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Abstract
● AIM: To address the challenges of data labeling 
difficulties, data privacy, and necessary large amount 
of labeled data for deep learning methods in diabetic 
retinopathy (DR) identification, the aim of this study is to 
develop a source-free domain adaptation (SFDA) method for 
efficient and effective DR identification from unlabeled data.
● METHODS: A multi-SFDA method was proposed for 
DR identification. This method integrates multiple source 
models, which are trained from the same source domain, to 
generate synthetic pseudo labels for the unlabeled target 
domain. Besides, a softmax-consistence minimization term 
is utilized to minimize the intra-class distances between the 
source and target domains and maximize the inter-class 
distances. Validation is performed using three color fundus 
photograph datasets (APTOS2019, DDR, and EyePACS).
● RESULTS: The proposed model was evaluated and 
provided promising results with respectively 0.8917 and 

0.9795 F1-scores on referable and normal/abnormal 
DR identification tasks. It demonstrated effective DR 
identification through minimizing intra-class distances and 
maximizing inter-class distances between source and target 
domains.
● CONCLUSION: The multi-SFDA method provides an 
effective approach to overcome the challenges in DR 
identification. The method not only addresses difficulties in 
data labeling and privacy issues, but also reduces the need 
for large amounts of labeled data required by deep learning 
methods, making it a practical tool for early detection and 
preservation of vision in diabetic patients.
● KEYWORDS: diabetic retinopathy; multisource-free; 
domain adaptation; pseudo-label generation; softmax-
consistence minimization
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INTRODUCTION

D iabetic retinopathy (DR) is a prevalent disease 
worldwide[1-4]. It is a metabolic disorder related to blood 

sugar and considered to be a primary cause of blindness in 
diabetic patients[5-6]. Early screening and diagnosis of DR are 
crucial in mitigating the risk of vision loss. DR is categorized 
into five stages: no DR, mild non-proliferative DR (NPDR), 
moderate NPDR, severe NPDR and proliferative DR (PDR), 
as shown in Figure 1. Detecting and classifying DR from color 
fundus photograph (CFP) images, especially at an early stage, 
is challenging. 
In general, DR is often considered to be the significant 
symptom of diabetes[7-8]. DR can be broadly classified into 
two stages, namely, early DR and advanced DR. 1) NPDR 
is also commonly referred to as early DR. At this stage, 
new retinal vessels do not proliferate, and early DR can 
be further classified into mild, moderate, and severe non-
proliferative stages. During the mild stage, DR often involves 
small bleeding spots or small microhemangiomas, while the 
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moderate stage may exhibit yellowish-white punctate hard 
exudates. In the severe stage, cotton-like and soft exudates 
may be observed in the retina, along with more blocked 
retinal blood vessels. 2) Advanced DR is characterized by 
proliferative retinopathy, which damages the proliferation of 
the new vessels in the retina. New retinal vessels are fragile 
and may leak into the clear area, resulting in severe vision 
loss. Moreover, this may damage the optic nerve, leading to 
glaucoma. Extracting effective features for DR is challenging 
due to the complex and diverse characteristics of fundus. 
In clinical practice, DR is often treated as two recognition 
tasks, referred to as referable DR classification and normal/
abnormal DR recognition (Figure 1). Identifying referable DR 
can effectively detect patients with vision-threatening lesions 
(more than mild), which can help save their vision. Abnormal 
DR recognition aims to detect the growth of abnormal blood 
vessels in the retina, thereby providing early treatment options 
for abnormal patients. As both tasks are significant, this study 
focuses on addressing them using deep learning technology.
Deep learning-based methods have recently gained popularity 
in various fields such as DR, breast cancer, and cardiology, as 
evidenced by several studies[9-10]. Many automated algorithms 
have been proposed for the diagnosis and segmentation of DR 
in retinal images, including the detection of red lesions and 
hemorrhages. Deep learning-based methods have demonstrated 
significant advantages in DR diagnosis[8,11]. Among various 
deep learning-based algorithms, convolutional neural network-
based algorithms are widely employed in medical image 
classification and have shown remarkable performance on CFP 
images. Typically, a convolutional neural network (CNN) is 
used to extract features from retinal images, which is effective 

