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Abstract
● Various studies have suggested several environmental, 
pharmacological, medical, and optical interventions and 
some are in use but their efficacy in myopia control may 
be transient, and the cellular, molecular, and biochemical 
mechanisms involved unclear. Daylight exposure is currently 
regarded as an effective and enduring strategy in the 
control of myopia development and progression. However, 
the mechanism behind the effect of outdoor exposure 
and its association with genetic predisposition and other 
relatively more significant environmental factors on myopia 
is still a conundrum. This review focuses on survey-based 
and intervention-based studies carried out to propose a 
mechanism that accounts for myopia development and 
important for its control. 
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INTRODUCTION 

T he protective role of daylight on myopia development 
has been highlighted by several studies over the last 2 

decades. Nowadays, research is focused on understanding 
underlying mechanisms of myopia development and 
controlling the epidemic[1-4].  This will be discussed 
subsequently.

In 2016, myopia was reported to be a public health challenge 
because it increases the risk of having irreversible blindness 
from pre-senile cataract, glaucoma, retinal detachment, and 
macular atrophy[5-6]. Also, myopia complications significantly 
affect the socioeconomic well-being of its sufferers reducing 
their quality of life substantially[6]. The increasing prevalence 
of myopia is a major issue with global economic impact[5-8]. 
Holden et al[5] reports that 1.046 billion people were myopic 
in 2000 worldwide, and 1.89 billion (27%) in 2010, and 
myopia will affect 2.56 billion individuals in 2020. In the next 
three decades, the affected people worldwide will double if 
current trends continue, making myopia an epidemic and a 
leading cause of blindness. Currently, it has been estimated 
that the worldwide annual potential lost productivity due to 
visual impairment from uncorrected myopia is almost US$250 
billion[9]. High or pathological myopia (myopia beyond 
-5.00 D) which affects one-fifth of the myopic population, 
mostly working age patients, is a major cause of visual 
impairment and blindness[5-6]. 
Furthermore, myopia prevalence has risen dramatically over the 
past 50y especially in South and East Asia in schoolchildren and 
young adults (80%–90%) including China, the Republic of 
Korea, Singapore and other areas with significant economic 
transition. The prevalence rate is lower in Australia (~4%–
30%)[10-11], Europe (10%–23%)[12-13], the USA (15%–41%)[14],
and Africa (4%–6%)[15]. However, myopia is responsible for 
preventable blindness in many developing countries including 
urban regions of India and Africa[5,16-19]. Based on these studies, 
higher rate of urbanization and education are responsible for 
the rural-urban differences, but the explanation is not clear 
or conclusive[5]. This rapid increase in prevalence has been 
linked to a combination of genetic predisposition and stronger 
environmental influence[20-25]. Although heredity plays a 
key role in early myopia development, with children of two 
myopic parents being 6.4 times more likely to have juvenile 
myopia[26-27], controllable environmental factors are a major 
focus of epidemiological studies as the dramatic rise in myopia 
prevalence cannot be explained by genetics alone[20-25]. This 
has been further highlighted by findings from animal model 
research. Animal model studies has also helped reveal the more 

Myopia and outdoor effect



1145

Int J Ophthalmol,    Vol. 17,    No. 6,  Jun. 18,  2024        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

developed cues that guide emmetropization, vision-dependent 
nature of eye growth and the biochemical signal cascade 
occurring in the retina, choroid and sclera[28]. 
Finding the best control method for abnormal eye growth 
through environmental manipulation is more plausible as 
environmental factors are modifiable sometimes with very 
little effort. For instance, increasing the lighting levels in 
child’s classroom with more fluorescent tubes or increasing the 
number of windows in the class or spending optimal level of 
time outdoors is easier than gene therapy[5,8,27-29].
An interplay of certain risks factors accounts for myopia 
onset and progression. Some play more significant roles than 
others[26-27,30] (Table 1)[1-6,16,20-22,25,27-29,31-63].
Ambient Illuminance Levels  Time outdoor means the amount 
of time spent out-of-door, outside or in the open air. In the UK, 
recently a survey revealed that 74% of UK children spent less 
than an hour daily outside[64]. The normal outdoor light level is 
between 30 000–50 000 lx[33,64]. The illuminance levels outside 
vary with factors such as topography, geographical location 
and season. For instance, the brightness level in Singapore 
and Sydney where most of the questionnaire-based surveys 
were conducted have outdoor illuminance of almost 100 times 
higher than the indoor levels due to plane dioptric topographies 
outdoor[2-3,25,65]. The fluorescent tubes indoor produces levels of 
up to 630 lx. During summer in Houston, Texas, the outdoor 

