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Abstract
● AIM: To evaluate the application of an intelligent 
diagnostic model for pterygium.
● METHODS: For intelligent diagnosis of pterygium, the 
attention mechanisms—SENet, ECANet, CBAM, and Self-
Attention—were fused with the lightweight MobileNetV2 
model structure to construct a tri-classification model. 
The study used 1220 images of three types of anterior 
ocular segments of the pterygium provided by the Eye 
Hospital of Nanjing Medical University. Conventional 
classification models—VGG16, ResNet50, MobileNetV2, 
and EfficientNetB7—were trained on the same dataset for 
comparison. To evaluate model performance in terms of 
accuracy, Kappa value, test time, sensitivity, specificity, 
the area under curve (AUC), and visual heat map, 470 test 
images of the anterior segment of the pterygium were used. 
● RESULTS: The accuracy of the MobileNetV2+Self-
Attention model with 281 MB in model size was 92.77%, 
and the Kappa value of the model was 88.92%. The 
testing time using the model was 9ms/image in the server 
and 138ms/image in the local computer. The sensitivity, 
specificity, and AUC for the diagnosis of pterygium using 
normal anterior segment images were 99.47%, 100%, and 
100%, respectively; using anterior segment images in the 
observation period were 88.30%, 95.32%, and 96.70%, 

respectively; and using the anterior segment images in 
the surgery period were 88.18%, 94.44%, and 97.30%, 
respectively.
● CONCLUSION: The developed model is lightweight and 
can be used not only for detection but also for assessing the 
severity of pterygium. 
● KEYWORDS: deep learning; attention mechanism; 
pterygium; intelligent diagnosis
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INTRODUCTION

P terygium, a common ocular surface disease, is an upper 
type of fibrovascular tissue that grows from the bulbar 

conjunctiva towards the cornea[1]. As the condition of the 
pterygium worsens, abnormal tissue encroaches the corneal 
region, leading to visual impairment. Therefore, pterygium 
requires early diagnosis and interventional measures to reduce 
the growth of fibrovascular tissue[2]. Some studies[3-5] have 
shown that the prevalence of pterygium is 12% worldwide, 
with high prevalence in populations experiencing frequent 
sun exposure, and living in rural areas (e.g., fishermen and 
farmers). Nearly 109 million people in China have pterygium[6] 
while there are only a few ophthalmologists. These physicians 
are mostly distributed in large urban hospitals and there is a 
dearth of ophthalmic medical resources in primary hospitals, 
such as county-level hospitals and community hospitals. In this 
study, we propose an intelligent assisted diagnosis model that 
can assist primary care physicians and young inexperienced 
physicians with the initial diagnosis of pterygium and, thus, 
help pterygium to be detected early, patients to be referred in 
time, and medical resources to be allocated rationally.
With great progress in computer vision and deep learning 
technology, the intelligent diagnosis and treatment mode of 
“artificial intelligence+medical imaging” has been widely 
studied and promoted. Computer-aided diagnosis can provide 
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doctors with an effective and accurate clinical diagnosis 
while also reducing the time, cost, and workload of disease 
screening. Traditional image feature extraction methods 
rely on large amounts of prior knowledge and have several 
limitations. In contrast, deep learning techniques can select 
and extract image features autonomously and have excellent 
performance. Convolutional neural networks (CNNs) have 
become important models in deep learning techniques because 
of their powerful feature representation capability and are 
widely used in tasks requiring image classification, target 
detection, and image segmentation. A series of classical 
networks based on CNN structures were proposed earlier, 
such as AlexNet[7], VGGNet[8], and ResNet[9], which laid the 
foundation for subsequent network improvements. Later, 
MobileNet[10-12] used depthwise separable convolutions to 
build lightweight deep neural networks that are more suitable 
for mobile and embedded vision applications. Notedly, all of 
the aforementioned network models have reasonable image 
detection capabilities.
In ophthalmology, deep learning techniques have been applied 
to intelligently detect diseases including diabetic retinopathy 
(DR)[13-15], age-related macular degeneration (AMD)[16-17], 
retinopathy of prematurity (ROP)[18-19], glaucoma[20-21], and 
some studies have even achieved classification of multiple 
fundus diseases[22-23]. Studies applying deep learning techniques 
to pterygium have focused on intelligent classification and 
segmentation[24-25]. Lopez and Aguilera[26] were the first to 
propose the use of deep learning techniques for pterygium 
classification. Studies[27-32] conducted many pterygium-related 
studies between 2018 and 2021 based on the pterygium 
datasets such as UBIRIS, MILES, Brazilian pterygium (BP), 
and Australian pterygium (AP). In 2018, to distinguish between 
pterygium and non-pterygium images, an automatic detection 
system was proposed which consisted of four modules: image 
preprocessing, corneal segmentation, feature extraction, and 
classification. The classification module uses support vector 
machines (SVMs), artificial neural networks, and traditional 
machine learning methods[27]. In 2019, using deep learning 
techniques, a Pterygium-Net algorithm based on a fully 
convolutional neural network was proposed to automatically 
classify and localize pterygium-infected tissue[28]. Pterygium-
Net consists of a three-layer convolutional neural network and 
a three-layer fully connected network. Classification training 
was performed using the ImageNet dataset[33] to pretrain 
the weights of the convolutional neural network layers, and 
localization was based on supervised learning from expert-
labeled image data. In 2020, six convolutional neural networks 
based on AlexNet, VggNet16, VggNet19, GoogleNet, 
ResNet101, and DenseNet201 were evaluated for pterygium 
detection. Also, the VggNet16-wbn two-classification 

