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Abstract
● AIM: To investigate the role of autophagy inhibitor 
3-methyladenine (3-MA) on a diabetic mice model (DM) and 
the potential mechanism.
● METHODS: Male C57BL/6J mice were randomly divided 
into a normal control group (NC group) and an DM group. 
DM were induced by multiple low-dose intraperitoneal 
injection of streptozotocin (STZ) 60 mg/kg●d for 5 consecutive 
days. DM mice were randomly subdivided into untreated 
group (DM group), 3-MA (10 mg/kg●d by gavage) treated 
group (DM+3-MA group) and chloroquine (CQ; 50 mg/kg 
by intraperitoneal injection) treated group (DM+CQ group). 
The fasting blood glucose (FBG) levels were recorded every 
week. At the end of experiment, retinal samples were 
collected. The expression levels of pro-apoptotic proteins 
cleaved caspase-3, cleaved poly ADP-ribose polymerase 
1 (PARP1) and Bax, anti-apoptotic protein Bcl-2, fibrosis-
associated proteins Fibronectin and type 1 collagen α1 
chain (COL1A1), vascular endothelial growth factor (VEGF), 
inflammatory factors interleukin (IL)-1β and tumor necrosis 
factor (TNF)-α, as well as autophagy related proteins LC3, 

Beclin-1 and P62 were determined by Western blotting. 
The oxidative stress indicators 8-hydroxydeoxyguanosine 
(8-OHdG) and malondialdehyde (MDA) were detected by 
commercial kits. 
● RESULTS:  Both 3-MA and CQ had shor t - term 
hypoglycemic effect on FBG and reduced the expression of 
VEGF and inflammatory factors IL-1β and TNF-α in DM mice. 
3-MA also significantly alleviated oxidative stress indicators 
8-OHdG and MDA, decreased the expression of fibrosis-
related proteins Fibronectin and COL1A1, pro-apoptotic 
proteins cleaved caspase-3, cleaved PARP1, as well as 
the ratio of Bax/Bcl-2. CQ had no significant impact on the 
oxidative stress indicators, fibrosis, and apoptosis related 
proteins. The results of Western blotting for autophagy 
related proteins showed that the ratio of LC3 II/LC3 I and 
the expression of Beclin-1 in the retina of DM mice were 
decreased by 3-MA treatment, and the expression of P62 
was further increased by CQ treatment.
● CONCLUSION: 3-MA has anti-apoptotic and anti-fibrotic 
effects on the retina of DM mice, and can attenuate retinal 
oxidative stress, VEGF expression and the production of 
inflammatory factors in the retina of DM mice. The underlying 
mechanism of the above effects of 3-MA may be related to 
its inhibition of early autophagy and hypoglycemic effect.
● KEYWORDS: diabetic mellitus; 3-methyladenine; 
autophagy; fibrosis; apoptosis; mice
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INTRODUCTION

T he number of patients with diabetes and diabetic 
re t inopathy  (DR)  i s  increas ing  dramat ica l ly 

