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Abstract
● AIM: To determine the in vitro protective effect of 
recombinant prominin-1 (Prominin-1)+microRNA-29b (P1M29) 
on N-methyl-D-aspartate (NMDA)-induced excitotoxicity in 
retinal ganglion cells (RGCs).
● METHODS: RGC-5 cells were cultured, and NMDA-
induced excitotoxicity at the range of 100–800 μmol/L 
was assessed using the MTT assay. NMDA (800 μmol/L) was 
selected as the appropriate concentration for preparing the 
cell model. To evaluate the protective effect of P1M29 on 
the cell model, Prominin-1 was added at the concentration 
of 1–6 ng/mL for 48h, and the cell survival was investigated 
with/without microRNA-29b. After obtaining the appropriate 
concentration and time of P1M29 at 48h, real-time 
polymerase chain reaction (PCR) was utilized to detect 
the relative mRNA expression of vascular endothelial 
growth factor (VEGF) and transforming growth factor 
(TGF)-β2. Western blot detection was applied to measure 
the phosphorylation levels of protein kinase B (AKT) and 
extracellular regulated protein kinases (ERK) in RGC-5 cells 
after treatment with Prominin-1. Apoptosis study of the 
cell model was conducted by flow cytometry for estimating 
the anti-apoptotic effect of P1M29. Immunofluorescence 
analysis was used to analyze the expression levels of VEGF 
and TGF-β2.
● RESULTS: MTT cytotoxicity assays demonstrated 
that P1M29 group had significantly higher cell survival 
rate than Prominin-1 group (P<0.05). Real-time PCR 

data indicated that the expression levels of VEGF were 
significantly increased in both Prominin-1 and P1M29 
groups compared NMDA and microRNA-29b group 
(P<0.05), while TGF-β2 were significantly decreased in both 
microRNA-29b and P1M29 groups compared NMDA and 
Prominin-1 group (P<0.05). Western blot results showed 
that both Prominin-1 and P1M29 groups significantly 
increased the phosphorylation levels of AKT and ERK 
compared to NMDA and microRNA-29b groups (P<0.05). 
Flow cytometry analysis revealed that P1M29 could prevent 
RGC-5 cell apoptosis in the early stage of apoptosis, while 
immunofluorescence results showed that P1M29 group had 
higher expression of VEGF and lower expression of TGF-β2 
with a stronger green fluorescence than NMDA group.
● CONCLUSION: Prominin-1 combined with microRNA-
29b can provide a suitable therapeutic option for ameliorating 
NMDA-induced excitotoxicity in RGC-5 cells.
● KEYWORDS: Prominin-1; microRNA-29b; vascular 
endothelial growth factor; transforming growth factor-β2
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INTRODUCTION

G laucoma is an irreversible blinding eye disease, which 
can lead to the apoptosis of retinal ganglion cells 