lighting levels can be beyond 130 000 lx and almost 20 000 lx 
under tree shades[25]. 
Animal Models for Lighting Level and Myopia  The first 
animal model for environmentally induced myopia was 
described by Wiesel and Raviola in 1977, using monkeys. 
They reported that visual deprivation is the chief cause of axial 
length (AL) elongation and myopia[66-67]. Recently, ambient 
lighting levels has been put forward as another important 
factor[33]. Several underlying mechanisms have also been 
proposed by various researchers using different species. We 
will focus on a few that are linked to lighting levels[28]. In 
1996, Kröger and Wagner[68] discovered that the eye size of 
blue acara was dependent upon the wavelength of light used to 
rear them during development. In the same year ultrastructural 
alterations, after myopia was induced in chicks following two 
weeks of translucent occlusion, were observed using electron 
micrographs. The 60% thinning of the choroid, 20% thinning 
of the retina, lengthening of the photoreceptor mainly the 
rods outer segment closely adjacent to the retinal pigment 
epithelium (RPE) basement membrane were reported[55,69]. 
Rada et al[70] in 2002 then proposed that axial elongation due 
to form-deprivation is the outcome of proteoglycan (PG) 
production and accumulation in the chick’s sclera. In 2003, 
Wiechmann and Rada[71] suggested that refractive errors 
mainly myopia are linked to melatonin and melatonin receptors 

Table 1 Demographic, behavioural, and optical risk factors of myopia prevalence and progression

S/n Risk factors Component References Summary of results and interpretation

1 Time spent outdoors Environmental [1-6,25,31-37] Causal role to incident myopia; stronger evidence than near work

2 AL Ocular and optical [38-39] Causal role for early onset myopia

3 Close work Environmental [29,38] Additive role, with parental myopia

4 Urbanization Environmental [5,20-22,39-40] Additive role; near work

5 Age Demographic [41-45] Additive role; highest progression was at 6–7y. Decreased with 
increasing age. Prevalence rate was higher in 12–13 year-olds; 
depending on region

6 Diet Environmental [46-49] Additive role; vitamin D supplements improve accommodation 
accuracy/dopamine levels in myopia. Others are refined sugar. 
Inconsistent evidence

7 Ethnicity Genetic [16,20-22,39-40] Causal role; genetic predisposition to myopia

8 Family history (parental and 
sibling myopia)

Genetic [5,27,36] Causal role; responsible for early onset myopia (at 3y)

9 Gender Demographic [39,40,50-52] Additive role; no statistically significant role in certain studies

10 Genes/heredity Genetic [5,16,36,53] Causal role; predisposition; but not a major cause of increased myopia 
prevalence rate. Accounts for small percentage of total myopia

11 Nearpoint esophoria and 
bifocal lens

Optical [32,51,54] Causal role; convergence has stronger link to myopia development 
than accommodation

12 Peripheral defocus 
(hyperopic)

Optical [28,35,55-58] Causal role in some studies/additive role combined with bright 
illumination

13 Seasons Environmental [59-60] Additive role; myopia progression rates and AL elongation was lower 
in summer than winter

14 Intraocular pressure Ocular [61-62] Additive role; thin corneas have low resistance to normal IOP. Evidence 
not conclusive