model was improved using VggNet16, with an accuracy, 
sensitivity and, specificity of 99.22%, 98.45%, and, 100%, 
respectively[30]. The Group-PPM-Net segmentation model was 
proposed in 2021 by integrating the spatial pyramid module 
and group convolution into a deep learning segmentation 
network, which achieved segmentation of pterygium-infected 
tissues with an average accuracy of 93.3% and an average 
intersection over union of 86.4%[32]. The latest study in 2022 
Hung et al[34] proposed a deep learning grading system for 
pterygium, which first trained a two-classification model to 
detect the pterygium image, segmented the lesion region of the 
pterygium image and classified it into three grades according 
to the severity, trained a two-classification model between 
each two grades, and finally obtained four two-classification 
models to achieve intelligent grading. Presently, research on 
the intelligent classification of pterygium mainly consists of 
two-classification models to detect pterygium, and of these 
models most use deep learning classical models, which are 
complex, use a large number of parameters and are difficult to 
be deployed in low configuration devices.
In this study, an intelligent lightweight pterygium-assisted 
diagnosis model was constructed based on MobileNetV2 
by combining it with an attention mechanism. The model 
can be used to classify and detect normal images, pterygium 
observation phase images and pterygium surgery phase 
images with high classification accuracy and easy application. 
The model can be deployed for use in the department of 
ophthalmology in primary hospital. A comparative study with 
the classical model was also conducted as described below.
MATERIALS AND METHODS
Data Acquisition  In this study, 1220 images of the anterior 
segment of the pterygium with a resolution of 5184×3456 were 
provided by the Eye Hospital of Nanjing Medical University 
and were classified into three categories according to medical 
classification criteria: 439 images of the normal anterior segment, 
421 images of the observational anterior segment, and 360 images 
of the surgery-period anterior segment. The classification 
criteria was as follows[35]: 1) normal preoptic node images: 
no significant conjunctival congestion or proliferative bulge, 
transparent cornea (Figure 1A); 2) observation of preoptic node 
images: the head tissue of pterygium invades the horizontal 
length of the corneal margin <3 mm (Figure 1B); 3) surgery 
preoptic node images: the head tissue of pterygium invades the 
horizontal length of the corneal margin ≥3 mm (Figure 1C). 
All images were captured in the same environment with the 
same level of equipment, and all relevant patient information 
was removed to avoid violating patient privacy.
All the pterygium anterior segment images were divided into 
training, validation, and test sets, using random assignment. 
The 225 images from each of the three categories of pterygium 
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(normal, observational, and surgical anterior segment) were 
used as the training set; 25 images from each as the validation 
set; the remaining 189 images of the normal anterior segment, 
171 images of the observational anterior segment, and 110 
images of the surgical anterior segment were used as the 
test set. To ensure generalization of the model results, the 
original training set images were first horizontally flipped. 
Then, the horizontally flipped images and original training set 
were rotated by -3° and 3°, respectively. The final pterygium 
training set used for model training comprised 4050 images, 
the validation set comprised 75 images, the test set comprised 
470 images (Table 1).
Methods  The MobileNet network is a lightweight network, 
proposed by the Google team that focuses on mobile and 
embedded devices. MobileNetV1[10] includes depthwise 
separable convolution, which greatly reduces model parameters 
and operations with only a small reduction in accuracy 
compared to traditional convolutional neural networks. 
MobileNetV2[11] introduced the inverse residual and linear 
bottleneck structure based on MobileNetV1 which resulted in 
higher accuracy, smaller model, and faster computation time. 
As shown in Table 2, the MobileNetV2 network structure 
mainly comprises a convolutional layer, bottleneck layer, and 
average pooling layer, where t denotes the multiplicity of the 
1×1 convolutional channel up-dimensioning in the inverse 
residual structure, c is the number of output feature matrix 
channels, n is the number of bottleneck layer repetitions, and s 
denotes the step size. 
The inverted residual structure of the bottleneck layer is 
shown in Figure 2. First, the input data is up-dimensioned 
by a 1×1 convolution, then the image features are extracted 
by a depthwise separable convolution, and finally down-
dimensioned by a 1×1 convolution. Linear activation is used 
in the down-dimensioning process to avoid information loss. 
When the step size is 1 and the input and output channels are 
the same, the input and output are summed together.
The attention mechanism in neural networks is a resource-
allocation scheme that solves the information-overload 
problem with limited computational power and allocates 
computational resources to important tasks. In neural network 
learning, the attention mechanism can use limited attention 