worldwide[1-2]. According to the report of Khan et al[2] in 2020, 
diabetes has become the ninth cause of human death and is 
expected to affect 693 million adults in 2045, which means 
that one in ten people worldwide are living with diabetes. 
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According to recent reports, about one in five people with 
diabetes will develop DR[3]. 
DR is the main cause of blindness in middle-aged and elderly 
people, and is one of the most hidden diabetic microvascular 
lesions. Most patients have severe pathological changes when 
they are discovered[4]. The pathological changes of DR include 
retinal capillary aneurysms, hemorrhagic spots, rigid exudates, 
cotton wool spots, beading veins, macular edema, abnormal 
formation of retinal microvessels, and fibrosis[5]. Chronic 
hyperglycemia can lead to increased production of advanced 
glycation end products (AGEs) and vascular endothelial 
growth factor (VEGF), and activation of polyols, hexosamine 
and protein kinase C pathways, leading to retinal oxidative 
stress, inflammation, neovascularization, and pericyte 
apoptosis[6]. There are two types of DR, proliferative diabetic 
retinopathy (PDR) and non-proliferative diabetic retinopathy 
(NPDR)[7]. PDR is more harmful to vision and can lead to 
severe vision loss or even complete blindness compared with 
NPDR[7], and the current clinical strategy for the treatment of 
PDR is still anti-VEGF[8]. However, a recent long-term follow-
up study found that anti-VEGF therapy can lead to retinal 
fibrosis[9-10]. Therefore, it is necessary to explore a therapeutic 
strategy that is both anti-VEGF and anti-fibrosis.
Autophagy is an evolutionarily highly conserved cellular 
process and a subcellular membrane rearrangement process. 
When cells suffer from hypoxia, lack of nutrition (such as 
in starvation) and are in a harmful environment (such as 
misfolded proteins, damaged organelle or microbial invasion), 
certain components are encapsulated by the double-membrane 
autophagic vesicles and transported to the lysosome for fusion, 
which are then degraded by lysosomal hydrolase and released 
to cytoplasm for recycling[11]. Apoptosis of retinal Müller cells 
(rMCs) and pericytes is another important pathological feature 
of DR[12]. Recently, it has been reported that autophagy is 
closely related to the apoptosis of rMCs and pericytes in DR, 
under severe stress of high glucose, autophagy up-regulation 
promotes the death of retinal rMCs and pericytes[13-14]. 
3-Methyladenine (3-MA) is  a  common autophagy 
inhibitor, which inhibits autophagy by inhibiting class III 
phosphatidylinositol 3-kinase (PI3K)[15]. Recently, studies 
from Bo et al[15] showed that 3-MA inhibits the polarization 
of macrophages toward M2 phenotype by targeting the PI3K/
Akt signaling pathway, thereby exerting an anti-fibrotic effect 
on the experimental subretinal fibrosis. Moreover, Wang and 
Wu[16] reported that 3-MA could inhibit retinal apoptosis in 
the rat model of ischemic-reperfusion injury. However, it’s 
unclear whether 3-MA has anti-fibrotic and anti-apoptotic 
effects on diabetic retina. Therefore, this study intends to 
explore the effect of 3-MA on retinal fibrosis and apoptosis as 
well as oxidative stress, VEGF expression and inflammatory 

