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Abstract
● In his beautiful book, Consilience: The Unity of Knowledge, 
the eminent biologist Edward O Wilson, advocates the 
need for integration and reconciliation across the sciences. 
He defines consilience as “literally a ‘jumping together’ of 
knowledge with a linking of facts … to create a common 
groundwork of explanation”. It is the premise of this paper 
that as much as basic biomedical research is in need of data 
generation using the latest available techniques– unifying 
available knowledge is just as critical. This involves the 
necessity to resolve contradictory findings, reduce silos, and 
acknowledge complexity. We take the cornea and the lens as 
case studies of our premise. Specifically, in this perspective, 
we discuss the conflicting and fragmented information on 
protein aggregation, oxidative damage, and fibrosis. These 
are fields of study that are integrally tied to anterior segment 
research. Our goal is to highlight the vital need for Wilson’s 
consilience and unity of knowledge which in turn should lead 
to enhanced rigor and reproducibility, and most importantly, 
to greater understanding and not simply knowing. 
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INTRODUCTION

I n July 1844, 35-year-old Charles Darwin finished the first 
report of his new theory: evolution by natural selection. As 

narrated by Darwin’s great-great-grandson, the author Randal 
Keynes in his book, Darwin: His Daughter and Human 
Evolution, Charles next relayed to his wife Emma, “I write 
this in case of my sudden death as my most solemn and last 
request, that you will devote £400 to (the essay’s) publication”. 
Mrs. Darwin read the 230-page essay carefully. She was 
supportive but skeptical. She hit at the heart of the theory by 
questioning how it could explain a structure as complex as the 
eye. Finding his explanation unconvincing, Charles Darwin 
set aside his essay and went on to study his barnacles, until 
14y later, when Alfred Wallace’s letter and manuscript arrived, 
jolting Darwin to write his book, On the Origin of Species. But 
even then, Charles could not really answer Emma’s question. 
Charles wrote in his book, “To suppose that the eye with all 
its inimitable contrivances … could have been formed by 
natural selection, seems, I freely confess, absurd in the highest 
degree”. Over a 150y later, the awe and the beauty of the eye 
have not diminished. 
Whether you are looking for complexity or for simplicity, 
the eye has it. If you are into complexity, take the retina: five 
types of neurons, multiple subtypes of support cells, blood 
vessels, immune cells, and that is just at the anatomical level. 
But if you are into simplicity, take the lens: two types of cells 
–epithelial cells at the front and fiber cells in the rest. No 
nerves, no blood vessels, not even nuclei in most cells. Even 
organelles like ribosomes in the core lens fiber cells which 
may scatter light–gone. This means no translation and not even 
transcription. What could be simpler than that? Yet this simple 
structure is responsible for the number 1 cause of blindness 
worldwide[1-2]. Globally, there are approximately 20 million 
people who are bilaterally blind because of cataract. Even if 
we look at just the United States, over 24 million Americans 
are affected by cataract, and given an aging population, 
the numbers are expected to rise significantly (https://bit.
ly/46NhV2C). Millions of surgeries are performed each year 
with considerable cost. And it gets worse. Cataract has a twin 
–presbyopia which is the loss of accommodative ability. And 
just like a cloudy lens is no good; a lens that cannot focus is 
no good either. Presbyopia is essentially universal. Practically 
every US adult over the age of 50 has it[3-4].
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A core mission of the National Eye Institute (NEI), a 
component of the U.S. National Institutes of Health (NIH), 
is to “understand the eye and visual system”. Related to this 
mission, the NEI has the long-standing Cornea Program 
as well as Lens and Cataract Program. The aim of the 
former program is to support research projects directed 
at understanding the normal and diseased cornea (e.g., 
keratoconus and Fuchs’ endothelial dystrophy) as well as tear-
secreting glands and their dysfunction (e.g., dry eye disease). 
The aim of the latter program is to support research directed 
at understanding normal and diseased ocular lens (especially 
cataract and presbyopia). This understanding is essential to 
be able to reduce the burden of visual disorders in the United 
States and worldwide. Over the years, these NEI programs 
have supported many research projects which can be searched 
via the publicly accessible RePORTER database going all the 
way to 1985: https://reporter.nih.gov/advanced-search.
A large number of ideas have been proposed to understand 
biology and disease of the anterior segment. Figure 1 lists a 

subset of these terms directed at funded lens and cataract projects. 