resources to quickly filter out high-value information from 
a large amount of data. In computer vision tasks when the 

Figure 1 Images of the anterior segment of three types of pterygium  A: Normal preoptic node images; B: Observation of preoptic node 

images; C: Urgery preoptic node images.

Table2MobileNetV2networkstructure

Input Operator t c n s

224²x3 conv2d - 32 1 2

112²x32 bottleneck 1 16 1 1

112²x16 bottleneck 6 24 2 2

56²x24 bottleneck 6 32 3 2

28²x32 bottleneck 6 64 4 2

14²x64 bottleneck 6 96 3 1

14²x96 bottleneck 6 160 3 2

7²x160 bottleneck 6 320 1 1

7²x320 conv2d1x1 - 1280 1 1

7²x1280 avgpool7x7 - - 1 -

1x1x1280 conv2d1x1 - k -

Table 1 Experimental data division

Pterygium 
types

Original data Enhanced data
Training 

set
Validation 

set
Test 
set

Training 
set

Validation 
set

Test 
set

Normal 225 25 189 1350 25 189
Observe 225 25 171 1350 25 171
Surgery 225 25 110 1350 25 110
Sum 675 75 470 4050 75 470
Total 1220 4595

Figure 2 Bottleneck.
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network extracts image features, the overall performance of 
the network can be improved by adding attention mechanisms 
between the convolutional layers. There are four main types 
of attention mechanisms: channel attention, spatial attention, 
mixed spatial and channel attention, and self-attention.
The channel attention mechanism aims to establish correlations 
between different feature map channels and assign different 
weight coefficients to each channel so as to reinforce important 
features and suppress non-important ones. SENet[36] and 
ECANet[37] are typical channel-attention mechanisms. As 
shown in Figure 3A, SENet first performs global average 
pooling (GAP) on the feature map to obtain the global 
compressed feature volume, and then passes through two fully 
connected layers to obtain the weights of each channel in the 
feature map. The sigmoid activation function ensures that the 
weight values are distributed between 0 and 1, and the values 
of different channels are multiplied by different weight values 
so that attention to key channels can be enhanced. ECANet 
uses a one-dimensional convolution operation to optimize 
the fully connected operation in SENet which substantially 
reduces the number of parameters while maintaining the same 
network performance.
The spatial attention mechanism aims to improve the feature 
performance of crucial regions, generate weights for each 
spatial location, and improve the target regions of interest while 
weakening irrelevant background regions. The convolutional 
block attention module (CBAM)[38] combines channel attention 
and spatial attention mechanisms. As shown in Figure 3B, the 
spatial attention mechanism first performs GAP and global 
maximum pooling operations based on channels to generate 
two feature maps representing different information, and then 
merges them to obtain the weights for each spatial location 
in the feature map by convolution. The sigmoid activation 
function ensures that the weight values are distributed between 
0 and 1. Finally, the input feature maps are multiplied by the 
weight values, thus enabling the target region to be enhanced.
The self-attention mechanism[39] allows the machine to notice 
the correlation between different parts of the input, capture the 
internal correlation of data or features, and reduce dependence 
on external information. The CNN only considers pixels within 
a K×K receptive field, whereas the receptive field of the self-
attention mechanism is the whole image. As shown in Figure 
