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Abstract 
● AIM: To compare the three-dimensional choroidal 
vascularity index (CVI) and choroidal thickness between 
fellow eyes of acute primary angle-closure (F-APAC) and 
chronic primary angle-closure glaucoma (F-CPACG) and the 
eyes of normal controls.
● METHODS: This study included 37 patients with 
unilateral APAC, 37 with asymmetric CPACG without prior 
treatment, and 36 healthy participants. Using swept-source 
optical coherence tomography (SS-OCT), the macular and 
peripapillary choroidal thickness and three-dimensional 
CVI were measured and compared globally and sectorally. 
Pearson’s correlation analysis and multivariate regression 
models were used to evaluate choroidal thickness or CVI 
with related factors.
● RESULTS: The mean subfoveal CVIs were 0.35±0.10, 
0.33±0.09, and 0.29±0.04, and the mean subfoveal 
choroidal thickness were 315.62±52.92, 306.22±59.29, 
and 262.69±45.55 μm in the F-APAC, F-CPACG, and normal 
groups, respectively. All macular sectors showed significantly 
higher CVIs and choroidal thickness in the F-APAC and 

F-CPACG eyes than in the normal eyes (P<0.05), while there 
were no significant differences between the F-APAC and 
F-CPACG eyes. In the peripapillary region, the mean overall 
CVIs were 0.21±0.08, 0.20±0.08, and 0.19±0.05, and 
the mean overall choroidal thickness were 180.45±54.18, 
174.82±50.67, and 176.18±37.94 μm in the F-APAC, 
F-CPACG, and normal groups, respectively. There were no 
significant differences between any of the two groups in 
all peripapillary sectors. Younger age, shorter axial length, 
and the F-APAC or F-CPACG diagnosis were significantly 
associated with higher subfoveal CVI and thicker subfoveal 
choroidal thickness (P<0.05).
● CONCLUSION: The fellow eyes of unilateral APAC or 
asymmetric CPACG have higher macular CVI and choroidal 
thickness than those of the normal controls. Neither CVI 
nor choroidal thickness can distinguish between eyes 
predisposed to APAC or CPACG. A thicker choroid with a 
higher vascular volume may play a role in the pathogenesis 
of primary angle-closure glaucoma.
● KEYWORDS: choroidal thickness; choroidal vascularity 
index; swept-source optical coherence tomography; acute 
primary angle-closure; chronic primary angle-closure 
glaucoma
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INTRODUCTION

P rimary angle-closure disease (PACD) is a leading cause 
of irreversible blindness worldwide[1]. It is estimated that 

there are 25 million patients with PACD worldwide and more 
than 25% progress to blindness[2]. PACD, a general reference 
to three continuum categories, including primary angle-
closure suspect (PACS), primary angle-closure (PAC), and 
primary angle-closure glaucoma (PACG), is characterized by 
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mechanical obstruction of the trabecular meshwork by either 
apposition of the peripheral iris to the trabecular meshwork 
or by a synechial closed angle[3]. Acute and chronic forms are 
further distinguished according to the clinical manifestations 
and severity of disease onset. Patients with an acute attack 
experience a sudden, symptomatic elevation in intraocular 
pressure (IOP), with the iris quickly covering the entire 
trabecular meshwork[4]. In the chronic form, IOP increases 
slowly in a painless and asymptomatic manner, with the 
iris gradually covering the trabecular meshwork portion by 
portion[5]. 
A shallow anterior chamber, great lens thickness, anterior lens 
position, short axial length, advanced age, and female sex are 
considered common risk factors for PACD[6]. Researchers have 
found that acute primary angle-closure (glaucoma) [APAC(G)] 
eyes have a smaller anterior chamber depth, greater lens 
vault, and thicker peripheral iris than chronic primary angle-
closure (glaucoma) [CPAC(G)] eyes[7-8]. Recently, choroidal 
expansion was reported to play a role in PACD. A few studies 
have demonstrated greater baseline choroidal thickness in 
subtypes of PACDs and hypothesized that a thicker choroid 
which results in a greater tendency of choroidal expansion 
could push the lens-iris diaphragm forward, initiating or 
exacerbating the closure of the anterior chamber angle[9-10]. 
Additionally, as eyes with PACD are anatomically smaller, the 
expansion of the choroid may reduce the intraocular volume 
and therefore increase the IOP[6]. However, there has been little 
research comparing choroids between eyes with APAC(G) 
and those with CPAC(G). In addition to choroidal thickness, 
other choroidal parameters have rarely been explored in the 
population with PACD.
The recent development of optical coherence tomography 
(OCT) has enabled the observation of the choroid. Compared 
to spectral-domain OCT (SD-OCT), swept-source OCT (SS-
OCT) with a longer wavelength of approximately 1050 nm 
further improves penetration through the retinal pigment 
epithelium and enables better visualization of the full-thickness 
choroid[11]. Choroidal thickness has been widely used to assess 
choroids. However, the choroid is composed of connective 
tissue, blood vessels, and melanocytes. Therefore, choroidal 
thickness measurements do not fully reflect the status of the 
choroidal vasculature. The choroidal vascularity index (CVI) 
emerges as a novel choroidal vascularity marker that accurately 
reflects the relationship between the luminal volume of 
choroidal vascular and the total choroidal volume[12-13]. Using 
SS-OCT, three-dimensional CVI can be generated to provide a 
more comprehensive evaluation of the choroidal vasculature. 
In this study, we assessed the choroid in the fellow eyes of 
patients with unilateral APAC (F-APAC) and asymmetric 
CPACG (F-CPACG). The choroid is a highly vascular 

