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Abstract
● AIM: To summarize the application of deep learning in 
detecting ophthalmic disease with ultrawide-field fundus 
images and analyze the advantages, limitations, and 
possible solutions common to all tasks.
● METHODS: We searched three academic databases, 
including PubMed, Web of Science, and Ovid, with the date 
of August 2022. We matched and screened according to the 
target keywords and publication year and retrieved a total of 
4358 research papers according to the keywords, of which 
23 studies were retrieved on applying deep learning in 
diagnosing ophthalmic disease with ultrawide-field images.
● RESULTS: Deep learning in ultrawide-field images can 
detect various ophthalmic diseases and achieve great 
performance, including diabetic retinopathy, glaucoma, 
age-related macular degeneration, retinal vein occlusions, 
retinal detachment, and other peripheral retinal diseases. 
Compared to fundus images, the ultrawide-field fundus 
scanning laser ophthalmoscopy enables the capture of the 
ocular fundus up to 200° in a single exposure, which can 
observe more areas of the retina.
● CONCLUSION: The combination of ultrawide-field 
fundus images and artificial intelligence will achieve great 
performance in diagnosing multiple ophthalmic diseases in 
the future.
● KEYWORDS: ultrawide-field fundus images; deep 
learning; disease diagnosis; ophthalmic disease
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INTRODUCTION

W ith the aging population, the number of patients 
with ophthalmic disease is increasing progressively. 

According to the report released by the World Health 
Organization in October 2019, more than 2.2 billion people 
have vision impairment or blindness worldwide, of whom 
at least 1 billion have vision impairment[1]. Among them, 
fundus disease is one of the leading causes of severe vision 
impairment and blindness, and diabetic retinopathy (DR) is one 
of the most common severe diseases secondary to diabetes[2]. 
By 2030, the global prevalence of diabetes is estimated to 
rise to 10.2%[3], age-related macular disease (AMD) will 
increase 1.2 times[4] compared with 2020 (195.6 million). 
The number of people with glaucoma is expected to increase 
to 111.8 million by 2040[5], a 1.47-fold increase from 2020. 
Similarly, more patients with pathological myopia (PM) will 
lose vision[6]. However, many patients with eye diseases cannot 
receive adequate medical diagnosis and treatment due to the 
insufficiency of medical resources. It often causes irreparable 
visual damage and increases the severe financial burden on 
patients and society. Therefore, the early screening, diagnosis, 
and treatment of eye diseases are particularly critical. To some 
extent, the development of artificial intelligence (AI) to assist 
in diagnosing ophthalmic diseases will significantly alleviate 
this situation.  
In the field of ophthalmology, deep learning (DL) has been used 
in various image data, including color fundus photography 
(CFP)[7-8], optical coherence tomography (OCT)[9], optical 
coherence tomography angiography (OCTA)[10-11], fundus 
fluorescein angiography (FFA) and ultrawide-field fundus 
(UWF) images[12-13]. CFP images are the most critical research 
object, concentrating on diagnosing DR, AMD, glaucoma, 
etc[7-8,14]. In recent years, the detection of macular lesions by 
OCT images has also gradually increased, such as macular 
edema (ME)[15-16], epiretinal membrane[17], macular hole[18], 
and high myopia[19]. Compared to traditional fundus cameras, 
UWF imaging technology can provide a wider filed of 
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retina. However, there are relatively few studies based on 
UWF images, mainly because it is a relatively new device 
technology that has not been widely applied in hospitals and 
ophthalmology clinics. Therefore, it is essential to summarize 
the application of DL in detecting ophthalmic disease with 
UWF images in recent years, combined with the limitations 
and possible solutions common to all tasks.
Ultrawide-Field Fundus Images  The UWF imaging system 
is classified into several categories: Optos and Heidelberg 
Spectralias/Heidelberg Retinal Angiography (HRA) cSLO. 
Clarus, Staurenghi, RetCam and Panoret-1000™[20-21]. The 
majority of UWF images thus far have been obtained with 
the Optos, which has allowed the capture of 200° of the 
retinal range (approximately 82% of the retina) in one shot 
without mydriasis[20,22] (Figure 1). The Optos imaging device 
uses pseudocolor combined with the red and green laser 
wavelengths, and the green (red-free) component depicts 
the retina and its vasculature. In contrast, the red component 
highlights deeper structures[21]. Furthermore, it is also called 
an ultrawide-filed pseudocolor (UWPC) image or scanning 
laser ophthalmoscope (SLO) image. Therefore, the application 
of DL in UWF images also mainly focused on Optos images 
according to the research, so the remainder of UWF images in 
this review will refer to the Optos images mainly. 
Deep Learning in Ophthalmic Diseases Based on 
Ultrawide-Field Fundus Images  We searched three 
academic databases, including PubMed, Web of Science, and 
Ovid, with the date of August 2022. We matched and screened 
according to the target keywords and publication year and 
retrieved a total of 4358 research papers according to the 
keywords, of which 562 duplicated studies were excluded. 
Among the remaining articles, 3754 without keywords were 
filtered out by title and abstract. Fifty-one full-text articles 
were found to report the application of DL in ophthalmology 
with UWF images. Among them, 23 studies were retrieved 
on applying DL in diagnosing ophthalmic disease with UWF 
images (Figure 2). These include DR, glaucoma, AMD, retinal 
detachment (RD), retinal vein obstruction (RVO), etc (Figure 3).
Single Ophthalmic Disease
Diabetic retinopathy  DR, a vascular disease of the eye, has 
emerged as one of the principal causes of vision impairment 
and blindness throughout the world[23]. Prompt diagnosis and 
timely treatment of DR has been proven to save blindness[24]. 
The high risk of DR in people with diabetes makes regular 
eye exams necessary. However, it is impractical and expensive 
for ophthalmologists to perform fundus examinations for 
all diabetic patients, given the shortage of ophthalmologists 
and the essential medical infrastructure required for the 
examinations[13]. For this reason, AI, particularly DL, promises 
to provide a better solution for screening and diagnosis. 