3C, first, the input feature maps are convolved 1×1 to obtain 
the query, key, and value matrices, respectively. Then, the 
query matrix is transposed and element-wise produced with the 
key matrix, and the softmax activation function is normalized 
to process the data and element-wise produced with the value 
matrix to obtain the self-attention feature map as the output. 
Key, query, and value triplets provide an efficient way to 
capture global contextual information for modeling.

The MobileNetV2 network structure contains a feature layer 
and classification layer. The ingenious design of depthwise 
separable convolution in the feature layer greatly reduces the 
model parameters, operations and loses in feature information. 
Although the proposed inverse residual and linear bottleneck 
structures can reduce information loss, the accuracy of the 
algorithm is low. In this study, the attention mechanism 
module was added after the feature layer of the MobileNetV2 
model, and four different attention mechanisms, SENet, 
CBAM, ECANet, and Self-Attention, were used to construct 
four pterygium tri-classification models; the simple model 
structures are shown in Figure 4. The initialization parameters 
for model training were: pre-trained weights on the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) dataset, 
propagation learning using the Adam optimizer with an 
initial learning rate of 0.0001, and a total of 50 epochs. In this 
study, VGG16, ResNet50, MobileNetV2, and EfficientNetB7 
classical deep learning classification models were used as 
comparison networks to train models on the same pterygium 
dataset. These four models were initialized with parameters 
that were pre-trained on the ILSVRC dataset and only the final 
output of the classification layer was updated to three classes 
while the remaining model structure remained unchanged. 
Finally, all three pterygium classification models were 
validated and compared using the test set.
The programming language used in this study was Python 
and the deep learning framework used was PyTorch. Model 
training and testing were performed on a server, and a local 

Figure 3 Attentional mechanisms  A: SENet channel attention 

mechanism; B: Spatial attention mechanism in CBAM; C: Self-

Attention mechanism.
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computer was also used for model testing in consideration 
of future practical deployment in primary hospitals. The 
server device is Intel(R) Xeon(R) Gold 5118 CPU, Tesla 
V100 graphics card, and the operating system is Linux. The 
local computer device is Intel(R) Core(TM) i5-4200M CPU, 
NVIDIA GeForce GT 720M x graphics card, and the operating 
system is Windows 10.
Statistical Analysis  The results were analyzed using the 
SPSS 25.0 statistical software. The evaluation metrics used to 
measure the performance of the three classification models for 
pterygium were sensitivity, specificity, accuracy, Kappa value, 
test time, receiver operator characteristic curve (ROC), and 
area under curve (AUC). High sensitivity, low underdiagnosis 
rate, high specificity, and low misdiagnosis rate. Kappa value 
is used to assess the agreement between the expert and model; 
with 61% to 80% being significant agreement and greater than 
80% being high agreement. An AUC value between 70%–85% 
indicates general effectiveness while a value greater than 85% 
indicates good diagnostic value.
RESULTS
Evaluation Metrics Results  The test set of this study 
consisted of 470 images, of these 189 were normal anterior 