for classification and segmentation. Deep learning methods 
have the potential to efficiently process large retinal image 
datasets.
Moreover, developing an effective and reliable diagnostics 
system to tackle this problem has its own set of unique 
challenges. Existing deep learning techniques, despite their 
commendable success in the medical field, suffer from serious 
drawbacks. These limitations generally stem from difficulties 
in large-scale dataset labeling, complicated and expensive data 
collection processes, and often strong restrictions from patient 
data protection regulations. Therefore, the need for building a 
system that’s efficient, cost effective, and respects individual 
data privacy protocols becomes crucial. Transfer learning—
a subdomain of machine learning, has illustrated excellent 
proficiency in hastening the learning process and strengthening 
the performance of the diagnosis systems for DR when labeled 
data is scanty. Typically, in a transfer learning problem, 
valuable information is gleaned from the “source” domain to 
enhance the learning accuracy of new models designated the 
“target” domain where labels are close to none or non-existent.
Nonetheless, when it comes to transfer learning implementation 
in datasets holding confidential personal data as seen in the 
domains of retinal image analysis, accessing relevant source-
domain data is a deal breaker due to several rigors in the likes 
of privacy protection constraints, ethical restrictions, legal 
implications, and data access rights collectively inhibiting 
unbounded data sharing. Such vital challenges have necessarily 
sprung the call for scientific perspectives outside the confines 
of conventional transfer learning. Rightfully so, working 
with transfer learning domains where source data access is 
restricted, we face, what in scientific spheres is called a source-

Figure 1 Example CFP images from different DR stages  Task 1: Non-referable (grade 0, 1) vs referable (grade 2, 3, 4) DR classification; Task 

2: Normal (grade 0)/abnormal (grade 1–4) DR classification. DR: Diabetic retinopathy; PDR: Proliferative diabetic retinopathy; NPDR: Non-

proliferative diabetic retinopathy; CFP: Color fundus photograph.

DR identification based on multi-SFDA
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free domain adaptation (SFDA) problem. Intuitively, SFDA 
circumvents the need for access to the source domain data, 
overcoming the limitations of learning by applying inferences 
that map learned labeled data to shifting target data into 
distinct classes. This demonstrates the unique motivations 
underlying the implementation of a “source-free domain 
adaptation approach” that effectively leverages large volumes 
of unlabeled data, marking significant progress towards an 
advanced diagnostic tool for DR.
To address the challenges associated with labeling constraints, 
privacy concerns, and domain adaptation techniques, our 
research puts forward a novel SFDA framework tailored for 
DR identification. It not only ensues operability with large 
volumes of unlabeled dataset, but also minimizes data sharing 
hazards therein. The distinctive aspects and novel contributions 
of our approach laps into introducing the term of softmax-
consistence minimization to exploit more discriminative 
information from reducing domain discrepancies, launching 
pseudo labels based multi-source models. Compared to 
existing DR identification models, this work aims to leverage 
previously labeled datasets and unlabeled target data in a 
transductive manner. By doing so, we can exploit the existing 
knowledge while minimizing the data labeling expense and 
data sharing risks. The motivations and contributions are 
concluded as following:
Motivation  This study is driven by three major motivations, 
with each addressing critical aspects within the field of 
applying deep learning for DR identification.
1) The need for robust domain adaptation: striking variances 
and underlying complexities across multi-domain platforms 
pose significant challenges to model effectiveness and optimal 
performance. In acknowledging this issue, there arises 
an earnest need for cogent yet flexibility-durable domain 
adaptation methodologies.
2) Data privacy issues and restrictions: medical data—ones 
utilized in DR identification—are often encumbered by privacy 
and ethical limitations. This directly leads to challenges 
accessing or utilizing essential source-domain data. Herein lies 
one of the motivations for our study - propagating a solution 
with SFDA.
3) Utilization of pseudo labels for unlabeled data: owing to the 
impediment of acquiring large-scale labeled data, we introduce 
a synthetic stand-in—“pseudo labels” for unlabeled data. This 
trifles the necessity for extensive real-world data and hence 
facilitates not just efficient, but more importantly effective DR 
identification.
Taken together, these considerations reinforce our approach’s 
assortment of existing performance limitations and offer 
advancements in the process and accuracy of the task at hand 
DR—identification.

Contribution  Based on the above analysis, we propose a 
novel framework, softmax-consistence minimization and 
multisource-model pseudo label generation-based (SMPL) 
algorithm. The major contributions of this study are as follows: 
1) We introduce the term of softmax-consistence minimization 
to decrease discrepancies between data from various domains. 
This process helps to minimize the distances between the 
intra-class samples in both source and target domains while 
maximizing the distances between samples from different 
classes.
2) We present a multi-source-model pseudo-label generator, 
which enhances the model’s performance. Besides, this paper 
represents a preliminary investigation into the application 
of source-data-free domain adaptation techniques for retinal 
image classification tasks.
3) We conduct extensive experiments using several typical 
DR datasets to demonstrate the effectiveness of our proposed 
framework.
The following sections of this paper detail the proposed 
methodology (section 2), follow up with an in-depth analysis 
of the implementation, several typical datasets, and the 
resulting experiments (section 3), and conclude the study 
(section 4).
MATERIALS AND METHODS
To address the problem of source-free unsupervised domain 
adaptation in DR identification, we propose a novel framework 
that includes the terms of SMPL.
In SFDA of DR identification, assume a source domain 