15 Birth weight Demographic [36,63] Additive role; birth weight increased with AL. Inconsistent evidence

AL: Axial length; IOP: Intraocular pressure.
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localized in cornea and sclera of Xenopus laevis. They further 
proposed that these nonneural ocular tissues exhibit circadian 
rhythms in cellular proliferation, extracellular matrix (ECM) 
turnover and wound healing[71]. In 2007, after inducing 
myopia in 2-day old chicks with translucent plastic googles 
for 10d, suprachoroidal fluid showed an upregulation of the 
glucosaminoglycan (GAG) synthesis. During recovery, GAG 
synthesis declines as the choroidal permeability increases[72]. 
Although the mechanism is still vague, alterations in retinal and 
choroidal retinoic acid production may cause a drop in scleral 
GAG synthesis rate that accompanies increase in AL extension 
rate using the eyes of common juvenile marmosets and in 
vivo and in vitro analyses[73]. In 2008, researchers postulated a 
biological link between abnormal eye growth in myopia and 
less time spent outdoors or less light intensity[2-3] or the spectral 
components of light[74-75]. This link is not clear, but using 
chick’s eye, it was concluded that retinal neurotransmitter 
(NT) dopamine released in response to increased lighting 
conditions may inhibit eye elongation[76]. Dopamine is an 
important neuromodulator that acts via two major groups D1-
like (D1 & D5) and D2-like (D2, D3 and D4) receptors. These 
receptors are found in various ocular tissues[76-77]. In 2013, 
Park et al[78] stated that low levels of dopamine in mice caused 
increase susceptibility to form-deprivation myopia (FDM). The 
following year, Jiang et al[77] using 2 weeks old albino guinea 
pigs, reported that apomorphine, a dopamine antagonist, 
inhibited myopia development at a higher dose (250 ng per 
injection) via lower affinity D1-like receptors and promoted 
myopia progression at a lower dose (25 ng per injection) 
stimulating the higher affinity D2-like receptors. Later in 2015, 
Smith et al[75] proposed that exposing infant rhesus monkeys to 
long wavelength lighting (red filters) under certain conditions, 
may promote a hyperopic shift.
Earlier, Mertz and Wallman[79] proposed that retinal signals 
including dopamine, glucagon, acetylcholine, etc., can 
stimulate the RPE to releases a biologically active modulator 
that regulates retinoic acid secretion from the adjacent choroid 
which in turn guides scleral growth/reduced PG synthesis and 
axial myopia. Studies have been carried out using the sclera 
of tree shrews because their sclera is similar to the human 
sclera more than that of the chick[80]. Other factors identified in 
studies responsible for a weak and thin myopic sclera include 
disorganized collagen fibrils, decrease in fibril diameter, altered 
expression of the sclera genes including genes for collagen 
type 1 and matrix metalloproteinase (MMPs)[80-81].
Some of the methodologies of these studies are invasive 
and lack accuracy to show the difference in vivo between an 
emmetropic and a myopic sclera. For instance ocular biometry 
is not accurate and sensitive to AL changes[21]. Also, most 
studies on the emmetropization and myopigenic mechanisms 