ocular segments, 171 were pterygium in the observation 
phase, and 110 were pterygium in the surgery phase. The 
results of the eight pterygium tri-classification models are 
shown in Table 3 and Figure 5. The MobileNetV2+SENet, 
MobileNetV2+CBAM, MobileNetV2+ECANet, and 
MobileNetV2+Self-Attention models constructed by 
the combined attention mechanism compared with the 
MobileNetV2 model yielded the following results; the Kappa 
values improved by 1.26%, 0.02%, -0.93%, and 1.3%; the 
mean values of sensitivity improved by 0.36%, 0.21%, 
-0.34%, and 0.68%; the mean values of specificity improved 
by 0.36%, 0.04%, -0.22%, and 0.47%; and the mean values 
of AUC improved by 0.07%, -0.3%, -0.3%, and -0.17%, 
respectively. MobileNetV2+Self-Attention had the best 
classification result, with 92.77% accuracy, 88.92% Kappa 
value, 91.98% sensitivity mean, 96.59% specificity mean, 
8.02% false positive mean, 3.41% false negative mean, and 
98.00% AUC mean, and the model has favorable diagnostic 
value. Among the four different attention mechanisms fused 
on the MobileNetV2 network structure, only the model 
classification results are reduced after adding the ECANet 
attention module, which is analyzed as the difference in the 

Figure 4 MobileNetV2 network architecture with combined attention mechanism.

Table 3 Experimental results
Evaluation 
Parameters Model VGG16 ResNet50 MobileNetV2 MobileNetV2+

SENet
MobileNetV2+

CBAM
MobileNetV2+

ECANet
MobileNetV2+
Self-Attention EfficientNetB7

Sensitivity (%) Normal 98.41 100.00 100.00 99.47 100.00 98.94 99.47 100.00
Observe 84.80 83.63 84.80 90.06 83.63 83.04 88.30 91.81

Surgery 91.82 92.73 89.09 85.45 90.91 90.91 88.18 89.09

Specificity (%) Normal 99.64 99.29 97.86 99.29 98.22 98.93 100.00 99.64

Observe 96.32 97.32 96.32 94.31 96.66 95.99 95.32 95.99

Surgery 92.78 92.78 94.17 95.83 93.61 92.78 94.44 96.39

False positive 
rate (%)

Normal 1.59 0 0 0.53 0 1.06 0.53 0

Observe 15.20 16.37 15.20 9.94 16.37 16.96 11.70 8.19

Surgery 8.18 7.27 10.91 14.55 9.09 9.09 11.82 10.91

False negative 
rate (%)