(RGCs) or even permanent blindness. Currently, this disease 
accounts for approximately 70 million patients worldwide, 
8.4 million of whom are blind[1-2]. Glaucoma is a degenerative 
optic atrophy caused by the programmed cell death of RGCs. 
Its pathological features mainly involve the degeneration of 
RGCs, progressive loss of axons and elevation of intraocular 
pressure (IOP), which can directly cause damage to neurons 
and optic nerves[3]. Lowering IOP is currently the main way 
to delay the progression of glaucoma[4]. However, RGC 
degeneration and axonal loss also occur in individuals with 
normal IOP. Although IOP can be controlled by medical 
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therapy within a normal range, some patients experience 
optic atrophy and visual field deterioration[5]. Therefore, it is 
necessary to stimulate axonal regeneration for protecting optic 
nerves and lower IOP during glaucoma treatment[6].
The first strategy is to stimulate axonal regeneration for 
protecting optic nerves. Neuroprotection refers to any 
therapeutic modality aimed at preventing or delaying neuronal 
cell death and maintaining neurological function[7]. Ectopic 
expression of anti-apoptotic genes enables most RGCs to 
survive axotomy, but not regenerate axons into optic nerves[8]. 
Other approaches to improve the survival rate of RGCs include 
intracellular injection of cAMP stimulants, trophic factors, and 
caspase inhibitors, but generally these drugs have a weak ability 
to promote regeneration. Anti-apoptotic and survival factors 
(e.g., vascular endothelial growth factor, VEGF) is a potent 
angiogenic signaling protein that can be upregulated locally 
at the sites of tissue injury[9]. VEGF is essential for vertebrate 
development and vascular growth of the nervous system, and 
it also promotes neuronal regeneration, neuroprotection, and 
glial cell growth. However, current therapeutic approaches to 
increase VEGF levels by injecting the VEGF gene or protein in 
some in vivo experiments did not yield good results[10-11]. Some 
proteins have neuroprotective effects and can even prevent 
neurodegeneration, which are characterized by high specificity 
and low toxicity. Among them, prominin-1 can promote the 
growth of vascular endothelial cells and their lumen formation 
by enhancing the VEGF signaling pathway[12]. Prominin-1 
is a 115–120 kDa protein, which belongs to the pentaspan 
transmembrane protein family in different species such as 
human, mouse, rat, fly and worm[13-15]. Prominin-1 can bind to 
plasma membrane cholesterol and is associated with membrane 
microdomains in a cholesterol-dependent manner[16]. Studies 
have found that prominin-1 plays a vital role in the retina, and 
the mutation or deletion of the biallelic gene of prominin-1 
can lead to retinal degeneration and abnormal photoreceptor 
cells[15,17]. Additionally, Xiao et al[18] found that prominin-1 was 
necessary for the correct localization of rhodopsin and opsin 
in the retina, and played a crucial role in preserving the normal 
levels of outer segment proteins. Furthermore, prominin-1 was 
selected, as a crucial regulator of angiogenesis, proliferation, 
and apoptosis, which can interact with VEGF, stabilize it, and 
improve the binding of VEGF to its receptors via dimerization 
of VEGF receptors.
Another strategy involves reducing IOP as part of the 
glaucoma treatment. In fact, IOP is determined by the balance 
of incoming and outlet water, while extracellular matrix 
(ECM) synthesis or disruption can lead to an alteration of the 
aqueous balance[19]. Transforming growth factor (TGF)-β is 
a kind of important regulators of ECM synthesis and wound 
healing. Compelling evidence has established a connection 

between TGF-β and ocular hypertension. In vivo and in 
vitro studies have shown that elevated IOP is linked to the 
TGF-β-induced fibrotic response in the eye[20]. One of the 
isoforms, TGF-β2, can impede the outflow of aqueous humor 
and consequently elevates IOP. Among the mechanisms 
involved in aqueous humor outflow may be that TGF-β2 
mediates excessive ECM accumulation across the trabecular 
meshwork (TM) and stimulates the expression of key ECM 
components (e.g., collagen I, collagen IV, fibronectin, laminin, 
and thrombospondin-1) in the TM. Recent studies have 
shown that the microRNA-29 family plays a crucial role in 
regulating several ECM proteins, such as collagen I, collagen 
IV, and laminin. The microRNA-29 family has emerged as a 
significant regulator of ECM homeostasis[20-21]. Moreover, it 
is worth noting that nearly all the TGF-β members involved 
in the canonical signaling pathway have been found to be 
influenced by miRNAs. A previous study has shown that the 
microRNA-29 family downregulates TGF-β2 and reduces 
IOP levels, and overexpression of microRNA-29 could affect 
the expression of TGF-β2 as parts of the components in the 
ECM[20]. Taking these considerations into account, microRNA-
29b was selected as a negative regulator of TGF-β2, which 
could potentially aid in reducing IOP.
Nowadays, RGC-5 cells have been widely applied to explore 
the mechanisms related to neuronal injury and death[22-23]. In 
this study, we assessed the effects of recombinant prominin-1 
(Prominin-1) with microRNA-29b (P1M29) on N-methyl-D-
aspartate (NMDA)-induced excitotoxicity in RGC-5 cells by 
measuring the changes in cell survival rates, mRNA expression 
of VEGF and TGF-β2, protein expression and phosphorylation 
levels of protein kinase B (AKT) and extracellular regulated 
protein kinases (ERK), anti-apoptotic activities, and 
immunofluorescence intensities of VEGF and TGF-β2. 
This study reveals a potential microRNA-based therapy for 
improving the neuroprotection activities of Prominin-1 against 
NMDA-induced excitotoxicity in RGC-5 cells.
MATERIALS AND METHODS
RGC-5 Cell Culture and Treatment by NMDA or 
Prominin-1  RGC-5 cell line was supplied by Shanghai 
Aolu Biotechnology Co., Ltd (Shanghai, China) and 
cultured in RPMI-1640 medium containing 10% fetal bovine 
serum (Gibco, USA), 100 U/mL penicillin and 100 μg/mL 
streptomycin, and maintained at 37°C and 5% CO2. After 
trypsin digestion, a new passage was performed at a ratio of 
1:4 every 3–4d. Subsequently, a model of NMDA-induced 
excitotoxicity in RGC-5 cells was prepared. RGC-5 cells 
were treated with different concentrations (100–800 μmol/L) 
of NMDA (MCE, USA) for 48h to determine the appropriate 
concentration that led to the minimum survival rate. Finally, 
the cells were cultured in the initial medium for another 
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6–24h[24]. Besides, RGC-5 cells were also treated with of 
Prominin-1(1–6 ng/mL; Abcam, Britain) for 48h to investigate 
its cytotoxic effect, which results could be the basis for the 
further in vitro protective effect of Prominin-1 with/without 
microRNA-29b on the cell model.
Detection of RGC-5 Cell Survival Rate by MTT Assay  The 
in vitro protective activity of Prominin-1 (Abcam, Britain)+ 
microRNA-29b (Sangon Biotech, China) against NMDA-
induced RGC-5 cell excitotoxicity was determined using 
the MTT assay. Cells in the exponential phase (104 cells/well)
were grown in a 96-well plate for 24h, and the culture medium 
was replaced with fresh medium. The cells were exposed 
to Control group, Control+Negative control (NC, Sangon 
Biotech, China) group, NMDA group, NMDA+NC group, and 
Prominin-1 or P1M29 (100 μL) group at a range of Prominin-1 
concentrations (1, 3, and 6 ng/mL). In P1M29 group, 
microRNA-29b was transfected by Lipofectamine 3000. Next, 
the cells were incubated for 48h, respectively. Then, 20 μL 
MTT solution (5 mg/mL) was added to each well, followed by 
incubation for 4h. After carefully removing the supernatant, 
100 μL of dimethyl sulfoxide was added to each well. The 
formazan crystals were allowed to dissolve completely. A 
Bio-Rad Model 680 Microplate Reader was used to measure 
optical density at 570 nm (A570). The survival rate of each 
treatment group was calculated as follows:
         