factors in diabetic mice. In addition, we also used autophagy 
inhibitor chloroquine (CQ) as a reference drug to investigate 
the mechanism of 3-MA on the retina of diabetic mice.
MATERIALS AND METHODS
Ethical Approval  The experiment was carried out according 
to the protocols approved by the Institutional Animal Ethics 
Committee (IAEC). The study was approved by the Committee 
on the Ethics of Animal Experiments of the Medical College 
of Yangtze University (No.CJYXBEC2019-083) and was 
conducted in accordance with the ARVO Statement for the Use 
of Animals in Ophthalmic and Vision Research.
Antibodies and Reagents  3-MA was purchased from Abmole 
Bioscience (Houston, TX, USA). CQ was purchased from 
Meilunbio (Dalian, Liaoning Province, China). Bicinchoninic 
acid (BCA) protein assay kit and malondialdehyde (MDA) 
assay kit were purchased from Beyotime (Shanghai, China). 
Glycated serum protein (GSP) assay kit was purchased from 
Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu 
Province, China). The enzyme-linked immunosorbent assay 
(ELISA) kits for 8-hydroxydeoxyguanosine (8-OHdG) was 
purchased from Elabscience (Wuhan, Hubei Province, China). 
Anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
antibody was purchased from Bioss (Beijing, China). Anti-VEGF 
antibody was purchased from ABclonal Technology (Wuhan, 
Hubei Province, China). Antibodies to COL1A1, cleaved 
caspase-3 were purchased from Cell Signaling Technology 
(Danvers, MA, USA). Antibodies to Beclin-1, Fibronectin 
were purchased from Proteintech Group, Inc. (Rosemont, IL, 
USA). Antibodies to LC3, SQSTM1/P62, interleukin (IL)-1β, tumor 
necrosis factor (TNF)-α, cleaved PARP1, Bcl-2, Bax were 
purchased from Abcam (Cambridge, MA, UK). Secondary 
antibodies for Western blotting, and streptozotocin (STZ) were 
purchased from Sigma (St. Louis, MO, USA).
Experimental Animals  Male C57BL/6J mice weighing 
18–22 g were obtained from the Experimental Animal Center 
of Three Gorges University (Yichang, Hubei Province, China) 
and housed at 22°C, 50% humidity with a 12h-light/12h-dark 
cycle with unlimited access to water and food. The 24h water 
intake of the mice were recorded weekly.
Induction of Diabetes  Diabetic mouse model was established 
using our previous method[17], which was slightly improved. In 
brief, the type 1 diabetic mouse model was induced by multiple 
low-dose intraperitoneal injection of STZ solution (prepared 
in pre-chilled citrate buffer pH 4.5 at a dose of 60 mg/kg●d for 
5 consecutive days). The mice in normal control group (NC 
group) were injected with equal amount of citrate buffer. Blood 
glucose was measured two weeks after the first intraperitoneal 
injection of STZ solution. Mice with blood glucose higher than 
16.7 mmol/L (250 mg/dL) were considered diabetic and used 
for further studies.
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Treatment of Animals  Diabetic mice were randomly divided 
into diabetes mice model untreated group (DM group), 3-MA 
treated group (DM+3-MA group) and DM+CQ group, and 
were raised under the same conditions as the non-diabetic 
mice in NC group. The DM+3-MA group were given 3-MA 
aqueous solution (10 mg/kg●d) by gavage; the DM+CQ group 
were given CQ aqueous solution (50 mg/kg) by intraperitoneal 
injection every 3d; and the NC and DM groups were given equal 
amount of normal saline (Figure 1A).
Fasting Blood Glucose  The fasting blood glucose (FBG) 
levels were recorded every week. Fasting was started from 
21:00 the day before testing FBG, and the FBG levels were 
measured after fasting for 10h using Accu-chek Performa 
(Roche, Germany). Approximately 3 μL of blood was collected 
in conscious mice via tail vein puncture.
Serum Glycated Serum Protein Assay  After 6wk of 
treatment with 3-MA or CQ, blood samples were collected into 
the tubes without anticoagulants via enucleation of the eye, and 
centrifuged at 3000 rpm/min for 10min to obtain the serum. 
Serum glycosylated serum protein (GSP) was determined using 
commercially available kit (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China).
Assessment of Oxidative Stress Index  The retinal samples 
were ground and homogenized. The concentrations of 8-OHdG 
and MDA in retinal tissues were detected by commercial kits 
according to the manufacturer’s instructions, and the final 
levels of 8-OHdG and MDA were normalized to the protein 
concentration of retinal tissue homogenate.
Western Blotting  The retinal samples were homogenized in 