This list can easily be doubled. Each entry addresses a relatively-
isolated part of the lens biology and pathobiology puzzle. The 
usual formula is: The key to lens function is understanding_and 
you fill in the blank. Be it aquaporins, connexins, crystallins, etc. 
It has been proposed. Now we can take essentially any of these 
stories to illustrate a key barrier in translating basic findings to 
clinical insights but let us take these three: protein aggregation/
oxysterols, oxidative damage/antioxidants, and fibrosis/wound 
healing. It is critical to emphasize that these are just illustrative 
examples and are not unique. We can take many others. It is 
also critical to emphasize that the barriers we describe not 
only affect lens and cornea research areas but other fields of 
inquiry too. Relating to the anterior segment and beyond. 
Relating to the eye and beyond. Replace our three stories with 
research topics X, Y, or Z and you are likely to reach similar 
conclusions. The need for consilience is broad.
PROTEIN AGGREGATION AND OXYSTEROLS
Let us take the story of oxysterols and reversing cataract. A 

Figure 1 Subset of targets proposed in lens and cataract research projects.

Consilience and unity in ocular anterior segment research
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few years ago, two reports came out: the first in Nature titled, 
“Lanosterol reverses protein aggregation in cataracts”[5]. A 
couple of months later, the second report came out in Science 
titled, “Pharmacological chaperone for alpha-crystallin 
partially restores transparency in cataract models”[6]. Using 
Mendelian genetics (reverse approach) in the Nature work 
and high-throughput screening (forward approach) in the 
Science work, both papers hit upon an oxysterol, lanosterol 
in the Nature paper and a lanosterol-like molecule in the 
Science paper, as being able to reverse cataract in vivo. What 
is lanosterol? As the name implies, it is a sterol that is a key 
metabolite in the synthesis of cholesterol, and sterols are 
known to modulate membrane lipid domains in the lens[7]. 
These findings were really exciting because as the 
accompanying news and views essays made clear–this insight 
presented a way to chemically “dissolve” cataract[8]. No 
surgery needed, no intraocular lenses, and no risk of secondary 
cataract. Beyond the clear clinical significance and the wide-
utility of such intervention, there were lots of other reasons 
to be excited about such discovery. Most importantly, there 
is biological plausibility. Alpha crystallins are small heat 
shock proteins that act as chaperones and prevent proteins 
from forming light-diffracting aggregates. During aging, this 
chaperone function is overwhelmed, thereby allowing light-
scattering protein aggregates to form which in turn results 
in cataract. Moreover, human subjects with a homozygous 
mutation in the lanosterol synthase gene have congenital 
cataract[5]. It also turns out that a lanosterol-analogue docks 
nicely into a groove formed at the alpha-crystallin-A and 
alpha-crystallin-B dimer interface which stabilizes the native 
state[6]. Also critically, the nice overlap between the two sets 
of findings, obtained independently, means there is impressive 
reproducibility of the conclusions. In sum, the studies had high 
clinical relevance, wide-utility, biological plausibility, and 
independent confirmation. No wonder it was called a “new 
dawn for cataracts”[9]. 
Unfortunately, a subsequent report found neither lanosterol 
reported in the Nature paper nor the other oxysterol reported in 
the Science paper successfully reversed protein aggregation[10]. 
This report came on the heels of another paper that reported 
similar failure of oxysterol (lanosterol solution) to restore lens 
clarity from cataract[11]. It is worthwhile to note these are just 
two publications that overcame the difficulty of publishing 
negative findings. One can only guess if other groups 
encountered the same outcome but did not report their findings 
in the published literature. 
So, what is going on? Could it be that the original two reports 
were just a flash in the pan? Perhaps the new era of cataract 
treatment is just the same as the old? Not so fast. Because 
following the two reports of negative findings, there were at 

least eight publications, representing six new research teams, 
with positive findings consistent with the original Nature 
and Science papers[12-19]. The dilemma is that the groups are 
using essentially different models. Indeed, a crowded set 
of model systems are involved in these published reports 
including human lenses[10-11], human lens progenitor cells[5], 
human induced pluripotent stem cells (iPSC)-derived lentoid 
bodies[15], zebrafish[17], mouse[6,18], Sprague Dawley rat[10], 
Shumiya cataract rat (SCR)[12], selenite-induced cataract rat[14], 
rabbit[5,19], dog[5], and cynomolgus monkey[16], not to mention 
in vitro[13], and in silico[6,10] approaches. Needless to say, these 
are confusing sets of results. To quote the author Tom Peters, 
“If you’re not confused, you’re not paying attention”. 