1 1 2 2{( , ), ( , ),..., ( , ),..., ( , )}( 1,2,..., )s sN Ni i
s s s s s s s s s sD x y x y x y x y i N= = , 

where i
sx  denotes the ith fundus image sample from the source 

domain, and i
sy  represents the DR label of the ith source 

sample. Ns is the sample number of the source data. In source-

free settings, we denote 1{ }j n
S jθ =  as n different source DR 

identification models, trained from the same source fundus 

images. Given a target domain 
1 2{ , ,..., }tN

t t t tD x x x=  without 
DR labels, Nt is the number of the target fundus images. 
The goal of this framework is to predict the target DR label of 

i
tx  by domain adaptation from source models 1{ }j n

S jθ =  without 
access to any source fundus images Ds in training stage. An 
illustration of the proposed SMPL is presented in Figure 2. In 
detail, this paper first introduces a multisource-model pseudo-
label generator to output the synthetic pseudo labels for each 
target fundus image, which are jointly determined by the pre-

trained multiple source models 1{ }j n
S jθ = . Then a softmax-

consistence minimization loss is deployed to further improve 
the identification ability of the target model with the help of 
SFDA.
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Multisource-Model Pseudo-Label Generator  In our 
framework, pseudo-labels are obtained based on an ensemble 

of multiple source identification models 1{ }j n
S jθ = , which can 

be useful for promoting the target model Tθ . Because the 
extracted features from multiple source models have more 
powerful ability to represent the fundus images than single 
model’s feature, this paper employ several different models to 
learn the representative features for each sample. The process 
of generating multisource-model pseudo labels is as follows: 

1) Construct one set using category prediction probability. 
Given a sample i

tx  from the target domain, the features 

1

1( ) ( )
n

i j i
t S t

j
f x x

n
θ

=

= ∑  are extracted by the multisource models, as 
shown in Figure 2B. The DR category prediction probability 

( ) ( ( ))i i
t tP x P f x=  can be obtained by the one-hot encoding of 

feature ( )i
tf x .

Here, we select ( )i
tf x  with the max ( )i

tP x  as the reliable 
candidate reference point in Figure 2C. Inspired by the idea 
of the k-nearest neighbor, we select k points as one set SR as 
follows:
        SR={x j | NkNN (P (x j ), P (xi ) ≤ k, k ≤ Nt , j=1,2,…Nt, i ≠ j)}tt t t       (1)

2) Construct the set based on the distances between features. 
The category center mR is computed using the category 

prediction probability ( )i
tP x  and feature ( )i

tf x  as follows:
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The target fundus image j
tx  is classified as Sdis if the distance 

between j
tx  and mean mR of the ith class is shorter than the 

distance between j
tx  and mean ( 1,2,..., , )im i C i R= ≠ . The 

process of classifying the target samples was as follows:

   
( ){ { ( ), }, 1, 2, , ; 1, 2, , }j j

dis t t i tS x min d f x m i R j N=  = = ∣
      

(3)

To guarantee the accuracy of the DR pseudo-label generation, 
we selected common elements of both sets SR and Sdis, whose 
operation can be defined as follows:
                                      S R= SR ⌒ Sdis                                      (4)
3) Optimization. For all samples, we generate their pseudo 
labels during model training as follows:

                            ˆ arg min ( ( ), )r j
t ry d f x ξ=                        (5)

Where d(·,·) represents the distance between ( )j
tf x  and DR 

category center 
1 ( )

j R
t

j
t

S
r

xR

f x
n

ξ
∈

= ∑
 
(nR is the sample number of 

S R). Then, we designed the DR classification loss for all target 
samples to enhance the identification ability:

              
( )ˆ

1 1

1 log ( )
t

j

N R
j

PL ty r
j rt

L P x
N =

= =

 = − ∑∑ 1                       (6)

where R is the total number of classes in Eq. (6).
Benefit from the proposed multisource-model pseudo-label 
generator, the obtained pseudo labels are more confident than 
those from the single source DR identification model, and the 
feature extractor have excellent capability on feature learning 
for fundus images.
Softmax-Consistence Minimization Loss  Since source 
fundus data is unavailable, the multisource-model pseudo-
labeling process may encounter uncertainty/error classification 
when target samples lack ground-truth DR labels. To 
address this obstacle, we propose the softmax-consistence 
minimization method, presented in Figure 2D. This technique 
reduces feature distances between fundus samples of the 
same class and increases the distances between samples from 
different DR classes in both the source and target domains. The 
essence of this method is to minimize the discrepancy between 

Figure 2 Overview of the proposed SMPL approach  A: Target domain data; B: Feature extractors; C: Process of generating pseudo labels; D: 

Process of minimizing softmax consistence between the source models (feature extractors of source domain 1{ }j n
S jf θ ==  and the classifier 

of source domain P) and the target model. SMPL: Softmax-consistence minimization and multisource-model pseudo label generation-based 

algorithm.