RIPA lysis buffer (Beyotime Biotechnology, Shanghai, China) 
containing 1% protease inhibitors for 10min. The homogenate 
was centrifuged at 12 000 rpm/min for 30min at 4°C, and the 
protein concentration in supernatant was quantified using a 
BCA protein assay kit (Beyotime Biotechnology, Shanghai, 
China). Equal amounts of protein lysate (40 μg/well) were 
separated by electrophoresis in 8%–12% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at 
100 V and transferred to polyvinylidene fluoride (PVDF) 
membrane (Sigma, St. Louis, MO, USA) at 200 mA for 
120min. Membranes were blocked in 5% nonfat milk for 2h at 
room temperature, and then incubated with primary antibody 
overnight at 4°C. Then, the membranes were incubated with 
an appropriate horseradish peroxidase-conjugated secondary 
antibody (Kerui Biotechnology, Wuhan, Hubei Province, 
China) at room temperature for 1–2h and imaged using a Bio-
Rad ChemiDoc MP chemiluminescence imaging system (Bio-
Rad Laboratories Inc., Hercules, CA, USA) with enhanced 
chemiluminescence (ECL) developer, and the image data 
was then imported into Image J for additional analysis. The 
expression level of each protein was normalized to GAPDH on 
the same blot.
Statistical Analysis  Data were represented as mean±standard 
error of mean (mean±SEM). IBM SPSS statistics 25 (Version 
X; IBM, Armonk, NY, USA) was used for statistical analysis. 
Multiple group comparisons were conducted using one-
way ANOVA, and comparisons between two groups were 
conducted using Student’s t-test. P<0.05 was considered 
statistically significant.

Figure 1 3-MA had a short-term hypoglycemic effect on FBG in STZ-induced diabetic mice  A: Schematic diagram of animal experimental 

design; B: Trend graph of weekly FBG; C: Trend chart of 24h water intake per week; D: Serum GSP detected by a commercial biochemical assay 

kit. All data are represented as mean±SEM, aP<0.001 vs the NC group; bP<0.05, cP<0.001 vs the DM group. FBG: Fasting blood glucose; 3-MA: 

3-methyladenine; STZ: Streptozotocin; DM: Diabetes mice model; NC: Normal control; CQ: Chloroquine; SEM: Standard error of mean; GSP: 

Glycated serum protein.
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RESULTS
Short-term Hypoglycemic Effect of 3-MA on Fasting Blood 
Glucose in STZ-induced Diabetic Mice  It is well known 
that hyperglycemia is the cause of the pathogenesis of DR[8], 
therefore, we examined the impact of 3-MA and CQ on blood 
glucose in STZ-induced diabetic mice. As shown in Figure 
1B, 3-MA significantly reduced FBG levels in STZ-induced 
diabetic mice at the third week of treatment. CQ reduced 
FBG levels in STZ-induced diabetic mice at the second week 
of treatment. However, the FBG levels were then gradually 
increased in both 3-MA and CQ treated groups. The results 
of water intake showed that the change trend of 24h water 
intake was basically consistent with that of blood glucose 
level (Figure 1C). Serum GSP is a biochemical marker for 
routine monitoring in DR patients, which can indirectly reflect 
blood glucose levels in the past 2–3wk[18-19]. As shown in 
Figure 1D, 3-MA reduced serum GSP levels in STZ-induced 
diabetic mice. CQ showed a trend of reducing serum GSP, but 
the difference was not statistically significant. These results 
suggest that 3-MA had a short-term hypoglycemic effect on 
FBG in STZ-induced diabetic mice.
3-MA Reduced the Expression of Apoptosis-Related 
Proteins and Fibrosis-associated Proteins in the Retina of 

STZ-induced Diabetic Mice  Apoptosis of rMCs and pericyte 
is an important pathological feature of DR[12]. Therefore, 
the expression levels of apoptosis-related proteins cleaved 
caspase-3, cleaved PARP1, Bcl-2 and Bax were evaluated. 
As shown in Figure 2A–2D, the ratio of Bax/Bcl-2 and the 
expression levels of cleaved Caspase-3 and cleaved PARP1 
were significantly up-regulated in the retina of STZ-induced 
diabetic mice compared with NC mice. 3-MA significantly 
reduced the ratio of Bax/Bcl-2 and the expression levels of 
cleaved caspase-3 and cleaved PARP1 in the retina of STZ-
induced diabetic mice, while CQ had no significant effect on 
the expression of cleaved caspase-3 and cleaved PARP1, and 
further increased the ratio of Bax/Bcl-2 in the retina of STZ-
induced diabetic mice. 
It has been documented that epithelial-mesenchymal 
transition (EMT), extracellular matrix (ECM) deposition 
and fibrosis are present in the retina of DR patients[20-22]. 
Fibronectin and collagen I are the main ECMs that cause 
retinal fibrosis, and COL1A1 is a peptide chain that constitutes 
collagen I[23-24]. As shown in Figure 2E–2G, the expression 
levels of Fibronectin and COL1A1 were significantly up-
regulated in the retina of diabetic mice compared with NC 
mice. 3-MA significantly decreased the expression levels of 