Historically, AI models for diagnosing DR have used standard 
fundus cameras that provide 30° to 50° images. However, 
the development of the UWF imaging fundus camera has 
become more beneficial to understanding and managing DR. 
This section provides the most comprehensive review of AI 
related to DR diagnosis based on UWF images, focusing 
on the methodological features, the clinical value of UWF 
images, and DL diagnostic models. A summary of the essential 
characteristics of the included studies is shown in Table 1.
The International Clinical Diabetic Retinopathy Scale 
(ICDRS) is a unified standard for the classification of DR, 
and is currently used in most DL studies. According to this 
criterion, it can classify the severity of DR into five levels: 
level 0 (no significant DR), level 1 (mild DR), level 2 
(moderate DR), level 3 (severe DR), and level 4 (proliferative 
DR)[24-25]. In DL related to DR diagnosis based on UWF 
images, even though the Early Treatment Diabetic Retinopathy 
Study (ETDRS) is considered a gold standard in diagnosing 
DR[26-27], it may be appropriate to use ICDRS as a standard in 
evaluating AI screening systems. There are two reasons. First, 
given the easier and broader application of ICDRS in daily 
clinical work. Second, a systematic review has shown that the 
diagnostic accuracy of neural networks might not be affected 

Figure 1 Color fundus (A) and ultrawide-field fundus (B) images.

Figure 2 Process of searching and selecting studies for the review.
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by the criteria used in ophthalmologists’ diagnosis, and the 
ICDRS as the diagnostic criterion has also achieved good 
results as well as others, which is probably because ICDRS 
was developed on ETDRS[26]. Nagasawa et al[28] proposed a 
system that can perform binary classification of proliferative 
diabetic retinopathy (PDR) using 378 resized and normalized 
UWF images. It applied Visual Geometry Group Network with 
16 layers (VGG-16) to classify DR. The sensitivity, specificity, 

and area under the curve (AUC) of the DL model were 94.7%, 
97.2%, and 96.9%, respectively. Two years later, Nagasawa 
et al[13] also used VGG-16 and data preprocessing methods 
to detect DR with 491 UWF images, 491 OCTA images, and 
491 UWF-OCTA images generated vertically by combining 
UWF and OCTA images. All images were graded into five 
types: no apparent DR (NDR), mild nonproliferative DR 
(NPDR), moderate NPDR, severe NPDR, and proliferative 

Figure 3 Different disease in ultrawide-field fundus images diagnosed by deep learning A: Diabetes retinopathy; B: Retinal deteachment; C: 

Age-related macular degeneration; D: Retinal vein obstruction; E: Pathologic myopia; F: Lattice degeneration; G: Retinitis pigmentosa; H: Coats.

Table 1 Research work reported for diagnosis of DR with DL using UWF images

Author, y Country Study 
design

Image 
number Tested disease Diagnostic 

criteria Methods Group Results

Nagasawa 
et al, 2021

Japan Retro. UWF: 491; 
OCTA: 491

NDR vs DR; 
NDR vs PDR

ETDRS VGG-16 NDR and DR UWF AUC=0.79, SE=80.9%, 
SP=55.0%

OCTA AUC=0.88, SE=83.9%, 
SP=71.6%

UWF 
OCTA

AUC=0.847, SE=78.6%, 
SP=69.8%

NDR and PDR UWF AUC=0.981, SE=90.2%, 
SP=97.0%

OCTA AUC=0.928, SE=74.5%, 
SP=97.0%

UWF 
OCTA

AUC=0.964, SE=80.4%, 
SP=96.4%

Nagasawa 
et al, 2019

Japan Retro. UWF: 378 PDR vs non-PDR ETDRS AUC=0.969, SE=94.7%, 
SP=97.2%

Wang et 
al, 2018

India Retro. UWF: 1661 Referral-warranted 
DR vs normal

ICDRS EyeArt 
algorithm

Patient levels AUC=0.873, SE=91.7%, 
SP=50.0%

Eye levels AUC=0.851, SE=90.3%, 
SP=53.6%

Oh et al, 
2021

Korea Retro. UWF: 13271 DR vs non-DR ETDRS ResNet-34, 
U-Net

ETDRS 7SF AUC=0.915, SE=83.4%, 
SP=83.4%, ACC=83.4%

ETDRS F1–F2 fundus 
images

AUC=0.887, SE=80.6%, 
SP=80.6%, ACC=80.6%

DL: Deep learning; UWF: Ultrawide-field fundus; OCTA: Optical coherence tomography angiography; DR: Diabetic retinopathy; NDR: No 

apparent diabetic retinopathy; PDR: Proliferative diabetic retinopathy; ETDRS: Early Treatment Diabetic Retinopathy Study; VGG-16: Visual 

Geometry Group Network with 16-layer; SLO: Scanning laser ophthalmoscopy; RP: Retinitis pigmentosa; ResNet-34: Residual Network with 