(2)

DR identification based on multi-SFDA



1197

Int J Ophthalmol,    Vol. 17,    No. 7,  Jul. 18,  2024        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

the source and target domain by adjusting the softmax values 
of the target samples to align with that of the source domain, 
hence improving the model’s performance in classifying the 
target samples correctly.

We input the target fundus image j
tx  into each source model 

θS, adjusting the softmax values of ( )j
S txθ  to align with those 

of the source data. However, we seek to decrease the entropy 

of ( )j
T txθ  through the use of a trainable target DR identification 

model. The loss function for softmax-consistence minimization 

is defined as follows:

(7)

where ( )σ ⋅  denotes the softmax function. θS(·) and θT(·) denote 
source and target models, respectively. ˆ ry  represents the label 
of the rth category.
The implementation of the softmax-consistence minimization 
term ensures that the model maintains a consistent distance 
measure between data samples across different domains. This 
is integral to the success of our multi-source domain adaptation 
model, as it ensures a harmonious alignment of data in a multi-
domain setup, hence promoting the correct classification of the 
unlabeled target domain samples.
Combining the loss terms (6) and (7), the total loss in our 
model is formulated as follows:

                                total PL SC= +                                    (8)

The procedure for training our DR identification model is 
summarized in Figure 3.
RESULTS
Datasets and Settings
Dataset description  For our experiments, we chose three 
retinal image datasets, one of which is EyePACS[12-13]. This 
dataset is currently the largest public dataset for detecting DR 
and consists of 35 126 training images and 53 576 testing 
images, as demonstrated in Figure 4A. Each image is graded 
on a scale of 0 to 4. However, EyePACS is a particularly 

challenging dataset due to variations in image resolution, 
lighting, and quality. We should note that only the training set 
was used to train the source domain model in our experiment.
Besides, we employ a high-quality DDR dataset[14] in our 
experiments, which was derived from 84 grade-A tertiary 
hospitals. This dataset included 13 673 retinal fundus images 
collected between 2016 to 2018. These images were captured 
using single-view imaging as shown in Figure 4B, and were 
desensitized for non-commercial use. The images were 
obtained from 9598 patients with an average age of 54, with 
48.23% of the images belonging to male patients and 51.77% 
to female patients. For our experiments, we used samples 
labeled with five grades and divided them into training and 
testing sets.
The APTOS dataset[15] was released as part of the Kaggle 
blindness detection challenge in 2019 by the Asia Pacific 
TeleOphthalmology Society. The dataset comprises 3662 
high-resolution fundus images captured using several types of 
clinical cameras, taken in varying conditions and environments 
over an extended period. The images are graded on a scale 
of 0 to 4 to denote the severity level of DR, where 0 signifies 
no DR and 4 denotes PDR, with mild, moderate, and severe 
grades in between. Examples of fundus photographs from this 
dataset are illustrated in Figure 4C.
Baseline methods  We compared SMPL with several 
traditional domain adaptation approaches such as DANN[16], 
DAN[17], JAN[18], ADDA[19], and CDAN[20] to validate the 
effectiveness of the proposed methods on DR classification. 
Specifically, DANN[16] implemented that the domain adaptation 
predictions must be made based on confused features between 
source and target domains, which is achieved in neural 
network architectures; DAN[17] generalized deep convolutional 
neural network to the domain adaptation, by embedding hidden 
representations of all task-specific layers in a reproducing 
kernel Hilbert space where the mean embeddings of different 
domain distributions can be explicitly matched; JAN[18] learned 
a joint adaptation networks by aligning the joint distributions 