Figure 2 3-MA reduced the expression of apoptosis-related proteins and fibrosis-associated proteins in the retina of STZ-induced diabetic 

mice  A: Retinal tissue lysates were subjected to immunoblot analysis with antibodies to cleaved caspase-3, cleaved PARP1, Bcl-2, Bax, and 

GAPDH; B: Expression level of cleaved caspase-3 was quantitated by densitometry and normalized with GAPDH; C: Expression level of cleaved 

PARP1 was quantitated by densitometry and normalized with GAPDH; D: Expression levels of Bcl-2 and Bax were calculated by densitometry 

and the ratio of Bax/Bcl-2 was determined; E: Retinal tissue lysates were subjected to immunoblot analysis with antibodies to Fibronectin, 

COL1A1, and GAPDH; F: Expression level of Fibronectin was quantitated by densitometry and normalized with GAPDH; G: Expression level of 

COL1A1 was quantitated by densitometry and normalized with GAPDH. All data were represented as mean±SEM. aP<0.01 and bP<0.001 vs 

the NC group; cP<0.05, dP<0.01, eP<0.001 vs the DM group; fP<0.05, gP<0.001 vs the DM+3-MA group. PARP1: Poly ADP-ribose polymerase 

1; COL1A1: Type 1 collagen α1 chain; 3-MA: 3-methyladenine; STZ: Streptozotocin; DM: Diabetes mice model; NC: Normal control; CQ: 

Chloroquine; SEM: Standard error of mean; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.
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Fibronectin and COL1A1 in the retina of diabetic mice. CQ 
only down-regulated the expression level of COL1A1 in the 
retina of diabetic mice. 
3-MA Alleviated Oxidative Stress, Expression of VEGF, 
and Production of Inflammatory Factors in the Retina 
of STZ-induced Diabetic Mice  It has been documented 
that MDA and 8-OHdG are well-known biochemical 
markers of oxidative stress in DR[25-26]. MDA indicates lipid 
peroxidation, and 8-OHdG means DNA oxidative damage[25,27]. 
Hyperglycemia causes oxidative stress, which acts as an 
autophagy inducer[28-29]. To understand whether 3-MA can 
suppress retinal oxidative stress in STZ-induced diabetic mice, 
we examined the expression levels of MDA and 8-OHdG in 
mice retina. As shown in Figure 3A and 3B, the expression 
levels of MDA and 8-OHdG were markedly increased in 
the retina of diabetic mice compared with NC mice. 3-MA 
decreased the expression levels of MDA and 8-OHdG in the 
retina of diabetic mice, and CQ had no significant impact on 
MDA and 8-OHdG, suggesting that 3-MA reduced retinal 
oxidative stress in STZ-induced diabetic mice. 
The persistent accumulation of free radicals and inflammatory 
mediators in the retina of patients with chronic diabetes 
promotes pathological angiogenesis[30-31]. IL-1β and TNF-α 
are classic inflammatory mediators. VEGF is the culprit 
that directly promotes retinal pathological angiogenesis[32]. 