structure with variable parameters regulated by various factors. 
Previous studies have demonstrated the effects of elevated 
IOP[14-15], topical antiglaucoma drugs[16], and optic atrophy[17-18] 
on choroids. In APAC or CPACG eyes, these changes can 
impede the original anatomical characteristics of the choroid. 
In addition, media opacities such as glaucomatous flecks and 
corneal edema make it difficult to obtain a clear image of the 
choroid using OCT. PACD has been described as a bilateral 
condition due to high anatomical similarities, and the fellow 
eye could therefore perform better in evaluating the initial 
anatomic configuration of severely affected eyes[19-21]. Previous 
studies have compared the differences between F-APAC and 
F-CAPCG in anterior segment parameters using ultrasound 
biomicroscopy[22-23], but no study has compared posterior 
segment parameters in F-APAC and F-CAPCG eyes.
This study aimed to investigate the three-dimensional CVI 
and choroidal thickness in F-APAC and F-CPACG eyes using 
SS-OCT, comparing them with normal eyes to identify the 
anatomical structural differences among the population with 
PACD.
SUBJECTS AND METHODS 
Ethical Approval  This study was approved by the Human 
Research Ethics Committee of the Eye and ENT Hospital of 
Fudan University (Ethics approval number: 2021045) and 
adhered to the tenets of the Declaration of Helsinki. Written 
informed consent was obtained from all the participants.
Participants  Patients diagnosed with unilateral APAC and 
asymmetric CPACG were recruited from the Glaucoma 
Clinic at Eye and ENT Hospital of Fudan University between 
November 2021 and November 2022. The APAC was defined 
according to the following criteria: 1) the presence of at least 
two of the following symptoms: ocular or periocular pain, 
nausea and/or vomiting, ipsilateral migraine, or antecedent 
history of intermittent blurring of vision with halos; 2) IOP 
spike more than 30 mm Hg; 3) the presence of at least three of 
the following signs: obvious conjunctival hyperemia, corneal 
epithelial edema, enlarged pupil, direct disappearance of light 
reflex, and shallow anterior chamber; 4) an occluded angle 
verified by gonioscopy. CPACG was defined as follows: 1) 
absence of symptoms of an acute attack or signs indicative of 
prior acute attacks; 2) more than three cumulative clock-hours 
peripheral anterior synechiae; 3) a chronically elevated IOP 
(>21 mm Hg); 4) glaucomatous optic neuropathy or visual 
field defect. 
The fellow eyes of APAC (F-APAC) or CPACG (F-CPACG) 
were enrolled if 1) present or previous acute attack was absent; 
2) narrow-angle (>180° of the posterior pigmented trabecular 
meshwork not visible by non-indentation gonioscopy), no 
or less than three cumulative clock-hours peripheral anterior 
synechiae; 3) no glaucomatous optic neuropathy or visual field 
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defect. To limit potential changes in the choroidal structure, 
no treatment, including topical antiglaucoma eye drops, laser, 
or intraocular surgery, was administered to the F-APAC and 
F-CPACG eyes. Systematic drugs, such as mannitol, were used 
if necessary. 
Based on the International Society of Geographic and 
Epidemiologic Ophthalmology classification[3], the enrolled 
F-APAC and F-CPACG eyes were further defined as having 
PACS and PAC. PACS was defined as having only appositional 
contact between the peripheral iris and the posterior trabecular 
meshwork, while PAC was defined as having iridotrabecular 
contact, an elevated IOP or peripheral anterior synechiae 
with no secondary cause, and without glaucomatous optic 
neuropathy. 
Participants with any of the following criteria were excluded: 
1) secondary angle closure caused by lens subluxation, uveitis, 
iris neovascularization, tumor, or significant cataract with 
intumescent lens; 2) the use of topical antiglaucoma medicine 
in F-APAC and F-CPACG eyes, or prior laser or intraocular 
surgery; 3) diabetes or systemic hypertension; 4) high myopia 
or hyperopia with a spherical equivalent refractive error 
greater than ±6 diopters (D); 5) corneal, retinal pathology or 
ocular trauma; 6) inability to tolerate gonioscopy or ultrasound 
biomicroscopy examination, low-quality images or unstable 
fixation due to clinically relevant opacities of the optical media 
such as severe cataract. The healthy participants included in 
this study had mild-to-moderate cataracts but no other eye 
diseases. One eye from the normal control group was randomly 
chosen for the study.
Methods  All the enrolled participants underwent 
comprehensive ophthalmological examinations at baseline, 
including best-corrected visual acuity in logMAR, slit-lamp 
biomicroscopy, and static and dynamic gonioscopy using a 
gonioscope (Volk G-1 trabeculum; Volk Optical, Inc., Mentor, 
OH, USA). The anterior chamber angle was graded using 
the modified Shaffer grading system. The IOP was measured 
using Goldmann applanation tonometry, and the mean value 
of three measurements recorded for each eye was used. Low-
coherence interferometry (LenStar 900; Haag-Streit, Koeniz, 
Switzerland) was used to determine the axial length, central 
corneal thickness, lens thickness, and anterior chamber depth. 
SS-OCT (VG200S; SVision Imaging, Henan, China) was 
performed on all patients by the same examiner (Huang HL). 
Two scans, one macular scan centered on the fovea (6 mm× 6 
mm protocol) and one peripapillary scan centered on the optic 
disc (6 mm× 6 mm protocol), were acquired. In the macular 
region, three concentric zones were defined according to 
the Early Treatment Diabetic Retinopathy Study grid: fovea 
(diameter 1 mm), parafovea (diameter 1-3 mm), and perifovea 
(diameter 3-6 mm). The parafoveal and perifoveal zones were 