have used FDM models although FDM and lens-induced 
myopia (LIM) have different mechanisms[21]. In 2009, Smith 
et al[57] reported the existence of an independent, vision-
related mechanism in the retina of infant rhesus monkeys 
that contributes to eye growth in response to restricted retinal 
form deprivation. They proposed a similarity in mechanism 
in the human eye. This is in tandem with previous reports 
by McBrien et al[56] who using tree shrews showed that the 
recovery from induced axial myopia is driven by an active 
scleral adjustment process sensitive to retinal image feedback.
Although the mechanisms in these animal studies using chicks, 
tree shrews, macaque monkeys, rhesus monkeys, marmosets 
and guinea pigs are similar, extrapolation into human findings 
may be difficult and unreasonable as the mechanisms operate 
differently. However, they have helped clarify reports from 
epidemiological studies and reveal potential myopia treatment 
strategies[28,55-57,69]. 
In 2006, Cohen et al[31] reported that bright light (10 000 lx) 
hampered myopia development in chicks while dim ambient 
light (50 lx) promoted myopia progression. Six years 
later, Cohen et al[31] using the same chick model proposed 
an underlying mechanism by showing a link between 
exposure to light-dark cycles and continuous light, and 
vitreal dihydroxyphenylacetic acid (DOPAC) and dopamine 
concentrations. Low vitreal DOPAC concentrations, flat 
cornea, eye elongation and myopia development were 
associated with light-dark cycles[33]. In the same year, Siegwart 
et al[82] reported that juvenile tree shrews with FDM and LIM 
had statistically significant reduction in FDM by 44% and LIM 
by 39% after an approximately 8h/d exposure to ~16 000 lx 
light.
Recently, Torii et al[83] using animal models and human 
subjects discovered that violet light (VL) may have a 
preventive influence on adult myopia. VL (with wavelength 
360 to 400 nm: shorter than blue light) is at the upper end of 
ultraviolet (UV) A. Animal models were male white leghorn 
chicks of FDM and LIM. Using special biotechniques (real 
time-polymerase chain reaction, RT-PCR), it was discovered 
that the myopia protective gene (EGR1) expression was 
amplified in the chorioretina of the 6–13d old chicks following 
7d exposure to VL than blue light. Furthermore, the VL-exposed 
chicks developed -4.59 D myopia compared to the VL-covered 
chicks (-15.2 D of myopia). In the second part, Japanese 
myopic students (10–15 years of age) were followed up for a 
year with VL-blocking glasses and VL-transmitting contact 
lenses (CL) and another group (13–18y) wore partially VL-
blocking CL and VL-transmitting CL, followed for 1y as well. 
Using ultrasound techniques, AL elongation occurred in the 
younger males wearing VL-blocking glasses and CL (0.25 mm) 
compared to the VL-transmitting glasses or CL (0.17 mm). 
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Those wearing partially VL-blocking glasses (0.19 mm) had 
higher AL elongation compared to those wearing the VL-
transmitting lenses (0.14 mm). The ocular biometry technique 
used is not accurate and sensitive to AL changes[83]. 
Using various animal models and human participants, 
researchers have established that emmetropization is governed 
by a retina-centred visual control and certain nonvisual cues 
rather than the brain or simple retinal blur (Figure 1)[28]. The 
nonvisual cues include a biochemical cascade involving 
molecules in the retina, choroid and sclera. Some of these 
modulators such as dopamine are linked to light levels rather 
than near work and time spent outdoors rather than sporting 
activities[25]. Zhou et al[22] proposed that emmetropization-
guided homeostatic eye growth functions through activation 
of dopamine D1-like and D2-like receptors in specific cell 
types distributed throughout the retina. Dopamine found in 
the inner plexiform layer of the human retina is produced by 
the amacrine cells after light stimulation[76]. Although these 
light-related factors show a stronger link to myopia than 
air pollution or diet, a greater insight on the link between 
dopamine and myopia is still explored[21].
In conclusion, the myopia epidemic is a growing public health 
concern. Methods to prevent its onset or control its progression 
has been in the front burner in recent epidemiological studies. 
Genetic susceptibility, near work, outdoor time and other 
environmental factors are currently explored. Although time 
spent outdoors has more evidence presently, the underlying 
mechanisms are neither clear nor independent. The fact that 
myopia prevention/control is dependent on outdoor time or 
near work time or a combination of both is also inconclusive. 
Survey-Based Studies for Time Outdoor and Myopia  
Evidence from surveys reveal a strong association between 
school children’s time spent outdoor and myopia development. 
Myopia prevalence has been reported to be highest between 
4 and 15y while 9–12y is a common time of onset[41-43]. 
There are marked variations in prevalence based on ethnicity 
and urbanization with higher myopia prevalence in East 
Asian population[16,84-86]. In 2000, Mutti et al[87] in the Orinda 
Longitudinal Study of Myopia (OLSM), studied eighth grade 
participants who had one or both parents myopic. They 
established that the effect of near work was not as significant as 
heredity let alone time spent outdoors in accounting for myopia 
development in the future[29,87-88]. A recent survey using the data 
from OLSM followed up school children from 1989 to 2001 
and 21% (111 children) of the 514 subjects became myopic. 
This proportion had myopic parents and spent less time 
outdoors[37]. Furthermore, it was deduced after the study that 
the myopic subjects spent around 8h outdoors/week compared 
time spent by the non-myopes (about 12h outdoors/week). 
They proposed that outdoor activity acted independently 