Consequently, IL-1β, TNF-α, and VEGF were assessed in this 
study. As shown in Figure 3C-3E, the expression levels of 
VEGF, IL-1β, and TNF-α in the retina of diabetic mice were 
significantly increased compared with NC mice. Both 3-MA 
and CQ remarkably down-regulated the expression levels of 
VEGF, IL-1β, and TNF-α in the retina of diabetic mice.
3-MA Inhibited the Expression of Early Autophagy 
Related Proteins in the Retina of STZ-Induced Diabetic 
Mice  To investigated whether the effect of 3-MA on the retina 
of diabetic mice is related to the regulation of autophagy, the 
expression levels of early autophagy related proteins LC3 
and Beclin-1, as well as late autophagy protein P62 were 
detected. As shown in Figure 4, the ratio of LC3 II/LC3 I and 
the expression levels of Beclin-1 and P62 were significantly 
up-regulated in the retina of diabetic mice compared with 
NC mice. 3-MA significantly down-regulated the ratio of 
LC3 II/LC3 I and the expression level of Beclin-1 (Figure 4), 
suggesting that 3-MA inhibited early autophagy in the retina 
of diabetic mice. CQ further up-regulated the expression of 
P62 in the retina of diabetic mice (Figure 4), implying that CQ 
inhibited late autophagy in the retina of diabetic mice. 
DISCUSSION
DR is one of the most common microvascular complications 
of diabetes[4]. According to the latest epidemiological survey 
in China, the incidence of DR in diabetes in four years is 

Figure 3 3-MA alleviated oxidative stress, expression of VEGF, and production of inflammatory factors in the retina of STZ-induced diabetic 

mice  A: Retinal MDA detected by a commercial biochemical assay kit; B: Retinal 8-OHdG detected by a commercial ELISA kit; C: Retina 

tissue lysates were subjected to immunoblot analysis with antibodies to VEGF, IL-1β, TNF-α, and GAPDH; D: Expression level of VEGF was 

quantitated by densitometry and normalized with GAPDH; E: Expression levels of IL-1β and TNF-α were quantitated by densitometry and 

normalized with GAPDH. All data are represented as mean±SEM. aP<0.001 vs the NC group; bP<0.05, cP<0.01, dP<0.001 vs the DM group. MDA: 

Malondialdehyde; 8-OHdG: 8-hydroxydeoxyguanosine; VEGF: Vascular endothelial growth factor; IL-1β: Interleukin-1β; TNF-α: Tumor necrosis 

factor-α; 3-MA: 3-methyladenine; STZ: Streptozotocin; DM: Diabetes mice model; NC: Normal control; CQ: Chloroquine; ELISA: Enzyme-linked 

immunosorbent assay; SEM: Standard error of mean; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.
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10.70%[33]. Although current treatment methods can effectively 
prevent visual impairment in some patients, some patients 
may still experience partial or complete visual impairment 
after receiving treatment. A recent study showed that 3-MA 
alleviates ischemia reperfusion induced retinal injury in 
rats[16], but whether 3-MA can alleviate the retinal injury 
induced by diabetes remains unclear. In this study, we found 
that 3-MA lowered the blood glucose levels, reduced the 
expression of apoptosis-related proteins and fibrosis-associated 
proteins, alleviated oxidative stress, VEGF expression and 
the production of inflammatory factors in the retina of STZ-
induced diabetic mice, and inhibited the expression of early 
autophagy-related proteins. 
Apoptosis of retinal cells plays a crucial role in DR[12]. 
The retina is sensitive to high glucose environment, and 
hyperglycemia up-regulates autophagy and activates polyol and 
hexosamine pathways, causing apoptosis of retinal cells (e.g., 
rMCs, pericytes, and neurons)[6,13], which in turn causes fundus 
exudation, leakage, and vision loss[34-35]. Recently, some studies 
have reported that 3-MA inhibits the apoptosis of retinal cells 
caused by ischemia-reperfusion[16]. Our study found that 3-MA 
significantly decreased the expression of apoptosis related 
proteins in the retina of diabetic mice, indicating that 3-MA 
has an anti-apoptotic effect on retinal cells in diabetic mice.