Figure 3 Learning algorithm for SMPL  SMPL: Softmax-consistence minimization and multisource-model pseudo label generation-based algorithm.
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of multiple domain-specific layers across domains based 
on a joint maximum mean discrepancy criterion; ADDA[19] 
designed an adversarial discriminative domain adaptation 
method that combines discriminative modeling, untied weight 
sharing, and a GAN loss to align the domain shifts; CDAN[20] 
presented a conditional adversarial domain adaptation method 
conditions the adversarial adaptation models on discriminative 
information conveyed in the classifier predictions.
Evaluation metric  We employed a range of performance 
metrics[21], including accuracy, F1-score, area under the curve 
(AUC), recall, sensitivity, and specificity, to evaluate the 
effectiveness of our approach and other competing methods. 
Additionally, recall and precision were utilized to measure 
the model’s ability to retrieve referable diabetic retinopathy 
(RDR) images and accurately classify them[21]. The accuracy 
and F1-score were also used to assess the model’s capability to 
distinguish positive samples across all categories. 
Furthermore, binary classifiers’ detection capability is often 
presented through receiver operator characteristic (ROC) 
curves[22]. These curves plot the true positive rate (TPR) against 
the false positive rate (FPR) to show the effect of classifier 
more comprehensively.
Data preparation  Due to difference in brightness, resolution, 
and other aspects among fundus images collected from various 
hospitals using different cameras, they were preprocessed to 
minimize their impact on the training process. Specifically, the 
following steps were employed. 1) Image clipping: As original 
images had varying resolutions, we resized them to a specific 
range. In this study, images having length or width greater 
than 1024 pixels were proportionally resized to 1024 pixels. 
Otherwise, their original configuration was left untouched. 
Moreover, we observed black areas surrounding the fundus 

images, leading to possible interference. Thus, we cropped 
these black areas to fill the images with color fundus except for 
the corner areas; 2) Image augmentation: To offset the uneven 
quality among the images and to highlight blood vessels, 
as well as lesion areas, we applied data augmentation using 
Graham’s algorithm[23]:

                             
( )outI I G Iλ ω ρ δ= + ⊗ +                             (9)

Where I is the input fundus image. G(ρ) represents a Gaussian 

filter with standard deviation ρ. ⊗ denotes the convolution 
operation. Parameters λ,ω,ρ, and δ were set to 4, -4, 128, and 
30, respectively.
Experimental setting  To promote model convergence, we 
initialized the model parameters with ImageNet[5] and fed 
the images, which were resized to 224×224 pixels into the 
network. We standardized the model using the mean and 
standard deviation of ImageNet. During the training stage, 
we implemented rotation and random horizontal flips for data 
augmentation. Besides, we optimized the source and target 
domain models with 40 epochs using the SGD optimizer. The 
learning rates of the source and target domain models were 
set to 0.01 and 0.005, respectively. We set k=0.1 and α=1 as 
the trade-off parameters for all datasets. The batch size was 
32, and we measured feature vectors using cosine distance. 
The PyTorch platform was used to implement the algorithms, 
which were trained using four NVIDIA RTX2080-Ti GPUs. 
To make it easier to repeat the experiments, further parameter 
settings can be found in https://github.com/Jieming1022/SMPL.
Referable Diabetic Retinopathy  We use the term RDR[21] 
in this paper to refer to fundus images that display moderate 
NPDR, severe NPDR, or PDR. Images displaying no DR or 
mild DR are categorized as non-referable. Our model was 
compared against other models, including DANN[16], DAN[17], 

Figure 4 Samples from three DR datasets  A: Samples from the EyePACS dataset; B: Samples from the DDR dataset; C: Samples from the 

APTOS2019 dataset. DR: Diabetic retinopathy.

DR identification based on multi-SFDA
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JAN[18], ADDA[19], and CDAN[20]. To conduct our experiments, 
we set the EyePACS dataset as the source domain dataset 
and the APTOS2019 dataset as the target domain dataset. We 
utilized all labeled data in the source domain and all unlabeled 
data in the target domain.
Our experimental evaluation focused on a diverse set of metrics 
including accuracy, precision, recall (sensitivity), specificity, 
and F1-score, which served to paint a comprehensive model 
performance. For the critical task of RDR detection, what 
stands notable in model’s creations outperform existing 
benchmarks. The deployed algorithm demonstrated a brilliant 
performance with an achieved accuracy of 0.9044, precision 
of 0.8258, very high recall of 0.9691, specificity 0.8602, and 
an outstanding F1-score index reaching 0.8917. These metrics, 
notably comprehensive, starkly validates the new frontier in 
convergence proficiencies witnessed, robustly perpetuating 
stronger cases in favor of our user quality argument assessment 
process alike.
Comparing our model with existing domain adaptation 
techniques as demonstrated in Table 1[16-20], the superb 
performance of our model is evident with regards to the 
prime metrics affecting prediction quality—accuracy, recall 
(sensitivity), and F1-score, it appears forerunning. Benefitted 
substantially from the multi-SFDA method developed in 
our study, accurate and efficient predictions of RDR within 
target domains with unlabeled data is attainable, significantly 
mitigating the data labeling complications associated 
with preserving data privacy. In executing in-depth and 
comprehensive tests, we found that our model obtained 
compelling results, surpassing compared models at least 
2.02% in accuracy, 16.82% in sensitivity, and 4.28% in F1-