of near work[37,42]. The incomplete follow-up (till 8th grade) 
data affected the reliability of this survey. Jones-Jordan et 
al[50] in 2012 followed up myopic children in a Collaborative 
Longitudinal Evaluation of Ethnicity and Refractive Error 
(CLEERE) survey from 1989 to 2009. They reported that near 
work (mainly reading) with other co-variables controlled, 
was responsible for the slightly significant annual myopic 
progression (0.08 D/y) in boys[89]. The results are not consistent 
with Pärssinen and Lyyra’s[51] report in 1993 which stated that 
near work was associated with juvenile myopia development 
in girls. Although CLEERE study pointed that the role of 
outdoor activity may be important for myopia onset than for 
its progression in children. This is however inconclusive[50]. 
Sydney Myopia Study (SMS) in 2008 showed the association 
between myopia prevalence and near work, indoor and outdoor 
activities through a population-based survey for year 1 and 
year 7 school children in Sydney. Data were obtained from 
questionnaires filled by children’s parents and adjustments 
were made for parental history of myopia, ethnicity and 
gender. Refractive errors were determined by cycloplegic 
autorefraction. With proper details given and a large sample 
size (over 4000 children), time spent outdoors was found to be 
associated with more hyperopic refractions[2].
In 2009, the Sydney Adolescent Vascular and Eye Study 
(SAVES) revealed that time spent outdoors had a protective 
role against juvenile myopia development mostly between 
ages 6 and 12y, with other covariables such as near work and 
parental myopia complementing the effect. Also, having two 
myopic parents increased the odds ratio of incident myopia in 
the younger participants of the study[1]. French et al[24] revealed 
reports from the SAVES and SMS that East Asian younger 
(6–12y) and older (12–17y) children spent less time outdoors 
than their Caucasian counterparts. Furthermore, boys spent 
more time outdoors than the girls while the girls did more near 
work than boys. As the children get older, their myopigenic 

Figure 1 Myopic and hyperopic defocus adapted from https://

contactlensupdate.com/2011/11/16/use-of-contact-lenses-in-

myopia-control-a-case-study.
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activities increase which may account for myopia progression 
in this young population.
In 2009, Dirani et al[65] reported data from the Singapore 
Cohort Study of Risk factors for Myopia (SCORM) for 
individuals from 11–20y of age during a 2006 visit. It was 
shown that teenagers and children who spent less time 
outdoors (3.09h/d and 2.38h/d respectively) were myopic 
compared to their nonmyopic counterparts (3.59h/d and 2.74h/d).
Moreover, outdoor sports helped reduce myopia prevalence 
rate according to the study[65], while parental and sibling myopia 
where significant risk factors of myopia in the UK[90-93]. A follow-
up study conducted in 2014 in Finland revealed that myopia 
progression from childhood into adulthood is dependent on 
heredity and outdoor time[42]. It combined questionnaires and 
intervention. The 240 myopic school children (with mean 
age of 10.9y) were recruited into a randomized clinical trial 
and followed up for 23y. Myopia progression was higher at 
a younger age, with myopic parent(s); odd ratio of 1.42 for 
children with one myopic parent and 3.39 for two parents[26] 
and in females 0.093 D annually[50,89]. Also, more reading time 
and less time outdoors and sports (<3h daily) was significantly 
associated with myopia progression. After 3y, it was observed 
further that myopia progression was not reduced by reading 
with bifocals or without single vision correction. However, 
near work at childhood was not a strong predictor of adult 
myopia[42]. 
Some of these questionnaire-based studies, longitudinal or 
cross-sectional with large sample sizes, covariates controlled 
and cycloplegic refraction techniques adopted, may be however 
unreliable. They have focused on a particular schooling grade 
and may be beset with recall bias (underestimation of time 
spent outdoors by children) or participation bias (significantly 
more participants than nonparticipants) therefore may require 
more research[2-3,25]. Also, it is important for ethnicity to be 
considered in these studies. This will help reveal the extent 
or mechanism (genetic or environmental) by which it affects 
myopia development and outdoor time influence on incident 
myopia or progression. For instance, out of all the survey-
dependent studies, the CLEERE study was the most ethnically 
mixed survey including Asians, Caucasians, Native Americans, 
African-Americans, Hispanics and Native Americans[16,85-88]. 
In Europe, formal education has been reported to be associated 
with the increased myopia prevalence. For instance, myopia 
prevalence among cohorts in the European Eye Epidemiology 
(E3) Consortium study who attained higher educational levels 
increased from 26% between 1920 and 1929 to 40% between 
1960 and 1969[94]. This Meta-analysis cross-sectional study 
reported that myopia prevalence across Europe has amplified 
significantly (mostly across western and northern Europe); 
similar to the level reported in North America but lower 