ECM is a complex network composed of proteins and 
polysaccharides, which can provide a scaffold for the 
attachment and movement of histiocyte, and is an important 
regulator of cell behavior. Disordered assembly and 
accumulation of ECM proteins can lead to fibrosis in many 
diseases[36]. Fibronectin is one of the main components 
of ECM proteins and an important component of fibrotic 
deposits. In DR, it can provide environmental support for 
vascular VEGF to promote retinal neovascularization, leading 
to the progression of non-proliferative DR to proliferative 
DR[37]. In diabetes, the expression of fibronectin and 
other ECM proteins in retinal blood vessels significantly 
increased[38-39], and this change occurred before the clinical 
manifestations of vascular dysfunction in DR[40]. It has been 
reported that 3-MA alleviates fibrosis in animal models of 
various diseases and inhibits the expression of signaling 
molecules related to fibrosis[41-42], as well as alleviates 
experimental subretinal fibrosis through the PI3K/Akt 
signaling pathway[15]. Consistent with the above reports on 
3-MA inhibiting fibrosis, the present study found that 3-MA 
inhibited the increase of fibronectin and COL1A1 (part 
of ECM) in the retina of diabetic mice. The above results 
suggested that 3-MA may have an anti-fibrotic effect on the 
retina of diabetic mice.

Figure 4 3-MA inhibited the expression of early autophagy related proteins in the retina of STZ-induced diabetic mice  A: Retinal tissue 

lysates were subjected to immunoblot analysis with antibodies to LC3, Beclin-1, P62, and GAPDH; B: Expression levels of LC3 I and LC3 II were 

calculated by densitometry and the ratio of LC3 II/LC3 I was determined; C: Expression level of Beclin-1 was quantitated by densitometry and 

normalized with GAPDH; D: Expression level of P62 was quantitated by densitometry and normalized with GAPDH. All data are represented 

as mean±SEM. aP<0.05, bP<0.01, cP<0.001 vs the NC group; dP<0.05, eP<0.01 vs the DM group; fP<0.05, gP<0.01 vs the DM+3-MA group. LC3: 

Microtubule-associated protein light chain 3; P62: Sequestosome 1; MDA: Malondialdehyde; 8-OHdG: 8-Hydroxydeoxyguanosine; VEGF: 

Vascular endothelial growth factor; IL-1β: Interleukin-1β; TNF-α: Tumor necrosis factor-α; 3-MA: 3-methyladenine; STZ: Streptozotocin; 

DM: Diabetes mice model; NC: Normal control; CQ: Chloroquine; SEM: Standard error of mean; GAPDH: Glyceraldehyde 3-phosphate 