34-layer; ICDRS: International Clinical Diabetic Retinopathy score; AUC: Area under curve; SE: Sensitivity; SP: Specificity; ACC: Correct answer rate.
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DR (PDR) by three retinal experts using the ETDRS. The 
metrics of “NDR and DR” and “NDR and PDR” are shown 
in Table 1. To the best of our knowledge, this is the first study 
to combine UWF and OCTA imaging with DL, showing the 
great potential of multimodal with DL. Although combining 
multiple imaging techniques may overcome the weaknesses 
and provide comprehensive information, DL does not always 
produce accurate results when classifying multimodal images, 
foreshadowing that there is still tremendous room for research 
in this area.
The ETDRS 7-standard field (7SF) is the most significant 
region of UWF fundus photography. Oh et al[29] restricted the 
region of interest to the ETDRS 7SF for the DR detection 
task based on UWF fundus photography. First, they extracted 
the ETDRS 7-SF based on the optic disc and macula centers 
utilizing the U-Net model with the pretrained residual 
network with 18 layers (ResNet-18). Next, they perform the 
classification task using a pretrained and finetuned ResNet-34 
model to demonstrate the effectiveness of the automated DR 
detection. They also compared the DR detection performance 
of their system with that of a system based on the ETDRS 
F1-F2 images and the results better results were obtained. This 
study provides a new perspective for mining the clinical value 
of UWF images. Their DL model consists of a multibranch 
network, an atrous spatial pyramid pooling module (ASPP), 
and a cross-attention and depthwise attention module. 
Experiments conducted that their approach is superior to the 
current state-of-the-art methods[29]. Gradient-weighted class 
activation mapping (Grad-CAM) visualization is used to 
visualize the essential features learned by the DL models to 
analyze the DL models’ attention area, which enhancing the 
interpretability of DL models.
The corporate world is also paying close attention to the 
area of AI related to DR diagnosis based on UWF images. 
As commercial software, EYEART was first applied to the 
1661 UWF images in 2018 to automatically quantify various 
DR lesions (lipid exudates, hemorrhage, microaneurysms, 
cotton wool spots), which was used to determine the level 
of DR and define each image as a referral or nonreferral[30]. 
NPDR graded to be moderate or higher on the 5-level ICDRS 
is considered grounds for the referral. Year software was 
released in 2021 with version 2.1.014, which combines the DR 
detection algorithm of version 1.2 with the architecture of the 
DL networks. Although the image processing techniques of the 
EYEART algorithm are proprietary and not publicly available, 
the software has shown increasingly better performance 
through multiple rounds of validation and iteration on real-
world datasets[31].
Glaucoma  Glaucoma is a disease characterized by optic disc 
cupping and visual field impairment resulting in irreversible 

blindness globally[32]. Usually, the patient is frequently 
undiagnosed until very late stages when central visual acuity 
is compromised. However, detecting glaucoma at an early 
stage is challenging because patients with glaucoma are often 
asymptomatic. Effective detection methods are necessary for 
large-scale screenings to identify glaucoma as early as possible. 
One report has suggested that we could use the UWF images 
(Optos) to identify glaucoma at an early stage with their high 
reproducibility. In 2018, Masumoto et al[33] used UWF images 
to detect open angle glaucoma (OAG) characteristics and their 
severity with a CNN architecture, which was best for severe 
OAG. Nevertheless, a 25° box image centered on the optic disc 
and immediate surroundings might suffice to detect glaucoma. 
Hence, we need to determine whether classifiers trained on 
200° images perform the same, better, or worse than classifiers 
trained on the central 25° images in the UWF images. Tabuchi 
et al[34] proposed investigating the possibility of improving 
the ability of deep convolutional neural networks (DCNNs) to 
diagnose glaucoma using UWF images. In this study, VGG-16 
was conducted to examine the ability to discriminate glaucoma 
with the whole area of UWF images (Full) and the partial 
area surrounding the optic disc (Cropped), and they trimmed 
the Cropped data roughly to the area containing the optic disc 
using a U-Net network. For the full dataset, the AUC was 
0.987, the sensitivity was 0.957, and the specificity was 0.947. 
For the cropped dataset, the AUC was 0.93, the sensitivity 
was 0.868, and the specificity was 0.894. Their results showed 
that the whole UWF images were more appropriate as the 
amount of information given to a neural network for the 
discrimination of glaucoma than only the range limited to the 
periphery of the optic disc. Recently, Li et al[35] developed 
an InceptionResNetV2 neural network architecture as a DL 
system for automated glaucomatous optic neuropathy (GON) 
detection based on 22 972 UWF images from 10 590 subjects 
collected at four different institutions in China and Japan. The 
system for GON detection achieved significant progress in 
automated GON detection. It can be used for automated central 
fundus lesion detection, even in external datasets (collected by 
different types of cameras) from subjects with various ethnic 
backgrounds in two countries. In 2022, Shin et al[36] evaluated 
and compared the performance of UWF imaging and true-
color confocal scanning images in detecting glaucoma based 
on the DL classifier. They found that the ability of DL-based 
UWF imaging and true-color confocal scanning to diagnose 
glaucoma was comparable to that of the OCT parameter-based 
method. Their analysis showed no significant difference in 
glaucoma diagnosis between the two modalities. However, as 
the study only used a limited dataset (small sample size), the 
results of the DL are inferior to the studies with large sample 
sizes (Table 2).
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Age-related macular degeneration  It has been reported that 
AMD is one of the most common blindness diseases among 
the elderly in developed countries[37-38]. With the development 

of the disease, it leads to visual distortion and central vision 
decline. According to the specific characteristics of the disease, 
AMD can be divided into neovascular AMD (wet AMD) and 

Table 2 Research work reported for diagnosis of other ophthalmic diseases except for DR with DL using UWF images

Author, y Country Disease Image 
number Methods Group Results Machine type

Tabuchi et 
al, 2018

Japan Glaucoma 2627 VGG16 The full data set AUC=0.987, SE=0.957, SP=0.947 Optos

The cropped data set AUC=0.937, SE=0.868, SP=0.894

Masumoto 
et al, 2018

Japan OAG 1399 CNN Normal vs all glaucoma AUC=0.872, SE=0.813, SP=80.2 Optos

Normal vs early OAG AUC=0.83, SE=0.838, SP=0.753
Normal vs moderate 

OAG AUC=0.864, SE=0.775, SP=0.902

Normal vs severe OAG AUC=0.934, SE=0.909, SP=0.958

Li et al, 
2021

China Glaucomatous 
optic neuropathy

22972 InceptionResNetV2 China, CMAAI AUC=0.999 Optos

South-east of China AUC=0.983

North-west of China AUC=0.99

Japan AUC=0.99

Shin et al, 
2022

Korea Glaucoma 777 eyes VGG-19 UWF imaging AUC=0.904, ACC=0.836 Optos

True-color confocal 
scanner

AUC=0.868, ACC=0.814 Optos/Eidon AF™

Matsuba 
et al, 2019

Japan Wet AMD 364 DCNN DCNN AUC=0.997, SE=1, SP=0.973, 
ACC=1

Optos

Tak et al, 
2021

America Exudative AMD 957 CNN Exudative AMD ACC=1 of left, ACC=0.818 of right, 
ACC=1 of bilateral eyes