further divided into four 90° sectors each: paratemporal (paraT), 
peritemporal (periT), parasuperior (paraS), perisuperior (periS), 
paranasal (paraN), perinasal (periN), parainferior (paraI), 
and periinferior (periI) areas. In the peripapillary region, the 
choroid was measured in an annular ring with a diameter of 
2-4 mm, which was automatically divided into eight sectors 
using the software: temporal lower (TL), temporal upper (TU), 
superotemporal (ST), superonasal (SN), nasal upper (NU), 
nasal lower (NL), inferonasal (IN), and inferotemporal (IT) 
areas. On SS-OCT, the choroid was defined as the volume 
from the basal border of the retinal pigment epithelium-Bruch 
membrane complex to the chorioscleral junction. The VG200S 
vanGogh software uses artificial intelligence algorithms to 
detect the contours of the large and medium-sized choroidal 
vessels in the B-scans and then builds the vessel morphology 
through three-dimensional reconstruction to achieve 
quantification of the large and medium-sized choroidal vessels. 
The three-dimensional CVI was calculated as the ratio of 
the choroidal vascular luminal volume to the total choroidal 
volume, providing an assessment of the volumetric choroidal 
vascular density. A color-coded map was generated to visualize 
the CVI for each A-scan (Figure 1).
Statistical Analysis  All analyses were performed using the 
SPSS software package version 23.0. Data are presented 
as mean±standard deviation (SD) where applicable. An 
independent sample t-test was used to assess the differences 
in the means between the two groups. Categorical variables 
such as sex were assessed individually using Fisher’s exact 
test. Pearson’s correlation analysis was performed to examine 
the associations among age, systolic blood pressure, diastolic 
blood pressure, IOP at imaging, spherical equivalent, axial 
length, anterior chamber depth, lens thickness, and subfoveal 
CVI or choroidal thickness. A multiple linear regression 
analysis was employed to identify the factors independently 
associated with CVI and choroidal thickness. The model 
included the diagnosis, age, sex, spherical equivalent, axial 
length, and anterior chamber depth. For all tests, P<0.05 was 
considered to be statistically significant. 
RESULTS
Patients’ Demographic Data  A total of 110 participants met 
the inclusion criteria and participated in this study. Among 
these, 37 participants had F-APAC (37 eyes, 33.64%), 37 
had F-CPACG (37 eyes, 33.64%), and 36 participants (36 
eyes, 32.73%) were enrolled as normal controls. The clinical 
characteristics of the study participants are summarized in 
Table 1. There were no significant differences in sex, mean age, 
systolic blood pressure, or diastolic blood pressure between 
any of the two groups.
Compared to the normal controls, the participants in the 
F-CPACG group had higher IOP at imaging (P=0.002) 
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and bigger cup-to-disc ratio (P<0.001), while there was no 
significant difference between F-APAC eyes and normal eyes. 
Both F-APAC (P<0.001) and F-CPACG (P<0.001) groups 
had significantly larger spherical equivalents than the normal 
group, as well as thicker lens thickness. The F-APAC eyes had 
the shortest axial length and anterior chamber depth, followed 
by the F-CPACG group and the normal eyes (Table 1). 
Macular and Peripapillary Measurement of the CVI 

and Choroidal Thickness  The mean subfoveal CVIs 
were 0.35±0.10, 0.33±0.09, and 0.29±0.04 in the F-APAC, 
F-CPACG, and normal groups, respectively. All nine sectors 
in the macular region showed significantly higher CVI in the 
F-APAC and F-CAPCG eyes than in the normal eyes (P<0.05; 
Figure 2), and no significant differences were observed 
between the F-APAC and F-CPACG eyes. In all three groups, 
the mean CVI in the subfoveal sector was the largest and 