dehydrogenase. 
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VEGF is one of the most important mediators mediating the 
progression of DR. Under hyperglycemia, retinal ischemia 
and hypoxia can lead to an increase in VEGF and promote 
retinal neovascularization[12,43]. Currently, it is unanimously 
believed that anti-VEGF therapy is the primary choice for DR 
treatment[44]. In addition, sustained high-circulating glucose 
increases oxidative stress in the retina and also activates 
the inflammatory cascade[45]. The persistent accumulation 
of free radicals such as reactive oxygen species (ROS) 
and inflammatory mediators such as IL-1β in the retina of 
patients with chronic diabetes also promotes pathological 
angiogenesis[30-31]. To investigate the effect of 3-MA on retinal 
angiogenesis in diabetic mice, the expression levels of retinal 
MDA, 8-OHdG, VEGF and inflammatory factors IL-1β, 
TNF-α were assessed. The results showed that the expression 
levels of MDA, 8-OHdG, VEGF, and inflammatory factors 
IL-1β, TNF-α were significantly up-regulated in the retina 
of STZ-induced diabetic mice. 3-MA significantly down-
regulated the expression levels of these molecules, suggesting 
that 3-MA alleviated oxidative stress, VEGF expression, and 
the production of inflammatory factors in the retina of STZ-
induced diabetic mice. 3-MA may have a preventive effect on 
DR angiogenesis. 
It has been reported that hyperglycemia induces autophagy but 
leads to lysosomal dysfunction[13]. In order to explore whether 
the inhibition of 3-MA on retinal apoptosis, fibrosis, VEGF, 
oxidative stress and inflammation in diabetic mice is related to 
its regulation of autophagy, the early stage autophagy related 
proteins LC3, which marks the existence of autophagosomes, 
and Beclin-1[46-47], which marks the induction of autophagosome 
formation, as well as the late stage autophagy related protein 
P62[46], a cargo protein degraded by an autophagy-lysosome 
system were examined. Moreover, the effects of CQ, another 
autophagy inhibitor which blocks the final stage of autophagy 
by increasing the pH value of the lysosome and inhibiting 
the fusion of autophagosome with lysosome[48] on apoptosis-
related proteins, fibrosis-related proteins, VEGF, oxidative 
stress related molecules and inflammatory factors were tested. 
The data showed that autophagy was induced in the retina of 
diabetic mice, which is in line with the results reported in the 
literature that high glucose induces autophagy in human retinal 
endothelial cells[49]. However, autophagic flux was blocked, 
indicating that hyperglycemia caused retinal autophagy defect, 
which is consistent with the study by Lopes de Faria et al[13]. 
3-MA significantly down-regulated the ratio of LC3 II/LC3 I 
and the expression level of Beclin-1, and CQ obviously up-
regulated the expression level of P62 in the retina of diabetic 
mice, suggesting that 3-MA and CQ inhibited the early and late 
autophagy in the retina of diabetic mice, respectively. In the 
present study, although CQ reduced the levels of VEGF and 

inflammatory factors, it did not reduce the levels of oxidative 
stress related molecules and fibrosis related proteins in the 
retina of diabetic mice, and even further increased the ratio 
of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2, 
which may be related to its further aggravation of lysosome 
dysfunction and inhibition of final autophagy. In addition, it 
was reported that rapamycin, an autophagy inducer, aggravates 
retinal cell apoptosis in retinal ischemia-reperfusion injury 
model[50], suggesting that inducing autophagy with functional 
defects may exacerbate retinal cell damage. Our results 
indicated that the anti-apoptotic and anti-fibrotic effects of 
3-MA, as well as its ability to alleviate oxidative stress and 
reduce the production of VEGF and inflammatory factors, 
are at least partially related to its inhibition of autophagy with 
functional defects by inhibiting early autophagy.
Hyperglycemia is the main risk factor for DR. The present 
study found that both 3-MA and CQ have a short-term 
hypoglycemic effect on diabetic mice. Consistent with our 
findings, some studies have also reported that CQ has a 
hypoglycemic effect[51-52], which may be the reason why 
CQ inhibits oxidative stress, VEGF expression and the 
production of inflammatory factors in our study. However, 
the hypoglycemic effect of 3-MA has not been reported in 
the past. It was reported that 3-MA enhances glucose induced 
insulin secretion and synthesis by inhibiting phosphodiesterase 
and elevating cyclic adenosine monophosphate level in rat 
pancreatic islets[53], which may be the reason of hypoglycemic 
effect of 3-MA observed in this study. Therefore, the above 
effects of 3-MA on the retina of diabetic mice may also be 
partially associated with its hypoglycemic effect.
In conclusion, our study demonstrates that 3-MA has anti-
apoptotic and anti-fibrotic effects on the retina of diabetic mice, 
and can attenuate retinal oxidative stress, VEGF expression 
and the production of inflammatory factors in the retina of 
diabetic mice. The underlying mechanism of the above effects 
of 3-MA on the retina of diabetic mice may be related to 
its inhibition of early autophagy and hypoglycemic effect. 
Therefore, 3-MA may have a protective effect on DR. The 
results of this study may provide a new therapeutic strategy for 
the treatment of DR. 
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