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Abstract
● With the advancement of retinal imaging, hyperreflective 
foci (HRF) on optical coherence tomography (OCT) images 
have gained significant attention as potential biological 
biomarkers for retinal neuroinflammation. However, these 
biomarkers, represented by HRF, present pose challenges in 
terms of localization, quantification, and require substantial 
time and resources. In recent years, the progress and 
utilization of artificial intelligence (AI) have provided powerful 
tools for the analysis of biological markers. AI technology 
enables use machine learning (ML), deep learning (DL) and 
other technologies to precise characterization of changes 
in biological biomarkers during disease progression and 
facilitates quantitative assessments. Based on ophthalmic 
images, AI has significant implications for early screening, 
diagnostic grading, treatment efficacy evaluation, treatment 
recommendations, and prognosis development in common 
ophthalmic diseases. Moreover, it will help reduce the 
reliance of the healthcare system on human labor, which 
has the potential to simplify and expedite clinical trials, 
enhance the reliability and professionalism of disease 
management, and improve the prediction of adverse events. 
This article offers a comprehensive review of the application 
of AI in combination with HRF on OCT images in ophthalmic 
diseases including age-related macular degeneration (AMD), 
diabetic macular edema (DME), retinal vein occlusion (RVO) 
and other retinal diseases and presents prospects for their 
utilization.
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OVERVIEW OF ARTIFICIAL INTELLIGENCE 
TECHNOLOGY

I n 1955, John McCarthy coined the term “artificial 
intelligence” (AI) to refer to the science and engineering 

involved in creating intelligent machines[1]. Initially, AI was 
primarily used for solving complex mathematical problems. 
However, in recent years, with the rapid advancement of 
information technology in the medical field, there has been a 
growing focus on utilizing AI to assist clinical researchers in 
studying diseases.
AI is a discipline that encompasses the development of 
theories, methods, techniques, and applications aimed at 
simulating, extending, and enhancing human intelligence. Its 
objective is to emulate human thinking and utilize efficient 
algorithms to uncover patterns from vast amounts of data, 
enabling the summarization, interpretation, prediction, and 
analysis of phenomena and unknown information[2-3]. With 
the progress of medical equipment and medical imaging 
technology, the digitization and storage of medical data have 
become possible. AI has emerged as one of the most influential 
information technologies, garnering extensive attention and 
application in the field of medicine[4]. Machine learning (ML), 
an integral part of AI, comprises algorithms specifically 
designed for biological data and biological problems[5]. 
Traditional ML algorithms include support vector machines 
and random forests. Deep learning (DL), a subfield of ML, 
has the capability to integrate large datasets and learn complex 
relationships[6], thereby assisting clinical practitioners in their 
work. DL includes research models such as convolutional 
neural networks[7] and artificial neural networks[8]. In the 
research and application of images, people tend to be only 
interested in certain parts of the image, the significant step in 

Artificial intelligence for hyperreflective foci



1139

Int J Ophthalmol,    Vol. 17,    No. 6,  Jun. 18,  2024        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

computer vision technology is image segmentation, which is 
an important part of image semantic understanding[9]. Medical 
image segmentation is a challenging step in the construction 
of AI models, and it exemplifies the perfect integration of the 
medical and computer fields. Medical images often face issues 
such as poor contrasts, noise interference, unclear boundaries, 
and poor visual effects[10]. Effective image segmentation 
techniques can extract clear target regions efficiently. They are 
essential for lesion quantification and choice of subsequent 
treatment methods. Traditional image segmentation methods 
include threshold method, edge detection method, region 
growing segmentation, and Cluster analysis. Another 
class of segmentation methods is based on Convolutional 
Neural Networks, because of its excellent feature extraction 
capabilities, it greatly improves the performance of medical 
image segmentation. The magnitude of the training set 
significantly impacts the design and functionality of the model 
recognition system. An inadequate training set size could 
potentially lead to significant model bias. Both the size of 
the training and test sets contribute to the variance of model 
performance assessment[11]. Empirical research indicates that 
an adequate sample size is essential for the development and 
validation of AI predictive models. However, in the context 
of medical imaging, a definitive approach to determining the 
sample size of AI training sets has yet to be established. It 
is generally conceded that a sufficiently large sample size is 
critical for robust development and accurate validation of AI-
based predictive models[12].
In recent years, the application of AI in the field of ophthalmology 
has undergone rapid development. It has made significant 
contributions to the study of diseases such as diabetic 
retinopathy (DR)[13], age-related macular degeneration (AMD)[14], 
glaucoma[15-16], and retinopathy of prematurity (ROP)[17]. 
In addition, AI also includes the detection of genes related 
to ophthalmic diseases, ocular metabolites, and pathology 
ocular metabolites[18]. The research on AI demonstrates a 
diversification of diseases and an in-depth exploration, which 
holds great significance for disease screening, diagnosis, 
treatment, and prediction (Figure 1).
OVERVIEW OF HYPERREFLECTIVE FOCI
With the advancement of ophthalmic imaging, continuous 