scores; effectively denoting advancements in DR identification 
resulting from the application of our model. More drastically, 
this model surpasses the performance of compared models 
by successfully minimizing the computational biases posed 
by various-domain integration, concurrently advancing the 
robustness of RDR predictions to seek unknown data by 
driving-up generalizeability.
In addition, we plotted the ROC curve (Figure 5A) to show 
the effectiveness of our proposed model in detecting RDR. 
As shown in the plot, our model performs remarkably well. 
The x-axis indicates the FPR, which refers to the rate of 
misclassifying non-referable data as referable RDR data. The 
y-axis represents the TPR, which refers to the rate of accurately 
detecting true referable RDR data. False positives occur when 
anomalous data are incorrectly classified as referable, while 
they are, in reality, non-referable.
Normal/abnormal detection  In the experiments, we regarded 
images as abnormal DR when the fundus images were mild, 
moderate, severe, and PDR. No DR images were set to normal 
fundus images. In this section, we evaluate the methods from 
the DDR source domain dataset to the target domain dataset 
APTOS2019. Our model also illustrated similar advancements 
upon application to the task of normal/abnormal detection 
(NAD) in DR assessment from related medical imaging. As 
shown in Table 2, our approach achieves the highest accuracy 
(0.9792), precision (0.9821), recall/sensitivity (0.9768), 
specificity (0.9817), and F1-score (0.9795) when evaluated on 
the DDR source domain dataset and the APTOS2019 target 
domain dataset. 
Comparing numerous domain adaptation methods applied for 
NAD classification, our method has outperformed all others. 

Table 1 Detection results for referable diabetic retinopathy with different domain adaptation methods

Method Accuracy Precision Recall/sensitivity Specificity F1-score
DANN[16] 0.7812 0.8580 0.5528 0.9375 0.6724
DAN[17] 0.8842 0.9030 0.8009 0.9411 0.8489
JAN[18] 0.7891 0.9231 0.5245 0.9701 0.6690
ADDA[19] 0.8525 0.8454 0.7794 0.9025 0.8111
CDAN[20] 0.8162 0.8521 0.6624 0.9214 0.7454
Ours 0.9044a 0.8258a 0.9691a 0.8602a 0.8917a

The source domain dataset: EyePACS. The target domain dataset: APTOS2019. aBest results.

Table 2 Results for normal/abnormal with different domain adaptation methods  

Method Accuracy Precision Recall/sensitivity Specificity F1-score
DANN[16] 0.9642 0.9652 0.9273 0.9657 0.9459
DAN[17] 0.9696 0.9760 0.9639 0.9756 0.9699
JAN[18] 0.9057 0.9554 0.8541 0.9590 0.9017
ADDA[19] 0.8339 0.9595 0.7022 0.9695 0.8109
CDAN[20] 0.7908 0.9245 0.6397 0.9463 0.7562
Ours 0.9792a 0.9821a 0.9768a 0.9817a 0.9795a

The source domain dataset: DDR. The target domain dataset: APTOS2019. aBest results.



1200

From a data-driven perspective, our model’s performance has 
manifested significant superiority in all evaluated metrics. 
Specifically, the accuracy of our model reached 0.9792, 
significantly higher than the second-best performing model, 
DAN[17], which achieved an accuracy of 0.9696. This suggests 
that our method is more successful in distinguishing between 
normal and abnormal classes. Our model also exhibited 
excellent precision, scoring 0.9821, indicating that our model is 
more effective in avoiding false positives, thereby rendering its 
positive predictions more reliable. When considering recall or 
sensitivity, the advancements suggest that our model was more 
proficient in identifying true positives from the entire set of 
actual positives. Furthermore, our model with a specificity of 
0.9817 and superior F1-score of 0.9795, reveals that our model 
is more skillful at correctly identifying negatives, thereby 
reducing the risk of false alarms and achieves an ideal balance 
in avoiding both false positives and negatives. In conclusion, 
our multi-SFDA method has proven to be effective in DR 
identification, overcoming challenges related to data labeling, 
data privacy, and the need for large amounts of labeled data. 
The superior performance of our method makes it a practical 
tool for the early detection of DR, thereby contributing to the 
preservation of vision in diabetic patients.
Confusion Matrix and Analysis  To visualize the performance 
of our DR identification model and evaluate the potential of the 
classifier on the test dataset, we utilized a confusion matrix for 
RDR and NAD tasks, presented in Figures 5B and 6B, respectively.
The confusion matrix shows the correctly identified outcomes 
on the diagonal, while the wrong outcomes lie on the off-