Survival rate (%)=
A570 (treated)

A570 (untreated) ×100

RNA Isolation and Real-Time Polymerase Chain Reaction  
Total RNA from all samples was extracted with RNAiso Plus 
(Takara Bio, Japan). cDNA synthesis was conducted using 
the PrimeScriptTM RT reagent Kit (Takara Bio). mRNA 
expression was determined on a Bio-Rad iQ5 polymerase 
chain reaction (PCR; Bio-Rad, USA) using a SYBR Premix 
Ex TaqTM Ⅱ (Takara Bio). Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was employed as an internal 
control. The forward and reverse primers of VEGF mRNA and 
TGF-β2 mRNA were GCACATAGAGAGAATGAGCTTCC 
( 5 ’ - 3 ’ )  a n d  C T C C G C T C T G A A C A A G G C T  ( 5 ’ -
3 ’ ) ;  C T T C G A C G T G A C A G A C G C T  ( 5 ’ - 3 ’ )  a n d 
GCAGGGGCAGTGTAAACTTATT (5’-3’), respectively. 
The reaction conditions were as follows: 10s at 95°C, and 30s 
at 60°C for 48 cycles. Relative fold changes in VEGF and 
TGF-β2 expression between treatment and control groups were 
measured using the 2−ΔΔCT method[25].
Western Blot Analysis  The expression levels of AKT, 
phospho-AKT, ERK, and phospho-ERK in NMDA-induced 
excitotoxicity RGC-5 cells were determined by Western 
blotting. Briefly, NMDA-induced excitotoxicity RGC-5 cells 
treatment with microRNA-29b, Prominin-1 and P1M29 were 