innovation has occurred in the techniques of spectral-domain 
optical coherence tomography (SD-OCT) and optical coherence 
tomography angiography (OCTA), facilitating the acquisition 
of high-resolution retinal anatomical microstructure images 
and imaging features of different layers of capillaries in clinical 
practice. Hyperreflective foci (HRF) are biological markers of 
retinal neuroinflammation that reveal the prognosis and clinical 
significance of various ophthalmic diseases. HRF are defined 
as discrete, circular, scattered, and well-demarcated high-
signal lesions observed on OCT[19]. Research has identified the 
presence of HRF in diseases such as diabetic macular edema 
(DME)[20-21], AMD[22], retinal vascular occlusions[23-24], central 
serous chorioretinopathy (CSC)[25], and degenerative retinal 
diseases[26]. The exact clinical and pathological mechanisms 
of HRF are not yet fully understood, but they are closely 
related to lipid exudation and translocated retinal pigment 
epithelial cells in DME, as well as macrophages, microglial 
cells, and degenerated photoreceptor cells in AMD[27]. As our 
understanding of HRF continues to deepen, their significance 
in predicting disease progression, treatment outcomes, and 
visual prognosis becomes increasingly significant.
A D VA N C E M E N T S  I N  A I  R E S E A R C H  O N 
HYPERREFLECTIVE FOCI IN OPHTHALMIC 
DISEASES
Age-Related Macular Degeneration  AMD is a major cause 
of severe vision impairment among the elderly population 
worldwide. Given the ongoing increase in the aging population, 
it is projected that the number of individuals affected by this 
condition will reach 288 million by the year 2040[28]. OCT 
has emerged as the primary imaging modality for the initial 
evaluation, subsequent treatment, and follow-up of AMD. The 
integration of AI into OCT images processing has significantly 
enhanced the analysis of OCT images and the identification of 
specific biological markers. HRF are of particular significance 
observed in OCT images of AMD patients, which are believed 
to primarily comprise lipid accumulation, microglia cells, 
and migrated or transdifferentiated retinal pigment epithelial 
cells[29]. HRF play a critical role in predicting the progression 
of AMD.
Bogunovic et al[30] employed a convolutional neural network to 
automatically segment HRF situated between different retinal 

Figure 1 OCT images submitted to the AI model for feature extraction and analysis  OCT: Optical coherence tomography; AI: Artificial intelligence.
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layers in order to predict intermediate AMD progression. 
Throughout the study, AMD patients underwent follow-up 
every three months, with their progress recorded through 
OCT imaging. The average duration of follow-up was 
37.86±13.8mo. The AI model’s predictive performance was 
evaluated using the area under the curve (AUC) for different 
follow-up periods. Within the initial two years, the predicted 
AUC reached 0.75. Additionally, the researchers identified a 
correlation between the volume of HRF in the outer nuclear 
layer and the regression of drusen. In 2018, researchers utilized 
ML algorithms in combination with biological markers, 
including HRF, drusen, and retinal morphology observed on 
OCT, to develop a model capable of estimating early AMD 
progression. The study encompassed a total of 495 AMD-
affected eyes, of which 159 eyes converted to advanced 
AMD within two years, 114 eyes advanced to choroidal 
neovascularization, and another 45 eyes progressed to 
geographic atrophy. The study highlighted that key quantitative 
features associated with disease progression were outer retinal 
layer thickness, HRF, and drusen[31].
Waldstein et al[32] conducted a two-year follow-up study 
involving 512 patients diagnosed with AMD, during which a 
total of 8529 OCT images were collected. DL algorithms were 
utilized for the precise localization and quantitative analysis 
of drusen and HRF on OCT images. The findings revealed 
that eyes that progressed to advanced AMD exhibited larger 
volume of drusen and HRF within the eye. Specifically, in 
patients who progressed to macular atrophy, the HRF were 
observed to cluster around 0.5 μm from the center of the 
macula[32]. Moreover, it was confirmed that HRF serve as a 
significant negative prognostic indicator strongly associated 
with poor outcomes in best-corrected visual acuity[33]. The 
evident role of AI technology in the diagnosis of AMD patients 
not only enhances disease detection but also provides novel 
avenues for treatment and follow-up.
Diabetic Macular Edema  DR is a prevalent microvascular 
complication of diabetes mellitus, often causing severe visual 
impairment and being a leading cause of blindness among 
the working-age population[34]. DME, a manifestation of DR, 
can occur at any stage of the disease and lead to a notable 
decline in visual acuity. Despite the high prevalence and the 
consequential impact on vision, early screening plays a vital 
role in timely diagnosis and treatment and offers substantial 
benefits to most patients. OCT is a non-contact and rapid 
imaging technique that provides high-resolution retinal 
microstructural images. Its utilization significantly enhances 
the detection rate and accuracy of DME. Furthermore, OCT 
generates ample data to support research in the field of AI.
Yu et al[35] developed a deep convolutional neural network 
model using the GoogLeNet algorithm to automatically 

