflibercept, and ranibizumab ophthalmic injection in the treatment of macular edema caused by retinal vein occlusion: a Meta-analysis 
	Qiu Xing1,2, Ya-Nan Dai3, Xiao-Bo Huang1, Li Peng1,2

	Highly cited publication performance in the ophthalmology category in the Web of Science database: a bibliometric analysis
	Yuh-Shan Ho1, Ali Ouchi2,3, Leila Nemati-Anaraki4

	Unilateral blurred vision in pediatric patient associated with cavum velum interpositum cyst
	Margarita Zamorano, Esperanza García-Romo, Román Blanco-Velasco, Belén Fernández, Francisco J. Monescillo, Bernardo Fernández de Arévalo

	Pneumonia and ocular disease as the primary presentations of Takayasu arteritis: a case report
	Dong-Ming Xu

	Chickenpox followed streaky multifocal choroiditis with prednison treatment in a girl with asthma
	Chun-Li Chen1,2,3, Zhi-Han Zhang1,2,3, Yi-Zhe Cheng1,2,3, Yang Zhang1,2,3, Xiao-Yan Peng1,2,3