diagonal elements. The model that performs better will have 
fewer off-diagonal elements. In the RDR task, 51.09% of the 
images were non-referable, while 39.35% were referable DR. 
On the other hand, in the NAD task, 48.39% of the images 
were normal, and 49.54% were abnormal DR. As shown by the 
results of the confusion matrices, the majority of the samples 
were correctly identified.
Ablation Study  Recent research studies[24-25] indicate that 
deep learning algorithms can acquire transferable features 
for new domain adaptation to some degree. However, the 
transferability of features in higher layers of the SMPL network 
decreases significantly with an increase in different domains, 
as most deep learning features eventually transfered from 
general to specific types. In this section, we leverage ablation 
analysis to explore the impacts of the various components in 
our SMPL. Our method consists of two essential components, 
including softmax-consistence minimization (SCM) and 
multisource-model pseudo-label generator (PLG). We present 
the experimental results for the RDR and NAD tasks to verify 
the different components of our proposed approach in Tables 3 
and 4.
To ensure a fair comparison, we conducted evaluations of 
our approach using the same hyperparameters and number 
of training iterations. In Table 3, we observed that for the 
RDR task (DDR/EyePACS to APTOS2019), using only 
the source model in our SMPL resulted in an accuracy of 
88.2% (89.67%). However, when two components were 
incorporated, the accuracy increased to 90.33% (90.44%). Similarly, 
Table 4 demonstrates that for the NAD task (DDR/EyePACS 

Table 3 Ablation experiments of non-referable/referable DR on APTOS 2019 

Source Method Accuracy Precision Recall Specificity F1-score
DDR S only 0.8820 0.7787 0.9913 0.8074 0.8722
DDR S+SCM 0.8276 0.7569 0.8480 0.8138 0.7999
DDR S+SCM+PLG 0.9033 0.8221 0.9724 0.8561 0.8909
EyePACS S only 0.8967 0.8160 0.9630 0.8515 0.8834
EyePACS S+SCM 0.9011 0.8272 0.9563 0.8634 0.8871
EyePACS S+SCM+PLG 0.9044 0.8258 0.9691 0.8602 0.8917

SCM: Softmax-consistence minimization; PLG: Pseudo-label generator. S denotes the source domain, and the S+SCM+PLG 

employs the beta distribution and cosine distance metric.

Table 4 Ablation experiments of normal/abnormal DR on APTOS 2019

Source Method Accuracy Precision Recall Specificity F1-score
DDR S only 0.9672 0.9452 0.9930 0.9407 0.9685
DDR S+SCM 0.9765 0.9831 0.9704 0.9828 0.9767
DDR S+SCM+PLG 0.9792 0.9821 0.9768 0.9817 0.9795
EyePACS S only 0.9647 0.9758 0.9542 0.9756 0.9649
EyePACS S+SCM 0.9505 0.9895 0.9122 0.9900 0.9493
EyePACS S+SCM+PLG 0.9683 0.9926 0.9445 0.9928 0.9680

DR: Diabetic retinopathy; SCM: Softmax-consistence minimization; PLG: Pseudo-label generator. S denotes the source 

domain, and the S+SCM+PLG employs the beta distribution and cosine distance metric.

DR identification based on multi-SFDA
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to APTOS2019), using only the source model in our SMPL 
resulted in an accuracy of 96.72% (96.47%). But when two 
components were included, the accuracy increased to 97.92% 
(96.83%), and their training steps are also visualized in 
Figure 7. This indicates the necessity of utilizing these two 
modules in our model. The SCM loss aids in minimizing the 
distances between the intra-class samples from the source and 
target domains while also maximizing the distances between 
inter-class samples. Meanwhile, the multisource-model 
pseudo-label generation approach enhances DR identification 
performance by employing pseudo-labels more effectively.
Performance Analysis  In this section, we examine the impact 
of training epochs on model performance. Figures 8 and 9 
display the results for the RDR and NAD tasks, respectively. 
The evaluation of each task utilized four metrics, including 
accuracy, F1-score, precision, and specificity to generate a 
performance curve. Interestingly, the results indicate that 
stability was achieved for the first 11 epochs, though several 
rates yielded the optimal results. As illustrated in Figure 7, 
the convergence of loss was not stable. Consequently, we set 

the number of epochs for our model to 40 to optimize the 
identification performance.
Convergence Analysis  This section proves the convergence of 
loss over epochs. Figure 7 demonstrates that for both the RDR 
and NAD tasks, the model loss quickly reached convergence. 
As the number of training epochs increased, the losses of all 
six terms decreased uniformly. Following 40 epochs in our 
approach, the model achieved remarkable stability. As a result, 
we configured the epoch of SMPL to 40 for the experiments.
DISCUSSION
In this paper, we proposed a multi-SFDA method for the 
identification of DR using medical image analysis. Our 
approach addresses the challenges faced by deep learning 
methods, such as the need for a large amount of labeled data, 
data labeling difficulties, and data privacy concerns.
By integrating multiple source models trained on a single 
source data, we are able to generate synthetic pseudo labels 
for the unlabeled target domain. This allowed us to leverage 
the knowledge from different source models and improve the 
performance of DR identification in the target domain.