Figure 1 SS-OCT scans showing the macular and peripapillary CVI of a control eye  A, D: En-face images obtained from the macular (A) and 

peripapillary (D) scans; B, E: Color-coded maps of the 6 mm×6 mm area were generated to show the macular (B) and peripapillary (E); C, F: The 

mean CVI values in the macular (C) and peripapillary (F) region. The macular region was divided into nine sectors consisting of three concentric 

rings with diameters of 1 mm (fovea), 1-3 mm (parafovea), and 3-6 mm (perifovea), and the peripapillary region was divided into eight sectors. 

SS-OCT: Swept-source optical coherence tomography; CVI: Choroidal vascularity index.

Table 1 Clinical characteristics of study participants                                                                                                                                                       mean±SD

Characteristics F-APAC F-CPACG Normal P1 P2 P3

Patients (eyes), n 37 (37) 37 (37) 36 (36) - - -
Age, y 60.43±8.42 61.14±8.47 60.03±5.65 0.693 0.822 0.537
Sex, male/female 13/24 14/23 13/23 0.500a 0.562a 0.536a

Systolic blood pressure, mm Hg 118.54±9.17 119.03±8.62 117.25±10.84 0.827 0.566 0.430
Diastolic blood pressure, mm Hg 71.65±6.39 72.81±5.50 70.75±7.17 0.435 0.549 0.171
IOP, mm Hg 14.48±4.22 17.86±4.78 14.88±3.00 0.001 0.670 0.002
Cup-to-disc ratio 0.36±0.06 0.44±0.11 0.33±0.72 <0.001 0.194 <0.001
Spherical equivalent, D 0.97±0.77 0.94±0.49 0.41±0.52 0.812 <0.001 <0.001
Axial length, mm 22.31±0.58 22.63±0.56 23.10±0.43 0.012 <0.001 <0.001
Anterior chamber depth, mm 1.93±0.19 2.12±0.23 2.49±0.38 0.005 <0.001 <0.001
Lens thickness, mm 5.03±0.32 4.92±0.25 4.74±0.31 0.113 <0.001 0.008

P1: F-APAC vs F-CPACG, P2: F-APAC vs normal, P3: F-CPACG vs normal by using independent sample t-test or aFisher’s exact test. P<0.05 indicated 

statistically significant. F-APAC: Fellow eyes of acute primary angle-closure; F-CPACG: Fellow eyes of chronic primary angle-closure glaucoma; 

IOP: Intraocular pressure. 
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gradually decreased from the fovea to the distal region. In the 
peripapillary region, the mean overall CVIs were 0.21±0.08, 
0.20±0.08, and 0.19±0.05 in the F-APAC, F-CPACG, 
and normal groups, respectively; however, there were no 
significant differences between any of the two groups in the 
eight peripapillary sectors. The macular and peripapillary CVI 
data for all sectors in the three groups are listed in Table 2.
Choroidal thickness was also measured in the macular and 
peripapillary regions. The mean subfoveal choroidal thickness 
was 315.62±52.92, 306.22±59.29, and 262.69±45.55 μm in 
the F-APAC, F-CPACG, and normal groups, respectively. 
All nine sectors in the macular region showed a significantly 
higher choroidal thickness in the F-APAC and F-CPACG eyes 
than in the normal eyes (P<0.05; Figure 3), and no significant 
difference was found between the F-APAC and F-CPACG 
groups. In all three groups, the mean choroidal thickness 
in the subfoveal sector was the highest, whereas that in the 
perinasal sector was the lowest. The choroidal thickness 
gradually decreases from the fovea to the distal region. In the 
peripapillary region, the mean overall choroidal thickness was 
180.45±54.18, 174.82±50.67, and 176.18±37.94 μm in the 
F-APAC, F-CPACG, and normal groups, respectively. There 

were no significant differences in mean choroidal thickness 
between any of the two groups in the eight peripapillary 
sectors. Macular and peripapillary choroidal thickness data for 
all sectors in the three groups are listed in Table 3. In every 
sector, the choroidal thickness was always slightly higher in 
the F-APAC eyes than in the F-CPACG eyes. Figure 4 shows 
examples of SS-OCT-derived macular choroidal thickness and 
CVI obtained from control and F-APAC eyes. 
Pearson Correlation Analysis  The results of the Pearson 
correlation analysis of the subfoveal CVI and choroidal 
thickness are shown in Table 4. Age, spherical equivalent, 
axial length, and anterior chamber depth were significantly 
associated with subfoveal CVI and choroidal thickness in all 
participants (P<0.05). The IOP on imaging, cup-to-disc ratio, 
lens thickness, systolic blood pressure, and diastolic blood 
pressure were not correlated with CVI or choroidal thickness 
in the subfoveal sector.
Multiple Linear Regression Analysis  Multiple linear 
regression analysis, including all participants, was performed 
to determine the factors independently associated with 
subfoveal CVI and choroidal thickness (Table 5). The model 
included diagnosis (F-APAC or F-CPACG vs normal), age, 