Of course the issue is not about this mouse, rat, or model 
system. It is about us. It is about answering the important 
clinical question: Can we have a “nonsurgical treatment for 
cataract” in the form of an oxysterol? The answer is: Maybe, 
maybe not. We do not know for sure. And beyond the lens, 
protein aggregation is known to play a role in some corneal 
dystrophies such as the link between transforming growth 
factor-β-induced protein (TGFBIp), an extracellular matrix 
protein that is the second most abundant protein in the corneal 
stroma, and granular corneal dystrophy (GCD)[20]. This kind 
of situation of seemingly oppositional reports in the literature 
that are not reconciled into a cohesive whole may present a 
significant barrier to move findings from the lab to the clinic.
OXIDATIVE DAMAGE AND ANTIOXIDANTS
The barrier is not limited to oxysterols and cataract nor the 
broader topic of protein aggregation in disease (whether in the 
anterior segment, the rest of the eye, or the rest of the body). 
The use of antioxidants to mitigate oxidative damage is another 
example where there is high clinical significance, broad-utility, 
biological plausibility, and independent confirmation, yet many 
questions remain unanswered. The idea of oxidative damage 
leading to disease is so attractive and powerful that it has been 
put forward to explain a wide range of diseases throughout 
the body, including eye diseases beyond cataract and Fuchs 
endothelial corneal dystrophy. The concept looks great and 
explains all sorts of observations. Environmental insults 
(e.g., smoking, pollutants, UV radiation, etc.) generate highly 
reactive species that damage cellular proteins, lipids and DNA 
which in turn lead to homeostatic dysregulation and ultimately 
to a disease state once the normal protective and cellular repair 
mechanisms are overwhelmed. Indeed, several cellular defense 
mechanisms are known to be involved, including superoxide 
dismutase, catalase, thioredoxin, peroxiredoxin, glutathione 
peroxidase, and glutathione S-transferase. Moreover, aging, 
the defining feature of age-related cataract (ARC), age-related 
macular degeneration (AMD), and age-related changes to 
the corneal surface[21], can be subsumed under the theme of 
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oxidative damage/stress. Fundamentally, the paradigm suggests 
an unmistakable way to treat the resulting disease, namely, 
either reduce the oxidative stress or increase the antioxidant 
mechanisms. A beautiful cause-effect link with a clear linear 
relationship. A sharp dichotomy. A balance between oxidants 
and reductants. In a way, it can be thought of as a central 
dogma of age-related disease research. So, what is the issue? 
Take a look at this headline: “The Myth of Antioxidants” by 
Moyer[22]. The author tells us that, “The oxidative damage, or 
free radical, theory of aging can be traced back to Denham 
Harman, who found his true calling in December 1945, thanks 
to the Ladies’ Home Journal ”. Moyer concludes, “aging is 
far more intricate and complex than Harman imagined it to 
be nearly 60 years ago”. This is even more so a decade after 
Moyer’s 2013 article. Here is another headline: “The Science 
Myths That Will Not Die”[23]. The article quotes the Canadian 
biologist Siegfried Hekimi, that it is “one of the few scientific 
theories to have reached the public: gravity, relativity and that 
free radicals cause ageing, so one needs to have antioxidants”. 
Yet, the British biologist David Gems concludes, “There’s a 
question mark about whether really the whole thing (molecular 
damage causing ageing) should be chucked out”. 
Could it be that antioxidants are more effective when we focus 
on the eye? Let us take a look. A Cochrane review looked 
at a popular antioxidant–N-acetylcarnosine or NAC–and 
concluded that, “There is currently no convincing evidence 
that NAC reverses cataract, nor prevents progression of 
cataract”[24]. Maybe that is just for one specific antioxidant? 
Let us look more broadly. Another Cochrane review focused 
on the evidence for antioxidant vitamin supplementation 
(beta-carotene, vitamin C and vitamin E) for prevention or 
slowing of cataract and found no evidence of benefit[25]. In fact, 
the authors concluded, “We do not recommend any further 
studies to examine the role of antioxidants against ARC”[25]. 