Normal 0.36 0.71 2.14 0.71 1.78 1.07 0 0.36

Observe 3.68 2.68 3.68 5.69 3.34 4.01 4.68 4.01

Surgery 7.22 7.22 5.83 4.17 6.39 7.22 5.56 3.61

AUC (%) Normal 100.00 100.00 100.00 99.80 99.70 100.00 100.00 100.00

Observe 96.60 96.30 96.80 97.30 96.40 96.60 96.70 96.80

Surgery 97.50 97.60 97.70 97.60 97.50 97.00 97.30 97.10

Accuracy (%) 91.91 92.34 91.91 92.77 91.91 91.28 92.77 94.47

Kappa value (%) 87.68 88.32 87.62 88.88 87.64 86.69 88.92 91.51

Model size (MB) 841 521 239 241 242 240 281 1919

Model parameters (million) 134 23 2 2 2 2 8 63

Time-S (ms) 10 12 11 9 10 9 9 60
Time-C (ms) 606 328 91 91 91 93 138 4570

Time-S: The time of testing an image on the server; Time-C: The time of testing an image on the local computer.
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K value of the one-dimensional convolutional kernel size 
affects the channel weight results, leading to poor classification 
results. Adding CBAM, SENet and Self-Attention attention 
module model classification results are improved, of which 
MobileNetV2+Self-Attention classification results are the best, 
analyzed as SENet and CBAM calculate two-dimensional 
attention weights, Self-Attention calculates three-dimensional 
attention weights. Self-Attention can pay more attention to 
the correlation between different parts of the input data, and 
can extract more comprehensive and effective image feature 
information, and the model training effect is good.
When compared with the VGG16, ResNet50, and EfficientNetB7 
pterygium classification models, the MobileNetV2+Self-
Attention model showed higher classification results than those 
of the VGG16 and ResNet50 models and lower than that of the 
EfficientNetB7 model. The results were the smallest in model 
size, model parametric quantity, and test time, at 281 MB, 
8 million, 9ms and 138ms. The local computer configuration 
in the experiment matches well with the configuration of 
medical equipment in primary hospitals, and its test time can 
be used as a reference. The MobileNetV2+Self-Attention 
model classifies and recognizes pterygium with good results, 
and the model is small and the test time is short, which is 

suitable for primary hospitals to apply it on local computers or 
mobile devices, and it has a good application value.
MobileNetV2+Self-Attention Model Diagnosis Results  The 
model was constructed by combining the attention mechanism 
Self-Attention and MobileNetV2, which diagnosed 188 
images of the normal anterior ocular segment, 165 images 
of pterygium in the observation phase, and 117 images of 
pterygium in the surgery phase (Table 4).
Visualization Results  The gradient-weighted class activation 
map (Grad-CAM)[40] is a commonly used model visualization 
method that uses the form of a heat map to show the focused 
regions that the model focuses on when predicting an image 
as a target class. This study visualized the heat map for 
MobileNetV2+Self-Attention and MobileNetV2 pterygium 
classification models (Figure 6). The highlighted areas on 
the heat map match the actual lesion sites. Notedly, the Self-
Attention mechanism results show better coverage of the lesion 
areas, more focused pockets of model attention, and lower 
noise.
DISCUSSION
The occurrence and recurrence of pterygium is closely related 
to the environment and is highly prevalent in people who 
work outdoors. Bikbov et al[41] analyzed the prevalence of 

Figure 5 Receiver operating characteristic (ROC) curves of the eight models  A: ROC curve of the normal; B: ROC curve of the observe; C: ROC 

curve of the surgery.

Figure 6 Heat map visualization  A: Original image; B: MobileNetV2 model heat map; C: MobileNetV2+Self-Attention model heat map.
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pterygium in more than 5000 local pterygium patients in 2019 
and concluded that the prevalence of pterygium was higher in 
people living in rural areas. For rural areas, where specialized 
medical resources in ophthalmology are lacking, intelligent 
models can provide an effective diagnostic tool for primary 
hospitals and patients. In this study, we use deep learning 
image classification technology to construct a lightweight 
intelligent-assisted diagnostic model with full consideration 
of the equipment the intended population has access to. The 
model can, not only, intelligently assist in mass screening of 
pterygium patients in primary hospitals but also provide self-
examination and treatment recommendations for outdoor 
populations.
In this study, four different attention mechanism modules 
were added to the MobileNetV2 network structure, of these 
MobileNetV2+Self-Attention achieved the best classification 
results. There are several implementations of the attention 
mechanism, but the core is expressed in weights, and important 
features are assigned larger weights. SENet, ECANet, and 
CBAM calculate attention weights in two dimensions, whereas 
Self-Attention calculates attention weights in three dimensions. 
The Self-Attention mechanism can pay more attention to the 
correlation between different parts of the input, as a result, it 
can extract more comprehensive and effective image feature 
information, resulting in better model training.
In this study, the classical image classification models 
VGG16, ResNet50, and EfficientNetB7 were selected for 
comparison. According to the results in Table 3, we see that 
the EfficientNetB7 model has the best classification rate. The 
MobileNetV2+Self-Attention model is compared with the 
EfficientNetB7 model; the accuracy difference is 1.7%; the 
Kappa value difference is 2.59%. However, in terms of model 
size, MobileNetV2+Self-Attention has 1/7, the number of 
parameters and uses approximately 1/8, the testing time on 
the server is approximately 1/7, and the testing time on the 
local computer is approximately 1/33. The EfficientNetB7 
model is large, with a longer testing time and high-
performance requirements for hardware devices, whereas the 
MobileNetV2+Self-Attention model is small, has a shorter 
testing time, and is more suitable for deployment in primary 
hospitals in mobile and embedded devices. A shortcoming 
of this study is that the classification effect of the lightweight 