Figure 5 Visualization of the non-referable/referable DR identification task  A: ROC curve; B: Confusion matrix; C: tSNE plot. The green 

color denotes correct matching ratio and the red one represents the wrong matching rate. DR: Diabetic retinopathy; ROC: Receiver operator 

characteristic; tSNE: t-distributed Stochastic Neighbor Embedding.

Figure 6 Visualization of the normal/abnormal DR identification task  A: ROC curve; B: Confusion matrix; C: tSNE plot. The green color denotes 

correct matching ratio and the red one represents the wrong matching rate. DR: Diabetic retinopathy; tSNE: t-distributed Stochastic Neighbor 

Embedding.
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Furthermore, we introduced a softmax-consistence 
minimization term to minimize the distances between the same 
classes in the source and target domains, while maximizing the 
distances between different classes. This helped to enhance the 
discriminative power of our model and improve its ability to 
accurately classify different stages of DR.
To evaluate the effectiveness of our SMPL method, we 
conducted experiments using three CFP datasets: APTOS2019, 
DDR, and EyePACS. The results demonstrated the superiority 

of our approach in terms of DR identification accuracy 
compared to existing methods. 
According to the above analysis, our approach addresses deep 
learning challenges, including the need for abundant labeled 
data, labeling complexities, and privacy concerns. By merging 
multiple source models trained on single-source data, we 
generate synthetic pseudo-labels for unlabeled target domains, 
enabling us to leverage varied source model insights and 
enhance DR identification performance in the target domain. 

Figure 7 Convergence curve of non-referable/referable DR and normal/abnormal DR tasks  A–C: The loss of classification, PLG, and SCM for 

the RDR task; D–F: The loss of classification, PLG, and SCM for the NAD task. DR: Diabetic retinopathy; RDR: Referable diabetic retinopathy; 

SCM: Softmax-consistence minimization; PLG: Pseudo-label generator; NAD: Normal/abnormal detection.

Figure 8 Rate vs epoch curve of non-referable/referable diabetic retinopathy  A: Accuracy; B: F1-score; C: Precision; D: Specificity.

Figure 9 Rate vs epoch curve of normal/abnormal diabetic retinopathy  A: Accuracy; B: F1-score; C: Precision; D: Specificity.

DR identification based on multi-SFDA
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It presents an innovative solution to expand the application 
scenarios of artificial intelligence models, improve their 
generalization ability, and pave the way for diagnosis of DR. 
However, this study still faces several constraints, including the 
need for more computational power and model training costs 
during the training process of multi-source domain models, the 
negative impact of noisy data in the target domain, and issues 
related to poor data collection quality.
In terms of clinical applicability, our method has the potential 
to be integrated into existing ophthalmological diagnostic 
systems to provide a more accurate and efficient diagnosis of 
DR. This could reduce the burden on healthcare professionals 
by automating the initial screening process, and allow for 
earlier detection and treatment of DR, potentially reducing the 
risk of vision loss in diabetic patients. Considering potential 
real-world application scenarios, our method could be utilized 
in remote or under-served areas where access to qualified 
ophthalmologists is limited. By using our method, healthcare 
workers in these areas could conduct initial screenings for DR 
using fundus photographs, and refer patients with positive 
results to specialists for further examination and treatment. Our 
method could also be integrated into telemedicine platforms, 
providing an efficient and cost-effective solution for DR 
screening on a large scale.
However, there are certain limitations to our study. Firstly, 
the computational requirements for training the multi-source 
domain models can be demanding, which may limit its 
application in resource-constrained settings. Additionally, the 
presence of noisy data in the target domain can impact the 
performance of our method.
Furthermore, the quality of data collection in medical imaging 
datasets may vary, which can affect the reliability of our 
approach. Lastly, while our method shows promise for DR 
identification, its generalizability to other retinal diseases or 
imaging modalities needs further exploration.
In our future work, we will focus on addressing these 
aforementioned challenges to improve the efficiency and 
accuracy of model applications. We aim to significantly 
broaden the scope of model applications, achieve widespread 
screening and diagnosis of DR, and ultimately enhance the 
quality of life for DR patients.
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