lysed in a cell lysis buffer (BOSTER, China), respectively. 
Proteins of the three groups were separated through 10% 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis, 
and then transferred onto nitrocellulose membranes (Millipore, 
USA). Each membrane was incubated with primary antibody 
against AKT, phospho-AKT, ERK or phospho-ERK (1:1000 
dilution, Cell Signaling Technology, USA). After washing 
with TBS+Tween-20 (TBST) for 5 times, the membrane was 
incubated again with secondary antibody at room temperature 
for 2h. Finally, Western blot images were captured using an 
Odyssey® CLX system (LI-COR, USA), and then washed 5 
times with TBST.
Apoptosis Assay  Cell apoptosis was investigated using a 
FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen, 
USA). NMDA-induced excitotoxicity RGC-5 cells were 
exposed to Prominin-1, microRNA-29b, P1M29 or culture 
medium. After incubation for 48h, the cells were harvested and 
rinsed with ice-cold PBS at 4ºC for 3 times and resuspended 
at a density of 1×106 cells/mL in 200 μL binding buffer. All 
samples were incubated with 5 μL Annexin V-FITC and 5 μL 
PI staining solution at room temperature for 15min in the dark. 
Finally, Binding Buffer (400 μL) was added and detected by 
CytoFLEX S flow cytometry (Beckman Coulter, USA) within 1h.
Immunofluorescence Staining  After culturing for 48h 
with Prominin-1, microRNA-29b or P1M29, the NMDA 
excitotoxicity cell models were fixed in 1 mL 4% paraformaldehyde 
for 15min before being permeabilized in 0.5% (v/v) Triton 
X-100 (Sigma-Aldrich, USA) for 15min. The samples were 
rinsed 3 times with PBS, and then blocked in 10% BSA 
solution for 1h. The cells were first incubated overnight at 4°C 
with anti-VEGF (5 μg/mL) or anti-TGF-β2 (1:50 dilution), 
and then incubated overnight at 4°C with SABC anti-rabbit 
antibody (BOSTER, China) as the secondary antibody. The 
samples were rinsed 3 times with PBS, and FITC-SABC 
(1:100 dilution, BOSTER) was added. After washing thrice 
in PBS, the cells were stained with 4,6-diamino-2-phenyl 
indole (0.5 mg/mL) in PBS. All samples were visualized using 
an Axiovert200 fluorescence inverted microscope (ZEISS, 
Germany).
Statistical Analysis  All data were shown as mean±standard 
deviation. Statistical difference between groups was compared 
by one-way ANOVA. P-values <0.05 were deemed statistically 
significant.
RESULTS
P1M29 Improves the Survival Rate of RGC-5 Cells with 
NMDA-Induced Excitotoxicity In Vitro  As shown in Figure 
1A, 800 μmol/L of NMDA was selected as the appropriate 
concentration for preparing the NMDA-induced RGC-5 
cell excitotoxicity model, due to the minimum survival rate. 
Furthermore, there was no significant cytotoxic effect of 
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Prominin-1 (1–6 ng/mL) on RGC-5 cell for 48h compared 
to RGC-5 cell (Figure 1A). The RGC-5 cells with NMDA-
induced excitotoxicity were treated with Prominin-1 and 
P1M29 with NMDA and NMDA+NC as control for 48h, and 
the survival rates of these treatment groups were analyzed 
(Figure 1B). The concentrations of Prominin-1 in the three 
groups were 1, 3, and 6 ng/mL, respectively. Compared to the 
NMDA group, both the Prominin-1 and P1M29 groups showed 
significant improvements in the survival rates of RGC-5 cells 
subjected to NMDA-induced excitotoxicity when treated with 
concentrations of 3 and 6 ng/mL (P<0.05). Figure 1B shows 
that P1M29 group (6 ng/mL) exhibited higher survival rates 
than Prominin-1 group (P<0.05). As we know, Prominin-1 is a 
crucial regulator of angiogenesis, proliferation, and apoptosis. 
This protein can interact with VEGF, stabilize it, and improve 
the binding of VEGF binding to its receptors via dimerization 
of VEGF receptors. MicroRNA-29b is a negative regulator of 
TGF-β2. The results demonstrated that Prominin-1 was able 
to interact with VEGF and improve the survival rate of 
RGC-5 cells with NMDA-induced excitotoxicity. Moreover, 
the effect of Prominin-1 on improving the survival rates of 
RGC-5 cells demonstrated a dose-dependent relationship 
within the range of 1–6 ng/mL, as shown in Figure 1B. In 
this study, 6 ng/mL was selected as the most appropriate 
concentration for Prominin-1, which was subsequently used in 
the real-time PCR test, Western blot analysis, apoptosis assay, 
and immunofluorescence staining.
mRNA Expression of VEGF and TGF-β2 in the NMDA-
Induced Excitotoxicity Cell Model  Previous research has 
shown that prominin-1 can promote the growth of vascular 
endothelial cells by enhancing the VEGF signaling pathway, 
while the microRNA-29 family downregulates TGF-β2 and 
reduces IOP levels, and overexpression of microRNA-29b can 
affect the expression of TGF-β2 as parts of the components in 
the ECM[12,26]. To assess whether the Prominin-1 can interact 
and potentiate the angiogenic and antiapoptotic properties of 
VEGF, while microRNA-29b can act as a crucial regulator 
of TGF-β2, the mRNA expression of VEGF and TGF-β2 
was analyzed after a 48h incubation of NMDA-induced 
excitotoxicity RGC-5 cells treated with either Prominin-1 
(6 ng/mL), microRNA-29b or P1M29 (6 ng/mL). Real-time 
PCR analysis revealed that the expression of VEGF was 
significantly increased by Prominin-1 in both Prominin-1 
(6 ng/mL) and P1M29 (6 ng/mL) groups compared to 
microRNA-29b group at 48h (P<0.05; Figure 2A), while 
TGF-β2 was significantly decreased by microRNA-29b in 
both microRNA-29b and P1M29 (6 ng/mL) groups compared 
to Prominin-1 group at 48h (P<0.05; Figure 2B). Furthermore, 
there was no significant difference between the Prominin-1 
(6 ng/mL) and P1M29 (6 ng/mL) groups, suggesting that 