identify HRF in the retina. Their model demonstrated improved 
accuracy in segmenting interlayer HRF compared to traditional 
models, providing valuable assistance in clinical diagnosis. 
Schmidt et al[36] utilized a dataset of 2596 OCT B-scan images 
from seven patients to create a model based on the Blob 
algorithm. This model accurately identified HRF between 
the outer plexiform layer and the retinal pigment epithelium, 
achieving an accuracy, sensitivity, and specificity of 96.3%, 
88.4%, and 97.5%, respectively. Wei et al[37] proposed the 
DBR neural network for precise segmentation of OCT images, 
exhibiting a processing speed of 57ms per OCT image, which 
is 150ms faster than alternative methods, greatly enhancing 
clinical efficiency. Since the segmentation of HRF in retinal 
SD-OCT volumes with low contrast features posed challenges, 
researchers had made advancements by improving the 
existing 3D U-Net algorithm and employing image enhancement 
techniques to generate additional enhanced images. Experimental 
results had demonstrated the effectiveness of this approach in 
achieving rapid segmentation and reliable outcomes, thereby 
facilitating clinical diagnosis and disease monitoring[38].
In the diagnosis and prognosis of DME, various biological 
markers are considered crucial, including intraretinal fluid 
and subretinal fluid volume, external limiting membrane and 
ellipsoid zone integrity, and the presence of HRF[39]. Midena 
et al[40] employed an AI model to automatically segment these 
biological markers, including HRF, intraretinal fluid, and 
subretinal fluid, in OCT images for both quantitative and visual 
analysis. The results were compared with manual annotations 
by ophthalmology experts, revealing nearly identical outcomes 
between the AI software and clinical evaluation. The automated 
quantification of IRF, subretinal fluid (SRF), extermal limiting 
membranes (ELM), and ellipsoid zone (EZ) displayed an 
accuracy ranging from 94.7% to 95.7%. Notably, the intraclass 
correlation coefficient for counting HRF was 0.97, indicating 
excellent reliability. In another study, DL algorithms were 
employed to develop a model capable of classifying macular 
edema resulting from DR, retinal vein occlusion (RVO), and 
AMD by identifying biological markers such as IRF, SRF, 
and HRF. This model exhibited high accuracy and reliability, 
comparable to expert interpretation [41].
Retinal Vein Occlusion  RVO stands as one of the most 
prevalent retinal vascular disorders, often affecting elderly male 
patients[42]. The pathogenesis of RVO is closely linked to factors 
such as vascular endothelial injury, hemodynamic changes, 
intraocular pressure, and localized eye compression[43]. AI has 
emerged as a valuable clinical tool for the early screening of 
RVO. Nagasato et al[44] proposed the use of ultra-widefield 
fundus photographs in combination with DL algorithms for 
the accurate early diagnosis of branch RVO, offering particular 
benefits in regions with limited access to ophthalmic medical 
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centers. Additionally, OCT had proven to be highly effective 
in diagnosing and managing RVO. However, manually 
identifying biological markers during OCT scanning could be 
error-prone and time-consuming. To address this challenge, 
researchers had proposed the application of the ResU-Net 
algorithm for segmenting HRF in OCT images. ResU-Nets 
demonstrated superior accuracy in detecting HRF and could be 
applied to identify HRF in various retinal diseases, beyond the 
specific diseases for which the models were originally trained[45].
Other Retinal Diseases  Uveitis and CSC represent common 
ophthalmic diseases. CSC, predominantly affecting male 
patients, is characterized by neurosensory retinal detachment 
in the central macular area caused by defective retinal 
pigment epithelial leakage[46]. Current treatment options for 
CSC encompass observation, laser therapy, photodynamic 
therapy[47], and oral eplerenone[48]. However, a definitive 
consensus on the optimal treatment strategy is yet to be 
reached. Consequently, researchers had employed decision 
tree algorithms to construct an AI model for assessing the 
treatment outcomes of CSC. The study indicated that HRF and 
age play decisive roles in the prognosis of CSC. Patients with 
retinal HRF benefit from oral eplerenone, whereas those with 
choroidal HRF have improved prognoses with PDT treatment. 
Furthermore, researchers had explored the correlation between 
the risk of macular neovascularization formation and biological 
markers such as retinal pigment epithelium thickness and 
retinal thickness[49].
To address the quantification of vitreous HRF (vHF) in uveitis 
patients, Lee et al[50] developed a DL algorithm based on OCT 
images. The training dataset comprised 648 B-scan OCT 
images. The validation results of the DL model demonstrated 
good agreement with the manually obtained results by clinical 
doctors, with a Dice coefficient of 0.69. This signified the 
reliable quantification ability of the AI model and the time and 
effort savings facilitated by the efficient image segmentation 
technique, reducing the need for manual analysis.
CONCLUSION AND OUTLOOK
AI plays a pivotal role in the detection, diagnosis, grading, and 
classification of various ophthalmic conditions, particularly in 
retinal diseases. This emerging technology offers significant 
advantages in automatic screening and diagnosis, while also 
mitigating the biases associated with manual measurements 
and counting. By employing AI visualization and quantification 
techniques, common biological markers in imaging studies can 
be accurately analyzed. Furthermore, AI technology presents 
valuable opportunities for patients in remote areas with limited 
access to medical resources, thus reducing the likelihood of 
delayed treatment and alleviating the burden on the healthcare 
system. Numerous studies have demonstrated the high 
accuracy and sensitivity of AI. 