Optos

Non-exudative 
AMD

Non-exudative AMD ACC=0.923 of left, ACC=1 of right, 
ACC=0.696 of bilateral eyes

Nagasato 
et al, 2018

Japan CRVO 363 VGG-16 DL AUC=0.989, SE=0.984, SP=0.979 Optos

Nagasato 
et al, 2019

Japan BRVO 466 VGG-16 DL AUC=0.976, SE=0.94, SP=0.97 Optos

SVM AUC=0.835, SE=0.805, SP=0.843

Ohsugi et 
al, 2017

Japan RRD 649 CNN DL AUC=0.988, SE=0.976, SP=0.965 Optos

SVM AUC=0.976, SE=0.975, SP=0.893

Li et al, 
2020

China RD 10451 Inception ResNet RD and non-RD AUC=0.989, SE=0.954, SP=0.998 Optos

Macula on and off 
RD

1771 macula on RD AUC=0.917, SE=0.938, SP=0.909

Masumoto 
et al, 2019

Japan Retinitis 
pigmentosa

373 VGG-16 UWF images AUC=0.998, SE=0.993, SP=0.991 Optos

UWFA images AUC=1, SE=1, SP=0.995

Nagasawa 
et al, 2018

Japan Idiopathic macular 
holes

910 CNN MHs and normal AUC=0.999, SE=1, SP=0.995 Optos

Li et al, 
2020

China Retinal hemorrhage 16827 InceptionResNetV2 CMAAI AUC=0.999, SE=0.995, SP=0.994, 
ACC=0.993

Optos

905 ZOC AUC=0.998, SE=0.967, SP=0.987, 
ACC=0.984

1236 Xudong Ophthalmology 
Hospital

AUC=0.997, SE=0.976, SP=0.98, 
ACC=0.98

Li et al, 
2019

China Peripheral retinal 
lesions

5005 InceptionResNetV2 InceptionResNetV2 AUC=0.991, SE=0.987, SP=0.992 Optos

InceptionV3 InceptionV3 AUC=0.987, SE=0.987, SP=0.987

ResNet50 ResNet50 AUC=0.989, SE=0.968, SP=0.976

VGG16 VGG16 AUC=0.998, SE=0.991, SP=0.985

DR: Diabetic retinopathy; DL: Deep learning; AUC: Area under curve; SE: Sensitivity; SP: Specificity; ACC: Correct answer rate; OAG: Open angle 

glaucoma; UWF: Ultrawide-field; AMD Age-related macular degeneration; CRVO: Central retinal vein occlusion; BRVO: Branch retinal vein 

occlusion; RRD: Rhegmatogenous retinal detachment; RD: Retinal detachment; CMAAI: Chinese Medical Alliance for Artificial Intelligence.
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nonneovascular macular degeneration (dry AMD)[37]. The 
long-term visual prognosis following anti-VEGF therapy 
depends on the patient’s age and visual acuity at treatment 
initiation[37,39]. Thus, ophthalmic consultation and appropriate 
treatment at an early stage are essential for patients. In 2019, 
Matsuba et al[40] evaluated the diagnostic accuracy of AMD 
with 364 UWF images (AMD: 137). The DCNN exhibited 
100% sensitivity and 97.31% specificity for wet AMD images 
with an average AUC of 99.76%, which is superior to the 
diagnostic abilities of six ophthalmologists (accuracy: 81.9%). 
Although the study achieved good performance in diagnosing 
wet AMD, they excluded cases with unclear images attributed 
to vitreous hemorrhage, astrocytosis, or strong cataracts. In 
addition, issues with previous retinal photocoagulation and 
other complicating ophthalmic diseases as determined by retinal 
specialists were not included. In 2021, Tak et al[41] used a CNN 
to differentiate the exudative and nonexudative AMD with 
UWF images and determined whether the disease was present 
in the right, left, or both eyes with a relatively high degree of 
accuracy. One of the biggest strengths of this study is that the 
AI software utilized low-quality images and raw unprocessed 
clinical data to identify patterns and produce results. Unlike 
previous studies that were performed using processed images 
and datasets, AI will be more applicable to the practical clinical 
setting. Although UWF images can be used for the recognition 
and diagnosis of AMD, the accuracy for diagnosis of AMD 
in UWF images is insufficient compared with CFP and OCT, 
which may be related to some small lesions that are difficult to 
detect in UWF images at the early stage of AMD.
Retinal detachment and peripheral retinal lesions  RD is 
a disease of detachment between the retinal neuroepithelial 
layer and pigmented epithelial layer. Rhegmatogenous RD 
(RRD) is the most common type of RD, with an incidence 
rate of approximately 1/10 000[42-43]. RRD is a highly curable 
condition if adequately treated early, and the early diagnosis 
and treatment of other types of RD are also crucial. However, 
it is difficult to conduct a thorough examination of the 
peripheral retina without the professional vitreoretinal skills 
of ophthalmologists and pupil dilation of the patients. Hence, 
the advancement of UWF images provides a highly efficient 
modality for peripheral retina screening. It is possible to detect 
RD automatically using UWF images with the development 
of DL. In 2017, Ohsugi et al[43] compared the application of 
DL and support vector machine (SVM) in RRD based on 
Optos fundus photographs. Their results showed that the DL 
technology for detecting RRD had high sensitivity of 97.6% 
and specificity of 96.5%. Although their results demonstrated 
great classification performance in diagnosing RRD, they 
excluded Optos images influenced by severe cataracts or dense 
vitreous hemorrhage (411 RRD images, 420 normal images). 