than the proportion in Southeast Asian regions in which time 
outdoor was seen to be a more consistent causal factor[16,94]. 
In the UK, findings from the Aston Eye Study reveal that 
myopia prevalence, which was discovered to be 29.4% in 
the 12–13 year-olds and 9.9% in the 6–7 year-olds, is mostly 
linked to parental and sibling myopia. Genetic factors such 
as parental myopia according to the study account for only a 
small percentage of myopia cases[93]. Higher educational level 
plays stronger additive role rather than a causal role[94].  Recent 
studies including subjects of age ranges 12–54y showed that 
prevalence rate increased from 25% to 41%,  which agrees 
with the additive role rather than causal role of education, 
even in young adulthood[39-40]. In Japan, a 6-year longitudinal 
study of same high school students showed heightened myopia 
prevalence from 35.5% in 1985 to 58.1% in 1991[95-97]. Other 
factors involved were gender and race; prevalence is lower in 
males than females, higher in white than black Americans[39-41].
Several studies conducted across the globe over a century 
suggests that urbanization, outdoor activity, and more formal 
education accounts for the increase in myopia prevalence[4,94,97]. 
The prevalence in schoolchildren in Taiwan is up to 70%, and 
62% in Hong Kong, China[4,97]. In 1999 as well as in 2012, 
Hong Kong schoolchildren showed earlier myopia onset and 
higher myopia progression and prevalence compared to their 
European counterparts. Although non-cycloplegic refraction 
was used, it was suggested that it was because environmental 
factors may have reached a maximum and stable level[4,97].
Outdoor time remains a more consistent environmental 
factor which may also have a direct effect on human AL[16,94]. 
For instance, in 2004, Stone et al[97] using partial coherence 
interferometry to measure the distance from the cornea to the 
RPE revealed that daily fluctuation in the eye’s AL of human 
participants occurs. The highest AL is present at midday.
Interventional Studies for Time Outdoor and Myopia  In 
2013, Wu et al[6]  studied 7–11y old Chinese myopic and non-
myopic children of years 1 to 5 from two elementary schools. 
One group of the participants were administered 80min/d or 
6.7h/wk Recess Outside Class room (ROC) program, other 
groups had low-concentration atropine eye drops instilled and 
a control group. After a one-year follow up, it was discovered 
that outdoor activities within class recess (ROC) regulated 
myopia onset (8.4% new myopes in ROC group compared 
to 17.7% in control group) and transition (-0.25 D in ROC 
group compared to -0.38 D in control) towards myopia in non-
myopes. No significant effect occurred in myopes. However, 
a combination of atropine treatment and the ROC slightly 
inhibited slowly progressing myopia in myopic children. 
It was concluded that outdoor light levels inhibit myopia 
development through pupil constriction and reduction of visual 
blur in myopes or through dopamine release stimulation with 
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inhibits AL elongation[6]. The limitation of this pilot study was 
contamination between the control and intervention group 
during the study and lack of ensuring a specific number of 
hours was spent outdoors by a particular group[6]. Another 
study (called ROCT711: 11h outdoor for 7d) compensated for 
these limitations by following up children in Taiwan, China 
from 16 different schools for a year[7]. They were exposed for 
11h a week to light at low (1000 lx) and high levels (3000 lx) and AL 
measurements were carried out with a noncontact technique. 
It was concluded that less myopia shift occurred with longer 
time spent (200min) under relatively lower light levels 
(1000 lx). Between the intervention and control groups, 
shift in the myopic direction in both dioptres and AL were 
-0.35 vs -0.47 D and 0.28 vs 0.33 mm increases from baseline 
amount. Also, new cases of myopia reduced from 17.4% to 
14.5%[7]. Earlier, in 2015, similar results were reported in a 
3-year randomized trial in Guangzhou, China in which the 
“cumulative incidence rate of myopia in the intervention and 
control groups” was assessed[85]. Refractive and biometric 
measurements were taken from participants (mostly 6y of 
age). The intervention included introducing 40min of outdoor 
time after school hours in school days and ensuring the same 
time was spent outdoors during weekends and holidays. With 
952 children in intervention group and 951 in the control 
groups, the incidence rate of myopia was approximately 30% 
in intervention group and 40% in control group after 3-years 
amounting to an overall 23% reduction in new cases of 
myopia. The myopic shift or cumulative spherical equivalent 
refraction (SER) was found to be -1.42 D and -1.59 D in the 
intervention and control groups respectively. No statistically 
significant difference in AL was found in both groups[20]. 
Although the 23% was smaller than expected, they concluded 
that it is in tandem with the study by Wu et al[6] which showed 
a 50% reduction after 80min of outdoor time. This reveals a 
dose-response association between outdoor time and myopia. 
Also, the findings show the positive protection of time spent 
outdoors against pathological myopia development common 
in early juvenile myopia sufferers[16,20,32,63]. Although these 
intervention studies and randomized trials have limitations 
such as observational bias due to incomplete masking 
of the examiners, their data are consistent with existing 
epidemiological findings and animal studies[20]. 
PROPOSED HUMAN MYOPIA DEVELOPMENT 
MECHANISMS 
Several theories have been proposed to explain the process 
of emmetropization, refractive error development and 
myopia control in animal models and human subjects. In 
2004, Wallman and Winawer[98] concluded that genetic, 
environmental or a combination of both factors can cause a 
failure of the emmetropization process and result in refractive 