VEGF expression is primarily influenced by Prominin-1. 
However, the microRNA-29b group and the P1M29 (6 ng/mL) 
group showed no significant difference, indicating that TGF-β2 
expression is mainly associated with microRNA-29b.
E f f e c t s  o f  P ro m i n i n - 1  o n  t h e  E x p re s s i o n  a n d 
Phosphorylation Levels of AKT and ERK in the NMDA-
Induced Excitotoxicity Cell Model  It has been reported that 
VEGF can increase the extent and duration of neurite growth 
in cortical explants or cultured neurons via AKT and ERK 
signaling pathways. To evaluate the effects of Prominin-1 on 
the levels of AKT, phospho-AKT, ERK and phospho-ERK, 
NMDA-induced excitotoxicity RGC-5 cells were treated with 
Prominin-1 (6 ng/mL), microRNA-29b, or P1M29 (6 ng/mL), 
and the levels of AKT, phospho-AKT, ERK and phospho-ERK 
were analyzed by Western blotting (Figure 3A). It was found 
that Prominin-1 elevated the phosphorylation levels of AKT and 
ERK in both Prominin-1 and P1M29 (6 ng/mL) groups compared 
to NMDA and microRNA-29b groups (P<0.05; Figure 3B and 
3C). In contrast, microRNA-29b did not significantly affect the 
ratios of phospho-AKT/AKT and phospho-ERK/ERK.
P1M29 Prevents NMDA-Induced Excitotoxicity RGC-5 
Cell Death  To further verify the protective effect in vitro of 
P1M29 on NMDA-induced RGC-5 excitotoxicity, apoptosis 

Figure 1 Evaluation of in vitro survival rate  In vitro survival rate of 

NMDA (100–800 μmol/L Pominin-1 (1 mL) on RGC-5 cells for 48h 

(n=3). aP<0.05 vs NMDA (800 μmol/L) group; B: In vitro survival rate 

of Pominin-1 and P1M29 on RGC-5 cells induced by NMDA (800 μmol/L) 

for 48h (n=3). aP<0.05 vs NMDA (800 μmol/L) group; bP<0.05 vs Prominin-1 

group (1, 3 ng/mL); cP<0.05 vs Prominin-1 group (6 ng/mL); dP<0.05 vs 

P1M29 group (3 ng/mL). RGC: Retinal ganglion cell; NMDA: N-methyl-

D-aspartate; Pominin-1: Recombinant prominin-1; P1M29: Prominin-

1+microRNA-29b; NC: Negative control.
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study was conducted by flow cytometry for estimating its anti-
apoptotic activity. Annexin V-FITC/PI was used to confirm the 
anti-apoptotic effect. The results showed that P1M29 could 
apparently prevent NMDA-induced excitotoxicity RGC-5 
cell death by decreasing the early apoptosis regions compared 
to Prominin-1, microRNA-29b and NMDA group at 48h 
(P<0.05; Figure 4B).
Expression of VEGF and TGF-β2 in NMDA-Induced 
Excitotoxicity RGC-5 Cells  To determine the expression of 
VEGF and TGF-β2 in NMDA-induced excitotoxicity RGC-
5 cells, immunofluorescent staining was performed. It was 
found that P1M29 group had higher expression of VEGF 
with stronger green fluorescence and lower expression of 
TGF-β2 with weaker green fluorescence than NMDA group 
at 48h (Figure 5). These findings demonstrate that Prominin-1 

interacts and potentiates the angiogenic and antiapoptotic 
properties of VEGF, and microRNA-29b is a negative regulator 
of TGF-β2.
DISCUSSION
Glaucoma, one of the leading causes of blindness, refers to 
a group of irreversible, progressive optic neuropathies. It is 
characterized by both structural and functional impairment of 

Figure 2 The mRNA expression detection of VEGF and TGF-β2  

Expression of VEGF in the Control group, Control+NC group, NMDA 

group, NMDA+NC group, microRNA-29b group, Prominin-1 group 

and P1M29 group detected by real-time PCR, and GAPDH was 

the internal control (n=3). aP<0.05 vs NMDA (800 μmol/L) group; 
bP<0.05 vs microRNA-29b group; B: Expression of TGF-β2 in the 