Additionally, this study only compared the images of normal 
eyes and RRD. It did not include eyes with any other types of 
RD and ophthalmic diseases, which will not perform the real 
ability to diagnose RD by DL models. Three years later, 
Li et al[44] explored DL for detecting RD (RRD, exudative 
RD, and tractional RD) using 11 087 UWF images, which 
improved the limitations mentioned above and showed great 
performance. Meanwhile, they probed the ability of discerning 
macula-on RD from macula-off RD with ideal performance. 
Moreover, they also developed a DL system for automated 
identification of notable peripheral retinal lesions (NPRLs), 
including lattice degeneration and retinal breaks, based on 
UWF images[45]. This study verified the performance of 4 
different DL algorithms (InceptionResNetV2, InceptionV3, 
ResNet50, and VGG-16) with 3 preprocessing techniques as 
original, augmented, and histogram-equalized images. They 
found that the best preprocessing method in each algorithm 
was the application of original image augmentation. A 
possible explanation is that augmentation turns each image 
into several images of various conditions. Therefore, the 
sample size is increased, which enables the generalization 
of the DL system to unseen data. Compared to other DL 
algorithms, the best algorithm in each preprocessing method 
was InceptionResNetV2, which could represent a more 
complex relationship between the input (UWF image) 
and output (the label we attempt to predict). Meanwhile, 
InceptionResNetV2 can reduce the tendency of overfitting 
by mimicking the skip connections from ResNet in large 
work. However, lattice degeneration and retinal breaks were 
not classified independently due to the small retinal breaks 
that often emerged within lattice degeneration; it is difficult 
to differentiate retinal breaks from lattice degeneration. 
Later, another study detected lattice degeneration, retinal 
breaks, and RD using UWF images with CNN, which will be 
discussed later in the application of DL in diagnosing multiple 
diseases[46]. 
Other diseases  In addition, DL has been used in a few studies 
on other diseases, such as RVO, retinitis pigmentosa (RP) and 
macular holes (MHs). RVO can divided into central retinal 
vein occlusion (CRVO) and branch retinal vein occlusion 
(BRVO). It is considered as the second most frequent type of 
retinal vascular disorder[47]. Nagasato et al[48-49] applied VGG-16 
and SVM in CRVO and BRVO classification and compared 
them in 2018 and 2019, respectively, in which the SVM is 
a machine learning method showing advantages in solving 
small samples. Although the DL model outperformed the SVM 
model, the limitation is that only one classification CRVO or 
BRVO in RVO has been studied in a single study. In addition, 
RVO has not been reclassified after a comprehensive study 
and has not been included in the studies. In 2019, Masumoto et al[50] 
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evaluated the discrimination ability of a deep convolution 
neural network based on VGG-16 for UWPC imaging and 
ultrawide-field autofluorescence (UWAF) of RP (150 RP, 223 
normal). RP is one of the most frequent hereditary diseases 
of the retina, mainly due to the dystrophy of cone and rod 
photoreceptor cells[51-52]. Although the study concluded that the 
sensitivity for UWAF images was expected to be higher than 
that for UWPC images, there was no significant difference 
between them. The sensitivity and specificity in UWPC images 
are mainly close to 100%. Another study explored the ability 
of DL to diagnose idiopathic MHs with 715 normal images 
and 195 MH images[53]. Their findings suggested that MHs 
could be diagnosed with a high sensitivity of 100% and a 
high specificity of 99.5% using UWF images. However, the 
lesions of MHs are a small part of the retina in UWF images; 
we cannot ignore the influence of cataracts, vitreous opacities, 
and retinal hemorrhage, which will greatly influence the 
performance of MHs in UWF images. Additionally, whether 
it can be detected from multiple diseases with panretinal 
disease is still a problem. At the same time, compared with 
DR, glaucoma, AMD and other diseases, the incidence of 
these diseases has decreased, and the number of UWF images 
based on DL studies is also small, so there may be overfitting 
problems in these DL studies with small samples.
Furthermore, Li et al[54] mainly focused on classifying 
retinal hemorrhage (RH) and discerning whether the RH 
involved the anatomical macula, rather than a specific class 
of single disease. RH was diagnosed automatically by CNN 
(InceptionResNetV2) with 16 827 UWF images. In this 
study, all images were assigned to two categories, the RH 
and non-RH. RH category included images of various types 
of hemorrhages, even microaneurysms were also included, 
which is difficult to be distinguished from dot hemorrhages in 
the UWF images. The non-RH category included images of 
normal retinas and various retinopathies such as RD, central 
serous chorioretinopathy, and retinitis pigmentosa. Although 
they achieved great performance in classifying RH and non-
RH, the limitation of removing poor-quality images and missing 
RH diagnoses in an obscured area of UWF images is reserved.
Diagnosis of Multiple Diseases  Although DL has achieved 
a good performance in diagnosing a single disease, it still 
cannot be applied to clinical work in the real world. Because 
there are many ophthalmic diseases in different patients with 
different ophthalmic diseases that may affect each other in 
the process of diagnosis, such as retinal vascular disease (DR, 
RVO, and Coats). Using DL models to diagnosis multiple 
diseases may be a possible solution to this problem. which 
is more convenient and helpful to clinicians. Currently, the 
classification of UWF images for multiple diseases mainly 
focuses on four classification tasks, including three disease 