Results from other more-recent clinical trials seemingly lend 
further support to these conclusions. For example, a report 
from the Antioxidants for the Prevention of Cataracts study 
found “no difference in the risk of cataract extraction between 
the antioxidant vitamin group (vitamins A, C, and E) and the 
placebo group”[26]. 
Here is another example. Resveratrol, a polyphenol enriched 
in grapes, is also thought to counteract oxidative stress. In fact, 
besides its purported antioxidant ability, it has been proposed 
to have anti-angiogenic, anti-inflammatory, anti-platelet, anti-
proliferative and a Janus-faced pro-proliferative ability[27]. 
Published literature reports evidence of resveratrol efficacy in 
various ocular models, including a selenite-induced cataract 
mouse model[28-29]; a streptozotocin-induced diabetic cataract 
rat model[30-31]; a naphthalene-induced cataract rat model[32]; 
in high glucose-induced oxidative damage in human lens 

epithelial cells[33], and in a human lens capsular bag model[34]. 
Yet the same literature currently reports zero publications for 
actual resveratrol efficacy against ARC in humans. Admittedly, 
this does not preclude that future clinical trials may yet show 
resveratrol efficacy. In fact, Clinicaltrials.gov shows 205 hits 
for resveratrol. But as things currently stand, MIT researcher 
Leonard Guarente’s quip comes to mind, “Resveratrol is very, 
very good (at activating SIRT1 and extending lifespan) if 
you’re a mouse” (https://bit.ly/46vaKwh). 
The challenge of course is broader than NAC, resveratrol or 
vitamins. There is a zoo of so-called phytochemicals–both 
flavonoids and non-flavonoids; carotenes and xanthophylls 
and other agents with promise, plausibility, and publications 
and yet a lot of varying views on their efficacy not to mention 
effectiveness[35-36]. And this is before we take into account the 
complexity that arises from systems biology and the various 
omics approaches used to do read outs of cell and tissue 
function and dysfunction[37]. In sum, there is a cataract of 
information and fragmentation. We have a lot of information 
on anterior segment biology but a lot less understanding of 
anterior segment biology. 
FIBROSIS AND WOUND HEALING  
The idea of too much of this process or factor; too little of that 
is rather entrenched in multiple areas of investigation. Take 
the concept of fibrosis. Just like oxidative stress is thought 
to result from an overload of the natural cellular repairs 
mechanism, fibrosis is thought to result from an overload of 
the tissue’s wound healing ability. But rather than subcellular 
damage seen in oxidative stress, fibrosis involves excessive 
accumulation of extracellular matrix components that results 
in a fibrotic scar. This is another example where there is high 
clinical significance, broad-utility, and biological plausibility. 
Yet questions remain. 
Liver, heart, kidney, lung, and eye can all be affected by 
fibrosis. Let us take the anterior segment of the eye. We will 
start with the lens. Posterior capsular opacification (PCO) is an 
unfortunate and fairly common side effect of cataract surgery. 
PCO is thought to result from residual epithelial lens cells after 
capsulorhexis that proliferate, migrate to the posterior capsule 
and differentiate. These cells then clump and obstruct the light 
on its way to the posterior segment of the eye. The paradigm 
that gained the most traction to explain this pathologic 
process is the so-called epithelial-mesenchymal transition 
(EMT). Lots of work has gone into the molecular dissection 
of this pathway involving many proposed transcription 
factors and effectors. Multiple signaling pathways were also 
suggested with the transforming growth factor beta (TGFβ) 
in particular repeatedly implicated in PCO pathogenesis[38-42]. 
The attractiveness of the paradigm of EMT involvement in 
PCO goes beyond the identification of plausible transcription 
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factors, effectors and signaling pathways. An intriguing and 
attractive idea is the potential role of TGFβ pathway in the so-
called regenerative repair versus fibrotic repair[43]. Yet while 
the link between TGF and PCO was recognized over 3 decades 
ago[44-46], as of now, there are no approved drugs against PCO 
whether targeting the TGF/smad pathway or another. This is 
despite many promising reports. Here are 30 examples[47-76]. In 
fact, a recent Nature paper observed, “Approved antifibrotics 
have proven modest in efficacy”[77]. This is for all tissues and 
not just the anterior segment. 