Figure 2 The mean CVI at different locations in the macular and peripapillary zone  aP<0.05, bP<0.01. F-APAC: Fellow eyes of acute primary 

angle-closure; F-CPACG: Fellow eyes of chronic primary angle-closure glaucoma; CVI: Choroidal vascularity index; PeriT: Peritemporal; ParaT: 

Paratemporal; ParaN: Paranasal; PeriN: Perinasal; PeriS: Perisuperior; ParaS: Parasuperior; ParaI: Parainferior; PeriI: Periinferior; TL: Temporal 

lower; TU: Temporal upper; ST: Superotemporal; SN: Superonasal; NU: Nasal upper; NL: Nasal lower; IN: Inferonasal; IT: Inferotemporal.

Figure 3 The mean choroidal thickness at different locations in the macular and peripapillary zone  cP<0.001. F-APAC: Fellow eyes of acute 

primary angle-closure; F-CPACG: Fellow eyes of chronic primary angle-closure glaucoma; CT: Choroid thickness; PeriT: Peritemporal; ParaT: 

Paratemporal; ParaN: Paranasal; PeriN: Perinasal; PeriS: Perisuperior; ParaS: Parasuperior; ParaI: Parainferior; PeriI: Periinferior; TL: Temporal 

lower; TU: Temporal upper; ST: Superotemporal; SN: Superonasal; NU: Nasal upper; NL: Nasal lower; IN: Inferonasal; IT: Inferotemporal.

3D choroidal vascularity index in primary angle-closure
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Table 2 Comparison of the macular and peripapillary CVI between F-APAC eyes, F-CPACG eyes, and normal control eyes

Parameters F-APAC F-CPACG Normal P1 P2 P3

Macular
Subfoveal 0.35±0.10 0.33±0.09 0.29±0.04 0.296 0.001 0.023
ParaT 0.34±0.09 0.32±0.07 0.29±0.06 0.427 0.005 0.039
PeriT 0.28±0.07 0.28±0.07 0.24±0.05 0.929 0.019 0.024
ParaS 0.34±0.10 0.32±0.08 0.28±0.06 0.199 0.001 0.026
PeriS 0.28±0.07 0.28±0.07 0.25±0.05 0.828 0.044 0.026
ParaN 0.34±0.11 0.33±0.09 0.28±0.07 0.493 0.007 0.042
PeriN 0.28±0.10 0.28±0.08 0.23±0.07 0.814 0.017 0.031
ParaI 0.33±0.10 0.30±0.09 0.26±0.05 0.287 0.001 0.026
PeriI 0.28±0.07 0.28±0.07 0.25±0.07 0.907 0.025 0.033

Peripapillary
TL 0.23±0.10 0.21±0.09 0.20±0.05 0.554 0.226 0.531
TU 0.25±0.09 0.24±0.09 0.22±0.05 0.496 0.063 0.233
ST 0.21±0.07 0.20±0.08 0.19±0.05 0.648 0.123 0.274
SN 0.18±0.06 0.17±0.05 0.18±0.04 0.352 0.766 0.530
NU 0.24±0.07 0.23±0.07 0.21±0.06 0.408 0.079 0.344
NL 0.23±0.09 0.23±0.09 0.20±0.06 0.953 0.122 0.108
IN 0.17±0.06 0.17±0.06 0.17±0.05 0.871 0.867 0.742
IT 0.18±0.07 0.19±0.07 0.18±0.05 0.816 0.889 0.711

P1: F-APAC vs F-CPACG, P2: F-APAC vs normal, P3: F-CPACG vs normal. P<0.05 indicated statistically significant. F-APAC: Fellow eyes of 

acute primary angle-closure; F-CPACG: Fellow eyes of chronic primary angle-closure glaucoma; CVI: Choroidal vascularity index; ParaT: 

Paratemporal; PeriT: Peritemporal; ParaS: Parasuperior; PeriS: Perisuperior; ParaN: Paranasal; PeriN: Perinasal; ParaI: Parainferior; PeriI: 

Periinferior; TL: Temporal lower; TU: Temporal upper; ST: Superotemporal; SN: Superonasal; NU: Nasal upper; NL: Nasal lower; IN: 

Inferonasal; IT: Inferotemporal.