images and a group of normal images.
Retinal tear, retinal detachment, diabetic retinopathy, 
and pathologic myopia  In 2021, Zhang et al[55] developed 
a set of early abnormal screening systems named DeepUWF 
for diagnosing for retinal tears, RD, DR, and PM with 2644 
UWF images. Additionally, they proposed six kinds of image 
preprocessing techniques to solve the limitation of the low 
contrast of UWF images, which will improve the ability 
to extract fine features by depth model and achieve good 
sensitivity and specificity. Meanwhile, they found that the 
image optimization methods may be beneficial in improving 
the prediction ability of the models by adjusting the contrast, 
brightness, and gray level of the images and highlighting 
the features of the lesions and diseases. In addition, different 
algorithms have different prediction capabilities for each 
preprocessing method. In the same year, aiming to alleviate 
severe class imbalance and similarity between classes, Zhang 
et al[56] proposed two-stage, and one-stage classification 
strategies. The one-step strategy is a five-class classification 
model, which was trained directly on the sign dataset that 
includes normal fundus images or on the disease dataset that 
includes normal fundus images. The two-step classification 
strategy contains two steps: First, binary classification models 
are used to distinguish between normal images and images 
with abnormal signs (or symptoms). At this stage, it focuses 
on achieving a good compromise between sensitivity and 
specificity. Second, the four-class classification models identify 
abnormal signs or diagnose retinal diseases. This phase focuses 
on identifying samples of minority classes in the context 
of class imbalance. Their experimental results show that 
DeepUWF-Plus is effective when using the two-stage strategy, 
especially for identifying signs or symptoms of minor diseases. 
This improves the practicality of fundus screening and enables 
ophthalmologists to provide more comprehensive fundus 
assessments. 
Lattice degeneration, retinal breaks, and retinal 
detachment  Zhang et al[46]  included 911-eligible UWF 
images to investigate the detection of lattice degeneration, 
retinal breaks, and RD in tessellated eyes using UWF images. 
They used a combined deep-learning system of 3 optimal 
binary classification models trained using the seResNext50 
algorithm with 2 preprocessing methods (original resizing and 
cropping). This study preliminarily verifies the feasibility of 
a DL system as a screening tool to detect lattice degeneration, 
retinal breaks, and RD. Compared to the cropping method, the 
better preprocessing approach for RD and lattice degeneration 
is an original resizing method, while the cropping method 
achieved better outcomes on retinal breaks. The authors 
thought it might be related to the lesion size of the disease. 
Lesions of retinal breaks are relatively small to UWF images, 
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for which the cropping method enables the DL system to 
learn more details about lesions. In contrast, the range of RD 
and the size of lattice degeneration is often large enough for 
direct detection, and excessive irrelevant information may be 
augmented and interfere with the training of the DL model.
Diabetic retinopathy, retinitis pigmentosa, and Coats  Xie 
et al[57] used the ResNet-34 model as the backbone to propose a 
novel DL model based on UWF images for detecting different 
ophthalmic diseases, Coats, RP, and DR, which can extract 
more deep-level features of UWF images. The proposed 
architecture consists of a multibranch network, ASPP, 
depthwise and cross-attention modules. The multibranch 
network is based on a depthwise attention module combined 
with the ResNet-34 model and ASPP module. Furthermore, 
the cross-attention module could learn the distinction and 
relationship among different diseases by channel and spatial 
attention strategies and integrate the extracted attention map 
via cross-fusion mode to gain the relevant features of specific 
diseases. In this study, they conduct ablation experiments 
with certain modules, verifying that the devised module 
effectively improves the classification performance. Compared 
to several network structures including the single ResNet-34 
model (Res34), multibranch network (MB), multibranch 
network with ASPP (MB-ASPP), MB-ASPP and depthwise 
attention module (MB-ASPP-DA) and cross-attention modules 
(proposed), the architecture of the multibranch network based 
on the ResNet-34 model was superior to that of the single 
ResNet-34 model, and the ASPP module also played a role in 
the improving the classification results. However, the small 
number of datasets is insufficient for a deep neural network to 
learn deep-level and discriminative features. The network only 
learns limited ophthalmic disease species, including RP, DR, 
and Coats. 
Retinal vascular disease  In 2022, Abitbol et al[58] used a 
multilayer deep convolutional neural network (DenseNet121) 
to differentiate UWF images between different vascular 
diseases (DR, sickle cell retinopathy, and RVO) and healthy 
controls. In this study, 224 UWF images were included, 
of which 169 were of retinal vascular diseases, and 55 
were healthy controls, with an overall accuracy of 88.4%. 
Meanwhile, they used fivefold cross-validation to evaluate 
the performances of the DL framework, which maximizes 
performances while minimizing bias of the small datasets. 
In Summary, they showed the feasibility of automated DL 
classification for detecting several retinal vascular diseases 
using UWF images. In the future, we need to enlarge the types 
of retinal vascular diseases and the number of datasets to 
achieve better performance. 
Deep Learning Models in Ultrawide-Field Fundus Images  
In computer vision, CNNs have become the mainstream 