Let us now take a closer look at the cornea. Here the canvas 
is more vivid, yet interestingly, the dominant EMT and TGFβ 
paradigms seen in PCO of the lens are crowded out by a wider 
array of potential players in corneal wound healing. Figure 2 shows 
the results of an Embase search we performed to illustrate 
this richness. Importantly, this is not an exhaustive list. We 
simply pick 30 representative examples–3 for each year of the 
last decade[78-107]. We limited ourselves to corneal epithelial 

wound healing while setting aside corneal neovascularization 
and endothelial pathology, and we focused on small molecule 
or protein candidates while setting aside gene or cell-based 
therapies. We can easily compile numerous candidates 
proposed to be involved in corneal wound healing. One sees 
a labyrinth of potential hits and an abundance of proposals. 
Yet underneath this web of ideas, as with the PCO situation, 
again there is no clear synthesis. We find ourselves with an 
assortment of potential leads but little consilience. The classic 
Buddhist parable of the elephant comes to mind. A group of 
blindfolded fellows is told about something called an elephant, 
but none aware of its shape or form. One touches the trunk 
and thinks it must be a snake. Another touches the tail and is 
confident it must be a rope. And it goes. Leg being mistaken 
for a tree trunk, ear mistaken for a fan, tusk mistaken for a 
spear. Each confident they have the solution to the puzzle. 
Yet each focusing on only a piece of the puzzle while having 
little awareness of how the other pieces may fit together into 

Figure 2 Representative examples of candidate effectors involved in corneal wound healing.
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a cohesive whole. Now this is just a parable of course. The 
worry, however, is that we may be seeing hints of it in the 
different approaches that arise in anterior segment research. 
So perhaps it is time to unify the clues and put the elephant 
together.
CONCLUSION
George Orwell tells us that, “To see what is in front of one’s 
nose requires a constant struggle”. The fragmentation in 
knowledge is not limited to aggregation, oxidative damage 
or fibrosis. These are just illustrative examples. The issue 
certainly transcends the anterior segment with multiple 
domains and research areas that are beckoning to be further 
developed and untangled. This fragmentation is a challenge 
although it is also an opportunity. But how can we reconcile 
discrepant reports and chaotic models of disease and more 
meaningfully position basic science findings to better inform 
translational research and ultimately better patient care? 
The challenges are formidable. Peer reviewers for many 
granting agencies and foundations tend to favor relatively 
safe projects supported with an abundance of preliminary data 
acting essentially as a promissory note for future publication(s). 
The expedient measure of success is the output in terms of 
publications. There is little recognition that perhaps some 
outcomes can be essentially immeasurable,  at least in real time 
or in short term. Thus, a project whose team worked really 
hard and imaginatively but came up with negative findings 
is not viewed as a successful project and its continuation 
is in serious question. It is as if the underlying biological 
complexity that a lab happens to encounter becomes a problem 
for the lab and principal investigator rather than being a 
problem for the field. Ironically, such expediency seems to 
also underly the unequivocal reliance on P-value in statistical 
significance testing[108-110]. Aside from the misplaced burden of 
biological complexity, such incremental process tends to select 
for projects proposing bite-size advancement in knowledge at 
the expense of longer-term, higher-risk but higher-reward and 
broader investment. This can lead to fragmentary information; 
“splitting rather than lumping”[111]; silos[112-113]. So what can be 
done? 
Let us start with a deeper and more humble recognition and 
acknowledgement of robustness in biological systems. In his 
book, Arrival of the Fittest, the evolutionary biologist Andreas 
Wagner points out that half the genes in our genome may have 
duplicates. But even more intriguing is the case of single-copy 
genes that are still dispensable. Are they purposeless? Take 
the example of connexin 23 which is enriched in the lens. Yet 
when it was deleted, Cx23-null mouse lenses were found to 
have transparency and refractive properties similar to wild 
type lenses[114]. To illustrate his point about robustness, Wagner 
writes that even an organism as simple as an E. coli can use 

>80 different molecules as its only source of energy be it an 
amino acid, a sugar, or a fatty acid. The cell is robust and this 
robustness can frustrate the typical reductionist approaches of 
one gene at-a-time or one protein at-a-time or one molecule at-
a-time. 
Let us also recognize the importance of negative data despite 
the disincentives to share and publish such outcomes[115]. 