Table 3 Comparison of the macular and peripapillary choroidal thickness between F-APAC eyes, F-CPACG eyes, and normal control eyes

Parameters F-APAC F-CPACG Normal P1 P2 P3

Macular
Subfoveal 315.62±52.92 306.22±59.29 262.69±45.55 0.447 <0.001 0.001
ParaT 306.92±52.42 301.68±60.44 253.97±41.47 0.666 <0.001 <0.001
PeriT 280.78±50.20 277.92±54.10 234.14±37.78 0.798 <0.001 <0.001
ParaS 312.57±56.53 304.57±63.01 260.28±45.63 0.537 <0.001 0.001
PeriS 299.70±58.22 291.38±58.27 245.89±44.22 0.509 <0.001 <0.001
ParaN 295.78±54.26 291.57±58.24 243.81±37.71 0.723 <0.001 <0.001
PeriN 239.11±59.78 237.38±55.22 198.53±37.79 0.886 0.001 0.002
ParaI 307.35±55.09 300.73±56.29 255.47±45.76 0.590 <0.001 <0.001
PeriI 286.76±64.79 280.24±57.94 238.14±50.13 0.630 0.001 0.002

Peripapillary
TL 179.65±54.06 173.76±51.02 173.25±39.88 0.604 0.576 0.965
TU 192.76±55.16 189.22±50.81 190.81±38.55 0.755 0.865 0.890
ST 193.11±56.92 188.14±52.72 189.33±39.80 0.672 0.750 0.919
SN 189.59±52.21 182.38±44.14 185.50±36.73 0.491 0.698 0.767
NU 192.16±52.90 183.22±49.80 186.25±35.51 0.413 0.590 0.782
NL 184.32±53.74 175.49±51.34 175.61±27.39 0.409 0.419 0.991
IN 157.32±48.90 153.03±48.27 151.92±35.15 0.680 0.606 0.916
IT 154.65±47.46 153.35±46.79 156.75±35.14 0.898 0.837 0.740

P1: F-APAC vs F-CPACG, P2: F-APAC vs normal, P3: F-CPACG vs normal. P<0.05 indicated statistically significant. F-APAC: Fellow eyes of 

acute primary angle-closure; F-CPACG: Fellow eyes of chronic primary angle-closure glaucoma; ParaT: Paratemporal; PeriT: Peritemporal; 

ParaS: Parasuperior; PeriS: Perisuperior; ParaN: Paranasal; PeriN: Perinasal; ParaI: Parainferior; PeriI: Periinferior; TL: Temporal lower; TU: 

Temporal upper; ST: Superotemporal; SN: Superonasal; NU: Nasal upper; NL: Nasal lower; IN: Inferonasal; IT: Inferotemporal.
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Figure 4 SS-OCT derived choroidal thickness and CVI in the macular region for a control and an F-APAC eye  The F-APAC eye had a higher 

macular choroidal thickness and CVI than the control eye. A, F: The B scan images of macular choroidal thickness in the control (A) and the 

F-APAC (F) eye; B, G: Color-coded maps of the macular choroidal thickness obtained from the control (B) and the F-APAC (G) eye; C, H: The 

mean choroidal thickness values in the nine sectors of the macular region in the control (C) and the F-APAC (H) eye; D, I: Color-coded maps of 

the macular CVI obtained from the control (D) and the F-APAC (I) eye; E, J: The mean CVI values in the nine sectors of the macular region in the 

control (E) and the F-APAC (J) eyes. SS-OCT: Swept-source optical coherence tomography; CVI: Choroidal vascularity index; F-APAC: Fellow eyes 
of acute primary angle-closure; F-CPACG: Fellow eyes of chronic primary angle-closure glaucoma.

Table 4 Pearson correlation analysis of the subfoveal CVI and subfoveal choroidal thickness in all eyes

Factors
Subfoveal CVI Subfoveal choroidal thickness, μm
r P r P

Age, y -0.319 0.001 -0.283 0.003
Systolic blood pressure, mm Hg 0.105 0.274 0.066 0.495
Diastolic blood pressure, mm Hg 0.138 0.150 0.164 0.086
IOP, mm Hg 0.055 0.566 0.169 0.078
Cup-to-disc ratio -0.051 0.596 -0.032 0.738
Spherical equivalent, D 0.296 0.002 0.343 <0.001
Axial length, mm -0.358 <0.001 -0.471 <0.001
Anterior chamber depth, mm -0.251 0.008 -0.376 <0.001
Lens thickness, mm 0.062 0.521 -0.001 0.994

P<0.05 indicated statistically significant. CVI: Choroidal vascularity index; IOP: Intraocular pressure.