approach, such as VGGNet[59], ResNet[60], DenseNet[61]. In the 
classification tasks for the diagnosis and grading of ophthalmic 
disease in UWF images, VGGNet, ResNet, and DensNet 
are the most widely used classification backbone networks, 
especially the VGG-16 as shown in Tables 1 and 2. 
VGGNet  VGGNet was designed by the Visual Geometry 
Group, Department of Engineering Science, University 
of Oxford. It has released several convolutional network 
models starting with VGG-16 to VGG-19[59]. Exploring the 
influence of the convolutional network depth on its precision 
in a wide-ranging image recognition context is their focus. 
A comprehensive assessment of networks of ever-growing 
profundity, utilizing a 3×3 convolution filter architecture 
and 2×2 max-pooling layers, is their primary contribution. 
Achieving a remarkable enhancement of the prior-art 
arrangements can be accomplished by increasing the depth 
to 16-19 weight layers. This innovation mainly brings two 
advantages, namely reducing the number of network parameters 
and improving the network’s performance. First, the 
concatenation of two 3×3 convolutional layers is equivalent to 
a 5×5 convolutional layer, and the concatenation of three 3×3 
convolutional layers is equivalent to a 7×7 convolutional layer, 
which means the receptive fields of the three 3×3 convolutional 
layers are equivalent in size in a 7×7 convolutional layer. At the 
same time, it has fewer parameters than a 7×7 convolutional 
layer so that the model will be smaller and the model can be 
designed deeper. Second, and most importantly, three 3×3 
convolutional layers have more nonlinear transformations 
than one 7×7 convolutional layer (the former can use three 
ReLU activation functions, while the latter can use them only 
once). This gives CNN a stronger learning ability for features 
and a stronger nonlinear fitting ability. The block structure 
that reuses the same convolution kernel size multiple times 
is widely used after VGGNet. Because it can extract more 
complex and expressive features, this model is also widely 
used in computer-aided diagnosis of ophthalmic diseases based 
on medical images (CFP, UWF, OCTA, and so on). As shown 
in Tables 1 and 2, some DL methods based on UWF images 
mainly use VGGNet and achieve good performance[48-50].
ResNet  Another DL network widely used in UWF 
images is ResNet, designed by He et al[60] from Microsoft 
Research. A residual learning framework is presented to 
facilitate the training of networks that are far more profound 
than those employed before. Reformulating the layers as 
residual functions concerning the layer inputs, instead of 
learning unreferenced functions, is what they do. Providing 
comprehensive empirical evidence, they demonstrate that 
optimizing residual networks is simpler and accuracy can be 
augmented with a greater depth. An example of this is the 
ImageNet dataset, where residual nets with a depth of up to 
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152 layers (8 times deeper than VGGNet) are evaluated, yet 
still of a lesser complexity. The significance of the depth of 
representations in numerous visual recognition tasks is made 
evident. As mentioned above, as the network’s depth increases, 
the network’s accuracy should increase synchronously, except 
for the overfitting problem. One problem with increasing 
network depth is propagating the gradient from back to front. 
After expanding the network depth, the gradient of the earlier 
layers will be very small. These layers are stuck in learning, 
which is the gradient vanishing problem. The second problem 
with deep networks is training. When the network is deeper, 
the parameter space is more extensive, and the optimization 
problem becomes more complicated, so simply increasing the 
network depth will result in higher training errors. Residual 
network ResNet designs a residual module that allows us to 
train deeper networks. In addition, traditional convolutional 
layers or fully connected layers have problems such as loss 
during information transfer. To a certain degree, ResNet 
resolves this issue. The integrity of the data is safeguarded 
by transmitting it directly to the output. The entire network 
is only required to comprehend a portion of the divergence 
between the input and output, thus simplifying the learning 
objectives and complexity. After using the structure of ResNet, 
the training error of the ResNet network gradually decreases 
as the number of layers increases, and the performance on the 
test dataset will also improves. Therefore, it is widely used as a 
common benchmark model in many medical image (CFP and 
UWF images) analysis tasks. 
DnesNet  The densely connected convolutional network 
(DenseNet) model has the same basic idea as ResNet, but 
it builds a dense connection between all the preceding and 
following layers. DenseNet departs from the stereotypical 
thinking of deepening the number of layers and widening the 
network structure to improve the network performance and 
consider the perspective of features[61]. Through feature reuse 
and bypass settings, it not only drastically reduces the number 
of network parameters but also alleviates the vanishing gradient 
problem to a certain extent[61]. Another highlight of DenseNet 
is the connection of features on the channel to achieve feature 
reuse. These features allow DenseNet to perform better than 
ResNet with fewer parameters and lower computational costs. 
Several other methods have been proposed to improve model 
performance. Deeper networks tend to perform better, but 
gradient dispersion is a common problem. We also need to 
pay attention to the large network structure parameters, the 
large amount of computation, and the high consumption costs. 
Additionally, to improve the network model’s superiority, it is 
necessary to consider its complexity and properly adjust the 
convolution structure of the convolution module.