error. The different mechanisms researchers have used to 
explain myopia onset and progression may be grouped into 
blur, biochemical signal and the “BINGE” (blur, illumination, 
near-work, genetics, education) theories. 
Blur Hypothesis  Optical blur or retinal defocus is an 
important factor of the visual environment. It could be 
sustained or intermittent, myopic or hyperopic, induced 
or disease-related. Induced blur could have a short, as in 
progressive addition lenses (PAL)[99-100] or long-lasting effect, 
as in dual-focus CL[58]. Defocus of retinal imagery governs 
refractive development and is the basis for certain myopia 
treatment strategies[101-105]. For instance, a sustained optically 
imposed peripheral myopia has been found to produce central 
hyperopia and hamper axial elongation (Figure 1)[58]. The 
blur hypothesis was first postulated by Thorn et al[106]. It 
states that blurred vision or the inability to appropriately use 
blur cues initiates myopic progression. These researchers 
believed that children who develop myopia or who have 
progressive myopia inherited an abnormal sensitivity to retinal 
image blur. This is also compounded by a compensating 
adjustment to accommodative gain, neural deblurring and 
processing[106-107].
In 2003, Gwiazda et al[99] showed that myopic defocus controls 
myopia progression if induced by multifocal lenses (mostly 
bifocal soft CL due to the reduction in accommodative demand 
during near work[100-101]. Adler and Millodot[91] revealed that 
defocus is myopiagenic. It was concluded by Smith et al[75] 