Control group, Control+NC group, NMDA group, NMDA+NC group, 

Prominin-1 group, microRNA-29b group and P1M29 group detected 

by real-time PCR, and GAPDH was the internal control (n=3). aP<0.05 

vs NMDA (800 μmol/L) group; bP<0.05 vs Prominin-1 group. NMDA: 

N-methyl-D-aspartate; Pominin-1: Recombinant prominin-1; P1M29: 

Prominin-1+microRNA-29b; VEGF: Vascular endothelial growth 

factor; TGF: Transforming growth factor; GAPDH: Glyceraldehyde-3-

phosphate dehydrogenase; NC: Negative control; PCR: Polymerase 

chain reaction.

Figure 3 Prominin-1 in P1M29 group activates both AKT and ERK 
signaling on RGC-5 cells induced by NMDA (800 μmol/L) for 48h  A: 
Western blotting shows the levels of P-AKT, AKT, P-ERK and ERK in the 
Control group, NMDA group, Control+NC group, NMDA+NC group, 
Prominin-1 group, microRNA-29b group and P1M29 group. B, C: 
Histogram shows the ratio of P-AKT/AKT and P-ERK/ERK, respectively. 
aP<0.05 vs Control group; bP<0.05 vs NMDA (800 μmol/L) group; 
cP<0.05 vs microRNA-29b group; dP<0.05 vs Prominin-1 group. 
NMDA: N-methyl-D-aspartate; Pominin-1: Recombinant prominin-1; 
P1M29: Prominin-1+microRNA-29b; AKT: Protein kinase B; ERK: 
Extracellular regulated protein kinases; P-AKT: Phosphor-AKT; P-ERK: 
Phosphor-ERK; NC: Negative control.
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RGCs[27]. Increased IOP is a major risk factor of glaucoma. 
Besides, ischemia is also involved in the occurrence of this 
disease[28]. The medical treatments for glaucoma are focused on 
IOP reduction by increasing the uveoscleral outflow of aqueous 
humor and inhibiting aqueous humor production[29]. However, 
it is important to note that not all individuals with hypertension 
have a significant risk of developing glaucoma[30-31]. Therefore, 
a new therapeutic approach that protects RGCs, targets 
apoptosis pathways, and does not cause significant side effects 

is needed for the treatment of patients with glaucoma[6]. 
Different neuroprotective strategies have been proposed for 
treating glaucoma patients, including improvement of optic 
nerve blood flow, attenuation of glutamate excitotoxicity, and 
prevention or inhibition of apoptosis[32].
Neuronal injury or death is an early event in the pathogenesis 
of retinal disorders such as glaucoma and diabetic 
retinopathy[33-34]. Despite that the mechanism of neuronal 
injury or death is not fully understood, excessive glutamate 

Figure 5 Immunofluorescent staining in the control group, Control+NC group, NMDA group, NMDA+NC group, microRNA-29b group, 

Prominin-1 group, P1M29 group  A: The expression of VEGF in NMDA-induced excitotoxicity RGC-5 cells (bar=50 μm). B: The expression 

of TGF-β2 in NMDA-induced excitotoxicity RGC-5 cells (Bar=50 μm). RGC: Retinal ganglion cell; NMDA: N-methyl-D-aspartate; Pominin-1: 

Recombinant prominin-1; P1M29: Prominin-1+microRNA-29b; VEGF: Vascular endothelial growth factor; TGF: Transforming growth factor; NC: 

Negative control.

Figure 4 The study of anti-apoptotic effects  A: Anti-apoptotic effects of Prominin-1, microRNA-29b, and P1M29 on RGC-5 cells induced by 

NMDA (800 μmol/L) for 48h; B: Apoptotic rate in the early stage of apoptosis of Pominin-1, microRNA-29b, and P1M29 (n=3). aP<0.05 vs P1M29 

group; bP<0.05 vs NMDA (800 μmol/L) group. RGC: Retinal ganglion cell; NMDA: N-methyl-D-aspartate; Pominin-1: Recombinant prominin-1; 