Inception and other networks  To maintain the sparsity of the 
neural network structure and fully use the high computational 
performance of dense matrices, GoogleNet proposes a 
deep convolutional neural network architecture codenamed 
Inception to achieve this purpose[62-63]. A meticulously crafted 
design that augments the network’s computing resources has 
been the primary feature of this architecture, resulting in a 
more effective utilization of them. The computational budget is 
kept constant, and the depth and width remain unchanged. The 
Hebbian principle and multiscale processing intuition were the 
basis for designing architectural decisions to maximize quality.
The most effective way to enhance network performance is 
to expand its depth and breadth. The depth of the network 
is denoted by the number of layers, while the width is the 
number of channels in each layer. Despite this, there are two 
drawbacks[63]: 1) Overfitting is likely to occur. As the depth 
and breadth widen, the parameters to be acquired become 
more extensive, thus making them vulnerable to overfitting. 
2) A larger network will result in a greater computational 
demand. Therefore, the solution to the above shortcomings is 
introducing sparse features and converting the fully connected 
layers into sparse connections. The innovation of Inception is 
to use different sizes of convolution kernels to process the input 
and then splice the obtained feature maps. The main purpose is 
to increase the feature diversification and improve the network 
adaptability. Google proposed adding the residual structure 
ResNet into the Inception module, fully using the identity 
mapping characteristics of the ResNet network structure, 
improving the grid accuracy, and simultaneously solving the 
problems of grid degradation and gradient disappearance[64]. 
Some research also uses a model combining Inception and 
ResNet for UWF image analysis[35,44,54]. In addition, another 
algorithm network based on Inception is Xception. It is 
improved based on Inception v3. All 3×3 modules in Inception 
v3 are replaced with depthwise separable convolution. 
This separable depth convolution can reduce many model 
parameters and computational complexity while retaining high 
accuracy[60,64].
DISCUSSION
AI and UWF images help the realize automatic diagnosis and 
recognition of multiple ophthalmic diseases. Although there 
have been some research results for common ophthalmic 
diseases such as DR and glaucoma, the research on AI based 
on DL in UWF images is still limited and cannot be applied 
to clinical work. There are mainly the following reasons. 
First, although UWF images can provide a 200° view with 
an ellipsoidal mirror and can comprehensively evaluate the 
condition of the retina, it will lead to distortion of the UWF 
images, including significant warping of the retinal area, 
magnification of peripheral areas, and artifactual stretching 
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of the horizontal axis. The patient’s eyelashes and tarsal 
gland will appear in UWF images, which will affect the key 
feature extraction of the images[65]. Second, images with low 
image quality caused by various diseases that cause refractive 
medium changes will influence the identification of diseases 
using DL models, such as cataracts, vitreous opacity, and 
severe fundus hemorrhage. Currently, many low-quality 
images have been excluded, resulting in differences between 
the recognition of disease images in the real world. Naturally, 
some studies have used AI to automatically extract the true 
retinal area from UWF images based on image processing[66-67], 
such as a generative adversarial network called AMD-GAN 
based on the attention encoder and multibranch structure for 
retinal disease detection from UWF images, and the prior 
knowledge of experts is utilized to improve the detection 
results[67]. Meanwhile, a few other studies explored the effect 
of different preprocessing techniques for UWF images, such as 
original, augmented, and histogram-equalized images, which 
can improve the performance in detecting disease in UWF 
images[45]. Third, UWF images reflect the planar features of 
the retina and it cannot clearly show the deep structures of the 
retina. It cannot correctly identify whether there is edema in 
the macular area and the extent of edema and other lesions in 
deep layers. In addition, the small sample size of UWF images 
is another matter in the application of DL, which is difficult 
to collect in the clinic because it is relatively new equipment 
in the clinic. Most researchers use image augmentation and 
transfer learning to address the problem of small training sets 
based on DCNN. Transfer learning fixes the lower weights 
optimized to recognize structures in general images using 
feedforward methods and retrains the upper consequences 
using backpropagation. The model can identify features of 
ophthalmological images much faster and has a significantly 
smaller training dataset and fewer computational requirements. 
The lack of data in a particular domain is addressed using 
images from similar domains. 
Currently, UWF image-based AI for the diagnosis of 
ophthalmic diseases mainly focuses on unimodal images. 
However, in clinical work, although a unimodal image can 
provide a preliminary examination of a disease but cannot 
provide a comprehensive assessment of a patient’s condition. 
Clinicians often need to combine information from multiple 
images when making accurate diagnoses and appropriate 
treatment decisions for various retinal diseases[68]. Therefore, 
there is a need to further explore the effectiveness of AI 
in diagnosing multiple ophthalmic diseases in multiple 
modalities. For example, combining UWF images with other 
imaging techniques, such as OCT, FFA, OCTA, and other 
images. It will help in the comprehensive assessment of a 
patient’s condition. There is also a need to develop more 

flexible AI models that can input different image modalities for 
comprehensive diagnosis. This will be applicable in complex 
clinical work environments and will help in the long-term 
integrated and intelligent management of patients.
With the development of DL, CNNs have become the main 
algorithmic model for disease diagnosis, and the depth 
and complexity of CNNs have been increasing to achieve 
superior performance. However, this will lead to the need 
to consume a large amount of storage space and arithmetic 
resources. Large network models such as VGG16, ResNet152, 
and DenseNet121 are accompanied by a large number of 
model parameters and computations during the training 
process, which makes it difficult to run on mobile devices 
or embedded platforms. Therefore, it is important to study 
lightweight CNNs, such as shuffleNet[69], MobileNet[70], 
GhostNet[71], etc. On the basis of guaranteeing accuracy, the 
model parameters and computation amount are reduced to 
balance the performance and efficiency. Among the many 
studies investigating the combination of DL and UWF imaging 
modalities, the main model used is the VGG16 network model, 
and the performance of the lightweight network model for 
diagnostic recognition of ophthalmic diseases can be further 
explored.
The critical factors for the success of DL are that the network 
is deep enough, the connections are complex enough, and 
the nonlinear combination of activation functions allows 
feature extraction from raw data at any level. However, 
these advantages lead to a lack of interpretability of DL: one 
cannot understand the logic underlying the decisions made 
by the “black box” model and cannot judge the reliability 
of the algorithm’s decisions. Some studies visualized the 
DL systems in detecting disease with heatmaps to explain 
the rationale of DL. Similarly, Kermany et al[72] used the 
occlusion test to identify the areas of greatest importance 
used by the DL model in assigning a diagnosis of AMD and 
identified the most clinically significant regions of pathology. 
In addition, interpretative algorithms allow network users to 
better understand the network’s strengths and weaknesses. 
Interpretative algorithms are crucial to the future development, 
debugging, and widespread deployment of DL models. 
Therefore, it should enhance subsequent research on applying 
interpretive algorithms in ophthalmology. Regarding the 
research process, some studies take an isolated approach 
to assessing DL diagnostic accuracy, and there is a lack of 
consensus on a principled approach to calculating the sample 
size required to train DL models[73]. The metric parameters 
reflecting model performance are not uniform, and the 
selection of thresholds lacks standards. The above issues 
suggest the need for continuous improvement in follow-up.
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CONCLUSION
From CFP to UWF images, the advancement of equipment 
provides more information on ophthalmic disease. With the 
development of DL, AI has made significant accomplishments 
in diagnosing ophthalmic disease with UWF images, which 
will be used in clinical practice broadly and significantly 
impact the medical and ophthalmology community to benefit 
people from least developed countries and regions in the 
future.
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