spherical equivalent, axial length, and anterior chamber 
depth. The results of the regression analysis showed that age 
(P=0.001), axial length (P=0.02), and diagnosis (P=0.036) 
were most commonly associated with subfoveal CVI. Age 
(P=0.002), axial length (P=0.001), and diagnosis (P=0.006) 

were significantly associated with subfoveal choroidal thickness. 
After adjusting for age, axial length, or diagnosis, the spherical 
equivalent and anterior chamber depth showed no significant 
correlation with the subfoveal CVI or choroidal thickness.
DISCUSSION
This study compared the three-dimensional CVI and 
choroidal thickness between fellow eyes of unilateral APAC 
and asymmetric CPACG and the eyes of normal controls. 
In the present SS-OCT study, F-APAC and F-CPACG eyes, 
defined as PACS or PAC eyes, had higher macular CVI and 
choroidal thickness values than the control eyes. To the best 
of our knowledge, this is the first study to evaluate the three-
dimensional choroidal vasculature among the population with 
PACD and also the first to compare choroidal parameters 

Table 5 Multiple linear regression analysis of the subfoveal CVI and 

subfoveal choroidal thickness in all eyes

Factors
Subfoveal CVI Subfoveal choroidal thickness, μm
Beta P Beta P

Age, y -0.003 0.001 -1.946 0.002
Axial length, mm -0.030 0.02 -29.535 0.001
Diagnosis 0.037 0.036 31.154 0.006

P<0.05 indicated statistically significant. CVI: Choroidal vascularity index.
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among the fellow eyes of APAC(G) and CPAC(G) before any 
treatment.
The anatomical characteristics of choroid would have changed 
remarkably after IOP elevation, the use of anti-glaucoma 
eye drops, and even optic atrophy[14-16], making it unable to 
represent the original anatomical structures before the disease 
develops in eyes with APAC and CPACG eyes. In addition, it’s 
difficult to obtain clear choroidal images due to media opacity, 
such as glaucomatous flecks and corneal edema caused by 
elevated IOP, in the severely affected eyes with APAC and 
CPACG eyes. PACD is considered to be a bilateral condition 
with asymmetric severity between eyes. Untreated eyes with 
PACS have a 22% 5-year incidence of PAC, progression to 
PACG has been noted in 28.5% of eyes with PAC[24-25]. Owing 
to high anatomical similarities, the fellow eye could better 
reflect the original anatomical structure of the severely affected 
eyes[19-21]. Based on the above deduction, we chose the fellow 
untreated and less-affected eyes of APAC and CPACG, and our 
results indicate that a thicker choroid with a higher vascular 
volume is an inherent anatomical structure of the population 
with PACD and might play a role in disease pathogenesis.
In previous studies, histology was used to analyze the 
choroid, which has a limited scope of application because of 
its invasiveness and postmortem changes in choroidal blood 
flow[26-28]. OCT and OCT angiography also have limited 
applications because of their artifacts, which are easily affected 
by the refractive media and the limited detection area of the 
macula and peripapillary choroid[29-31]. SD-OCT and SS-OCT 
are emerging technologies that can generate high-resolution 
full-thickness choroid images based on longer-wavelength light 
use and higher penetration at the retinal pigment epithelium 
and are more suitable for evaluating the choroid[32-33]. Compared 
to SD-OCT, SS-OCT at a 1050-nm wavelength further improves 
penetration and resolution, enables better visualization and 
more accurate evaluation of the full-thickness choroid[11,34], and 
is more suitable for generating three-dimensional CVI.
In previous studies, choroidal thickness was often measured 
by selecting several points, such as the fovea and a few 
points from different quadrants around the macula or optic 
disc[35-38]. However, the highly vascularized choroid tissue is 
partially irregular; therefore, such methods may not display 
all dimensions of the choroid. In this study, we used the 
average choroidal thickness of a specific sector to calculate 
the mean choroidal thickness of each A-scan within the target 
area. Compared to the traditional measurement method, this 
method further reduces data loss and selection errors. In our 
study, choroidal thickness in all nine macular sectors showed 
significantly higher values in the F-APAC and F-CPACG eyes 
than in normal eyes, but there were no significant differences 
between any of the two groups in the peripapillary sectors. In 