P1M29: Prominin-1+microRNA-29b; NC: Negative control.
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receptor activation has been suggested to play a major 
role[35-36]. The neurotoxic effect of glutamate is largely 
modulated by NMDA receptors[37]. The survival rate of 
RGC-5 cells was remarkably decreased after treatment 
with NMDA in a concentration-dependent manner, and a 
NMDA receptor antagonist (MK801) effectively blocked 
this pathway, implying that NMDA can induce RGC-5 cell 
injury or death[24]. Although the relationships between vascular 
dysfunction and neural cell death during glaucoma or diabetic 
retinopathy are still unknown, a recent study has shown that 
retinal neurodegeneration may precede vascular dysfunction in 
an experimental model[38].
RGCs are the neurons that integrate incoming visual 
signals from the retina and convey them to the brain. Loss 
or dysfunction of RGCs is associated with different optic 
neuropathies, including glaucoma. RGC apoptosis has been 
recognized as a common hallmark of primary open-angle 
glaucoma[39]. The purified primary RGCs have been used as 
an experimental model to assess physiological processes and 
apoptosis mechanisms, but this method is labor intensive 
and the cells can be cultured in vitro only for a limited 
period[40]. Therefore, it is important to use a transformed 
cell line for cell proliferation. At present, RGC-5 is the only 
available immortalized cell line that has been introduced by 
Krishnamoorthy et al[41]. Many studies have demonstrated that 
RGC-5 can still be used to study the neurobiology of neural 
cells derived from retinal cell lines[42-44].
Therefore, considering the factors mentioned above, this 
study chose RGC-5 cells as the subject of investigation and 
evaluated NMDA-induced excitotoxicity within the range 
of 100–800 μmol/L using the MTT assay. Subsequently, 
NMDA at a concentration of 800 μmol/L was selected as the 
appropriate concentration for constructing the in vitro model. 
The neuroprotective effects of Prominin-1 combined with 
microRNA-29b on NMDA-induced excitotoxicity in RGC-5 
cells were then evaluated with NMDA at 800 μmol/L. VEGF is a 
homo dimeric glycoprotein bound by disulfide bonds. Owing 
to its multiple functions such as induction of angiogenesis, 
enhancement of vascular permeability, regulation of lymph 
angiogenesis, promotion of neurogenesis and protection 
of nerves, VEGF has become a research hotspot in the 
fields of cardiovascular system, tumor, nervous system and 
ophthalmology[45]. VEGF can recognize highly specific 
receptors on vascular endothelial cells, which in turn activate 
ERK1/2 through MAPK pathway, and promote DNA synthesis 
and cell proliferation. VEGF can also activate PI3K-AKT 
pathway through phosphoinositol specific phospholipase C[46]. 
PI3K-AKT is an important pathway for cell survival, and AKT 
regulates anti-apoptotic signaling through serine kinase[47]. 
MAPK/ERK has important anti-apoptotic and pro-proliferation 