Equally important is the need to acknowledge potentially 
conflicting data. Such discordance in findings does not 
necessarily mean that one set of findings is correct while 
the other false. Rather, it could be a result of the underlying 
biological complexity. Perhaps it is a reflection in the differences 
of the models used, definitions of a disease (e.g., “dry-eye”), 
biological readouts, “biomarkers” used, endpoints, or a myriad 
of other known and unknown factors. Here are a couple 
of recent cautionary tales. A comprehensive review of 162 
published biomarkers for major mental disorders found that 
only 2 estimates met a priori defined criteria for convincing 
evidence, leading the authors to conclude, “This literature is 
fraught with several biases and is underpowered”[116]. While 
in another “reproducibility trial”, 246 biologists analyzed 
the same datasets and got widely divergent results (https://
go.nature.com/3tFvfYU). Add to that, typical pathway figures/
cartoons in the various published reviews which tend to give 
a false sense of order and simplicity to whatever biological 
pathway under discussion. Arrows giving a clear sense of 
direction. Labels giving a sense of conciseness and precision. 
One is reminded of Lewis Carroll’s Through the Looking Glass 
(“When I use a word,” Humpty Dumpty said, “it means just 
what I choose it to mean—neither more nor less”).
The goal to simplify complex biological processes is certainly 
understandable. But it comes at a price of giving the illusion 
of knowing more than we actually do. Important caveats 
vanishing. Incongruent details fading. Contrary to myth, we 
tend to assume our ability to hold in our heads the cumulative 
knowledge we read in the past, when in fact we are unlikely 
to recall even a fraction of it. Just because such material is 
accessible via PubMed or an Embase search, does not mean 
we have incorporated it into our mental models of whatever 
biological mechanism that happens to be under consideration. 
Not that everyone is affected to the same degree. But there 
is an illusion of mastery. Take the jargon commonly used to 
report on this biological process or that. “TGFβ pathway”, 
“PCO”, “PTMs”(post-translational modifications), “oxidative 
damage”, “epigenetic”, “fibrotic”, “anti-inflammatory”, “pro-
inflammatory”, “neuroprotective”, and many others. Each 
designation clearly carrying some meaning at its core yet in 
reality obscuring a lot of assumptions. The proverbial advice 
to making profit is an apt analogy: “Buy low; Sell high”. 
Works great on paper yet one belatedly comes to find out that 
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in actuality this “insight/precision” is obscuring almost as 
much as it is informing. It seems to explain, and to a certain 
degree it does, but not nearly to the level at face value. And 
it is with many of our cherished buzzwords and lingo. As the 
American writer Walter Lippmann noted, we are all captives of 
the pictures in our heads, and we treat “these pictures as if they 
were the reality”. The author Derek Leebaert was even more 
astute when he wrote, “We live in a world to be labelled not 
understood.” There is a false sense of familiarity: if we label 
something, somehow, we understand it. But the comprehension 
is not merely labeling. Knowledge is not synonymous with 
understanding. Admittedly, the two are easy to conflate. It is a 
subtle trap to fall into, like the fellows examining the elephant 
each becoming attached to their assumptions and explanations. 
This is where consilience comes in. Perhaps there could be 
incentives to motivate people to work together to resolve these 
seemingly discrepant reports and observations. To bridge the 
gulf between plausible explanations and real explanations. 
This is not about your typical “hypothesis-driven” projects. 
Those are here to stay. More data generation projects will 
always be needed. But instead of each project or team pushing 
their own model or favorite hypothesis in relative isolation–a 
“consilience-driven” project may be warranted. Perhaps even 
a hypothesis-free project. Minimal prior assumptions. All that 
is needed is a child-like sense of wonder. Darwin’s bulldog, 
Thomas Huxley said it best, when he wrote, “Sit down 
before fact like a little child, and be prepared to give up every 
preconceived notion, follow humbly wherever and to whatever 
abyss Nature leads or you shall learn nothing”. Certainly, rigor 
and reproducibility are necessary and need to be enhanced. But 
more than that. It is about consilience. It is about dealing with 
the information overload and reducing complexity, resolving 
contradictory findings, reducing fragmentation, and reducing 
silos of basic versus clinical research. It is about understanding 
and not simply knowing. It is about Wilson’s Unity of Knowledge. 
Perhaps we can start with the Unity of Anterior Segment. The 
Darwins would likely approve. Afterall, unity of type (descent 
with modification), was at the center of Charles’s thesis to 
Emma.
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