all three groups, the mean choroidal thickness in the subfoveal 
sector was the highest, whereas that in the perinasal sector was 
the lowest. The thickness of the choroid gradually decreases 
from the fovea to the distal region. The multivariate linear 
regression analysis showed that age, axial length, and F-APAC 
or F-CAPCG diagnosis were significantly associated with 
subfoveal choroidal thickness. These results are comparable 
with previous studies[35-38]. 
In addition to choroidal thickness, we used the CVI parameter 
to assess choroids in patients with PACD. This is because 
CVI is an accurate and stable parameter for evaluating 
choroidal vasculature and is influenced by fewer physiological 
factors than choroidal thickness; CVI is determined by 
both anatomical structure and blood flow[11-12]. We replaced 
the traditional method with a three-dimensional CVI[39-40]. 
Previous studies have evaluated only a limited region of 
the choroidal vasculature using two-dimensional images. 
To comprehensively evaluate the choroidal vasculature, the 
three-dimensional CVI was used to provide more accurate 
measurements. In the current study, all nine sectors in 
the macular region showed significantly higher CVIs in 
the F-APAC and F-CPACG eyes than in the normal eyes. 
Multiple regression analysis showed that age, axial length, and 
F-APAC or F-CAPCG diagnosis were significantly associated 
with subfoveal CVI. The potential role of higher choroidal 
vasculature volume as a risk factor for PACD must be further 
investigated. Further studies are required to reveal the spatial 
correlation between CVI and clinical features such as visual 
field damage or retinal nerve fiber layer thinning. 
Although some anterior segment parameters, such as iris 
curvature, iris-ciliary process distance, and anterior chamber 
depth[22-23], can distinguish eyes predisposed to APAC or 
CPACG, in our study, no significant differences were found 
in choroidal thickness and CVI between F-APAC eyes and 
F-CPACG eyes. This suggests that the choroidal parameters 
could not predict the occurrence of APAC. However, we 
noticed that the mean choroidal thickness and CVI values 
of every sector, without exception, were slightly higher in 
F-APAC eyes than in F-CPACG eyes. This indicates that a 
thicker choroid with higher vasculature may play a role in 
acute attack onset. 
In this study, we found that not only was choroidal thickness 
an independent risk factor, but that increased CVI could 
also play a role in the pathogenesis of PACD. The choroid 
is a highly vascularized layer located between the retina and 
sclera, and choroidal overperfusion may cause increased 
choroidal thickness. Choroid expansion is expected to push 
the lens-iris diaphragm forward because of the relatively rigid 
sclera and cornea, initiating or aggravating the angle-closure 
process[9]. Simultaneously, choroidal expansion can reduce 

3D choroidal vascularity index in primary angle-closure
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intraocular volume, thereby increasing IOP[41]. Meanwhile, the 
population with PACD has the anatomic characteristics of a 
smaller eyeball, a shorter axial length, and a shallow anterior 
chamber[6]. Eyes with these anatomic abnormalities tend to 
have thicker choroids[42]; therefore, when the choroids further 
expand in this population, it will be easier to cause an angle 
closure onset and IOP increase compared with healthy people. 
Furthermore, we speculated that because the choroid itself is 
the pathway for the outflow of aqueous humor, the balance 
between IOP and choroidal perfusion pressure directly affects 
the outflow of aqueous humor[43-44]. Therefore, resistance to 
the outflow of aqueous humor due to increased CVI could 
cause the IOP to increase and promote the process of angle 
closure, thereby inducing the onset of PACD. Therefore, based 
on the underlying mechanism, we determined that there is 
a theoretical basis for exploring choroidal vascular status in 
PACD by assessing CVI and choroidal thickness.
The limitations of this study are as follows: 1) The small test 
population may have led to selection errors. This study only 
included patients with PACS and PAC and did not include 
patients who had entered the clinical stage of glaucoma. 
Therefore, we could not study the relationship between the 
choroid and the different clinical stages of angle-closure 
glaucoma. 2) To date, there is not an unified detection method 
to distinguish the choriocapillaris, Sattler layer, and Haller 
layer of the choroid[45-46]; therefore, it is still unclear which 
layer of the choroid is involved in the process of PACD. In the 
future, more advanced detection methods should be developed 
to illustrate this issue better. 3) The choroidal thickness and 
blood flow change dynamically with other factors, such as the 
time of day, body position, mood, and body temperature[47-48], 
which added contingency to our results and made the 
abnormal changes in the choroid outside the observation time 
easy to ignore. To address this issue, further 24-hour choroid 
monitoring to observe the choroid at different times during 
the day may be required. In addition, although no local drugs 
were administered directly to the fellow eyes, the drug effects 
on the fellow eyes and systemic drug effects were difficult to 
evaluate in our study. 4) This study demonstrated that changes 
in choroidal thickness and CVI are characteristics of the 
contralateral eyes of APAC and CPACG but did not clarify 
the causal relationship, that is, whether choroid changes lead 
to angle closure. Although rigorous theoretical speculation 
has been made, exact causality must be clarified through 
longitudinal cohort studies.
In summary, the fellow eyes of patients with unilateral APAC 
and asymmetric CPACG had greater macular choroidal 
thickness and increased macular CVI than the normal control 
eyes. However, neither CVI nor choroidal thickness can 
distinguish between eyes predisposed to APAC and those 

predisposed to CPACG. These changes were independent of 
confounding factors such as age and axial length, indicating 
that a thicker choroid with higher vasculature volume may be 
an inherent anatomical characteristic of eyes with PACD and 
may play a role in the pathogenesis. 
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