functions in cells, and ERK is a key protein in this pathway[48]. 
Based on the Western blotting results of AKT, phospho-AKT, 
ERK, and phospho-ERK, it was observed that Prominin-1 
increased the phosphorylation levels of both AKT and ERK 
in both the Prominin-1 and P1M29 (6 ng/mL) groups when 
compared to the NMDA and microRNA-29b groups (P<0.05; 
Figure 3). In recent years, both cell and animal experimental 
studies have found that VEGF can maintain axonal transport, 
inhibit inflammatory response, and reduce oxidative stress, 
thereby inhibiting RGC apoptosis in glaucoma models. This 
suggests that VEGF may exhibit a neuroprotective effect on 
the optic nerves.
The research on the neuroprotective mechanism of VEGF is 
currently focused on promoting the survival of nerve cells, 
inhibiting cell apoptosis, and promoting nerve regeneration 
by increasing blood perfusion, especially in the treatment of 
nervous system diseases and eye diseases. VEGF can directly 
act on optic neurons, stimulate the proliferation of neural 
stem cells, and promote neurogenesis[49], while indirectly 
promote neurogenesis via regulation of angiogenesis. Under 
the pathological conditions of nerve injury, macrophages can 
migrate into the axonal space and secrete VEGF to induce 
angiogenesis, so that Schwann cells can use these vessels to 
migrate into the axonal space to achieve axonal regeneration[50]. 
In human eyes, vascular endothelial cells, pericytes, retinal 
neurons, and other cells can all produce VEGF[45,51]. The 
current researches suggest that VEGF is generally limited 
to the part where it is generated to play its role, and will not 
spread to other parts[52-54]. VEGF can inhibit RGC apoptosis 
and protect the optic nerve in glaucoma models by maintaining 
axonal transport, inhibiting inflammatory reaction and 
reducing oxidative stress. Endogenous VEGF-A can inhibit 
the apoptosis of RGC in glaucoma[53]. However, current 
therapeutic approaches to increase VEGF levels by injecting 
the VEGF gene or protein in some in vivo experiments did 
not yield good results[10-11]. Therefore, it is necessary to find 
an effective way to increase the level of VEGF. As we know, 
anti-VEGF drugs have been widely applied in the treatment 
of ocular neovascular diseases[55]. Although the results of anti-
VEGF drugs in the treatment of neovascular ophthalmopathy 
are encouraging, these drugs can only achieve the purpose 
of treating neovascular ophthalmopathy by inhibiting VEGF 
angiogenesis. However, from another point of view, VEGF 
has neuroprotective effects, and is necessary for the survival 
of endothelial cells and glial cells in the static state. Therefore, 
how to inhibit VEGF angiogenesis while preserving its 
neuroprotective effects is always an important research 
concern. Our study raises a new question about the potential 
effects of the currently used anti-VEGF intravitreal injections 
for proliferative diabetic retinopathy in patients who also 
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have advanced glaucoma. However, our study was conducted 
in vitro, and for the same findings to be effective in vivo, 
further research is required in the future. Before any definitive 
therapeutic benefits can be derived from the use of VEGF 
molecules as neuroprotective agents for glaucoma, extensive 
studies in living organisms should be conducted.
Adini et al[56] found that prominin-1 is a crucial regulator of 
angiogenesis, proliferation and apoptosis, which is able to 
interact with VEGF, stabilize it and improve the binding of VEGF 
binding to its receptors via dimerization of VEGF receptors. 
Moreover, Almasry et al[57] assessed the relationship between 
prominin-1 and VEGFA in diabetes-induced retinopathy, and 
found that a positive feedback regulation between them. 
Specific localization of prominin-1 in endothelial cells supports 
the hypothesis of Adini et al[56] who reported that prominin-1 
could interact and potentiate the angiogenic and anti-apoptotic 
properties of VEGFA and there was a direct interaction 
between prominin-1 and VEGFA on endothelial cells.
On the other hand, TGF-β is a multifunctional growth 
factor that can regulate the functions of vascular cells[58]. An 
increasing number of studies have suggested the potential roles 
of the TGF-β family members in vascular dysfunction and 
morphogenesis[59-60]. The expression of soluble endoglin, an 
inhibitor of TGF-β, could induce retinal vascular abnormalities, 
including vascular leakage and impaired retinal perfusion[61]. 
Therefore, constitutive activation of TGF-β pathway is needed for 
the survival of vascular cells under physiological conditions. 
Ueda et al[62] demonstrated that retinal blood vessels were 
damaged in the NMDA-induced retinal degeneration model, 
indicating that neuronal injury can lead to a progressive loss 
of retinal cells by disrupting circulation. Inhibiting TGF-β 
signaling pathway could attenuate neuronal loss and prevent 
vascular damage in NMDA-induced retinal degeneration 
model. Hence, TGF-β inhibition may serve as a new 
therapeutic approach for treatment and prevention of retinal 
disorders, including glaucoma, diabetic retinopathy and retinal 
ischemia.
The microRNA-29 family is composed of microRNA-29a, 
microRNA-29b, and microRNA-29c, which share identical 
seed sequences. These microRNAs are known to suppress 
the post transcriptional regulation of several genes related to 
fibrosis and ECM synthesis, including collagen, elastin and 
fibrillin[63-64]. As a negative regulator of ECM, Luna et al[21] 
investigated the interactions between microRNA-29 and 
TGF-βs. Notably, TGF-β2 downregulated the expression of 
microRNA-29 to induce multiple ECM components in TM 
cells, suggesting that this microRNA may play an important 
role in regulating TGF-βs via the outflow pathway[21,65]. Based 
on the results obtained from real-time PCR, flow cytometry 
analysis, and immunofluorescence staining, the Prominin-1 

combined with microRNA-29b group exhibited a significant in 
vitro protective effect when compared to the NMDA group.
In summary, our work demonstrates that Prominin-1 combined 
with microRNA-29b exhibits protective effects on NMDA-
induced excitotoxicity in RGC-5 cells. This may be attributed 
to the fact that Prominin-1 could interact and potentiate 
the angiogenic and anti-apoptotic properties of VEGF, 
while microRNA-29b is a negative regulator of TGF-β2. 
This study is the first to apply the combination therapeutic 
strategy of Prominin-1 and microRNA-29b for improving 
their neuroprotection activities. Our in vitro data establish the 
therapeutic potential of this treatment strategy. Nevertheless, 
the detailed mechanisms and in vivo protective effect of this 
treatment strategy should be further explored in animal retinal 
degeneration models.
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