that peripheral myopic defocus must be of a large degree 
and cover wider retinal area to cause a long term, beneficial 
and significant myopic control. Moreover, refractive error 
development in response to visual stimuli is governed by 
homeostatic nonvisual signals and visually-modulated control 
signals in the retina[99,103]. 
To minimize retinal blur, emmetropization and accommodation 
are two important postnatal visually-mediated control 
mechanisms utilized by the eye. Accommodation responds to 
a more sudden onset of blur than emmetropization[99]. While 
emmetropization occurs locally in the retina and is directly 
associated with eye growth, accommodation has an indirect 
and less significant effect on refractive development. There 
is limited evidence of its link with blur-induced myopia[108]. 
Convergence (near heterophoria) compared to accommodation, 
may be have a stronger link to myopia[42]. Emmetropization is 
a process maintained throughout childhood into early adult life 
in which the optical (cornea and lens) and the ocular (retina, 
choroid and sclera) components combine to prevent refractive 
error[67,109]. FDM induced with minus lens or translucent 
diffuser can be reversed by an emmetropization-based 
recovery revealed in several animal model experiments[110]. 
In conclusion, blur is the stimulus, the retina is the centre of 
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origination of signals. Emmetropization, accommodation 
and convergence are the mechanisms to respond but their 
mechanisms differ in operation. Myopia occurs/progresses 
if the compensating mechanisms are unable to counter the 
stimulus effect (Figure 2). This theory is incomplete[101,111].
Biochemical Signal Hypothesis  Hung and Cuiffreda (1999)[103] 
postulated another theory called the Incremental Retinal-
Defocus theory (IRD) which states that environmentally 
induced alteration in the retinal defocus magnitude during an 
increment of normally occurring “genetically” programmed 
AL elongation will result in modulation of the normal 
genetically-programmed NT release rate[103-105]. In other words, 
defocus mediates release of NT from “visual feedback”. The 
NT is dopamine present in human retinal inner plexiform 
layer and distal photoreceptor tips of clawed frog retina[112-113]. 
Retinal dopamine controls vitreous chamber depth by 
influencing the PG and GAG synthesis in the scleral ECM, 
and altering choroidal thickness, based on animal model 
experiments[56,110,114-115]. However, in 1991 evidence with optic-
nerve-sectioned eyes that grew beyond emmetropia showed 
that it was not clear whether feedback from the retinal ganglion 
cells or the central nervous system was responsible[116]. 
Melatonin, glucagon, acetylcholine and retinoic acid have 
also been proposed to be linked with eye growth[71,79,101,117-118]. 
Recent studies have postulated that ambient illumination and 
VL, rather than blur, may affect retinal dopamine release rate 
and AL elongation[25,33,84]. 
“BINGE” Hypothesis  The next theory states that the 
retinal feedback ensues through a proposed sustained non-
decayed Near-Work Induced Transient Myopia (NITM). 
NITM combines with the near accommodative response and 
correlated steady-state error to cause permanent myopia, 
especially in school children with myopic parents[37,90-91]. They 
support earlier findings that under-correction or undetected 
myopic defocus promotes myopia progression in developing 
eyes of children[91-92].
However, the evidence for the role of near work is deficient 
and inconsistent[52]. The researchers have stated that the high 
illuminance levels theory operates by increasing the blood 
concentration of hydrolysed vitamin D molecule (25(OH)D) 
and dopamine release rate which regulates the AL elongation 
and myopia development[1,24,34] (Figure 3). In conclusion, all 
mechanisms are not separate, therefore the best treatment 
method should factor in all these possible mechanisms[119].
“Ideal myopia control would likely include modification 
to all purported mechanisms+may include low dose 
atropine+modification to indoor lighting+even biometric 
feedback on working distance & time outdoors”[119].
“The Myopic Cycle”—Summary  The “myopic cycle” 

is a model summarizing the combination of causal and 
additive factors in the genesis and progression of human 
myopia based on human-based studies and animal model 
experiments[1,23-25,30,36]. Juvenile myopia results from the 
interplay of genetic susceptibility and visual environment (blur, 
illumination)[27]. Outdoor time of 2h daily may protect the 
growing eyes and early adults from developing myopia[2,120-124]. 
Moderate progression of myopia occurs as some other factors 
such as near work and education contribute their effects[94]. 
Further progression into sight-threatening high myopia in 
young adulthood and beyond, occurs at a more molecular level 
as the scleral biomechanical properties are altered abnormally 
and significantly by several factors including diet, regardless 
of the race[5,110-111,120-136].
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