MobileNetV2+Self-Attention model still needs to be improved. 
Optimizing the model structure, may improve the classification 
effect.
Few studies have been conducted to achieve intelligent grading 
of pterygium using deep learning techniques. The available 
studies mainly focus on constructing two-classification models 
to detect pterygium images. The latest study in 2022 by Hung 
et al[34] proposed a deep learning grading system to detect 
pterygium images with an accuracy of 91.67%, sensitivity 
of 91.67%, and specificity of 91.67%. The three two-
classification models trained among the three grades showed 
a mean accuracy of 88.62%, mean sensitivity of 83.7%, 
and mean specificity of 97.22%. In this study, pterygium 
disease images were divided into observation and surgery 
phases. If the observation and surgery phase images were 
grouped into the pterygium category, the MobileNetV2+Self-
Attention model detected pterygium disease images with 
99.79% accuracy, 99.47% sensitivity, 100% specificity, and 
100% AUC value. The MobileNetV2+Self-Attention model 
recognized the observed and surgical phases of pterygium 
with 92.77% accuracy, 91.98% mean sensitivity, and 96.59% 
mean specificity. Compared to the results of Hung et al[34], the 
MobileNetV2+Self-Attention model proposed in this study 
was able to detect pterygium images better. In terms of grading 
recognition, the accuracy and sensitivity were better, but the 
specificity was slightly worse.
Deep learning models for pterygium can provide ophthalmologists 
with intelligent diagnostic decisions; however, erroneous 
decisions may prevent physicians from fully trusting these 
models. A heat map is a presentation form used to visualize 
the model decision. A heat map can highlight the image 
focus areas with which the model decision is concerned. 
The Grad-CAM visualization method does not need to 
modify the original network structure and the algorithm to 
generate a simple and accurate heat map. As a result, heat 
maps are widely used in different network models. The 
MobileNetV2+Self-Attention model proposed in this study 
provides intelligent diagnostic decisions using visualized heat 
maps to further assist the diagnosis. The heat maps highlight 
areas that match the actual lesion area, which is consistent with 
the ophthalmologist’s diagnostic approach and facilitates the 
physician’s understanding and trust in the model.
The limitation of this study is that the classification effect 
of the lightweight MobileNetV2+Self-Attention model still 
needs to be improved. In the future, our team will collaborate 
with multiple hospitals to conduct multi center research, 
and optimize the model structure to improve classification 
performance.
In conclusion, this study combined the Self-Attention mechanism 
and MobileNetV2 to develop a model for intelligent diagnosis 

Table 4 MobileNetV2+Self-Attention model diagnosis results

Ophthalmologist 
diagnosis

MobileNetV2+Self-Attention diagnosis Total

Normal Observe Surgery

Normal 188 1 0 189

Observe 0 151 20 171

Surgery 0 13 97 110

Total 188 165 117 470
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of pterygium disease. The MobileNetV2+Self-Attention 
model can be used not only for the detection of pterygium, but 
also for grading pterygium severity. The model has excellent 
application value because of its high classification accuracy, 
small size, short testing time on low-configuration computers, 
and straightforward visualization heat map. This study is hoped 
to bring a useful tool for intelligent diagnosis of pterygium, 
which will bring convenience to primary care physicians and 
patients and obtain good social benefits.
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