However, the utilization of AI technology has certain 
limitations. These limitations can be divided into two aspects: 
AI model development and clinical application. In terms of AI 
model development, limitations often exist in the following 
areas: 1) Image quality: patients with cataracts and other 
diseases leading to unclear media or poor patient cooperation 
can degrade image quality. Additionally, the quality of 
images can also be influenced by the imaging equipment and 
operators. 2) Sample size: the accuracy of AI models is closely 
related to the size of the collected sample, with larger sample 
sizes leading to higher model accuracy. 3) Manual annotation: 
before training AI models, images in the dataset need to be 
manually annotated for the region of interest. However, due 
to the small size of HRF, which can induce bias, and have a 
significant impact on the performance of AI models. On the 
other hand, limitations in clinical application include: 1) Patient 
heterogeneity: the samples used for developing AI models 
often focus on a specific ethnicity or a particular region. 
Therefore, differences between patients, such as age, gender, 
ethnicity, and region, occur biases in results and affects the 
performance of AI models[51]. 2) Single target diseases: current 
research suggests that a specific AI model is often designed 
to detect a particular disease, which means the possibility 
of missed diagnoses in clinical applications[52-53]. 3) Disease 
restrictions: the construction of AI models often requires a 
large amount of data support. Consequently, constructing AI 
models for rare diseases can be challenging and result in lower 
accuracy and sensitivity[4]. According to the above, researchers 
should strive to increase the sample size as much as possible 
to reduce biases. Additionally, manual annotation of images 
in the dataset often necessitates the involvement of experts in 
the relevant diseases to ensure data validity through repeated 
checks. Data collection and management of ophthalmic 
examinations, model development, clinical trials, and clinical 
applications are the four keys of ophthalmic AI. Do each step 
well, ensuring that the models developed in the study have 
high quality, reliability, and stability[54].
In conclusion, AI has garnered significant research interest 
in the realm of ophthalmic image processing and shows 
promising development prospects. Its accuracy has reached 
a level on par with clinical experts. Nonetheless, AI does 
have certain limitations. It is anticipated that researchers 
will continue to delve into and enhance AI systems in future 
studies, aiming to facilitate their extensive application in the 
medical field.
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