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Abstract
● Retinitis pigmentosa (RP) is a group of genetic 
disorders characterized by progressive degeneration of 
photoreceptors and retinal pigment epithelium (RPE) cells. 
Its main clinical manifestations include night blindness and 
progressive loss of peripheral vision, making it a prevalent 
debilitating eye disease that significantly impacts patients’ 
quality of life. RP exhibits significant phenotypic and genetic 
heterogeneity. For instance, numerous abnormal genes are 
implicated in RP, resulting in varying clinical presentations, 
disease progression rates, and pathological characteristics 
among different patients. Consequently, gene therapy for 
RP poses challenges due to these complexities. However, 
stem cells have garnered considerable attention in the field 
of RPE therapy since both RPE cells and photoreceptors 
can be derived from stem cells. In recent years, a large 
number of animal experiments and clinical trials based on 
stem cell transplantation attempts, especially cord blood 
mesenchymal stem cell (MSC) transplantation and bone 
marrow-derived MSC transplantation, have confirmed that 
stem cell therapy can effectively and safely improve the 
outer retinal function of the RP-affected eye. However, 
stem cell therapy also has certain limitations, such as the 
fact that RP patients may involve multiple types of retinal 
cytopathia, which brings great challenges to stem cell 
transplantation therapy, and further research is needed 
to solve various problems faced by this approach in the 
clinic. Through comprehensive analysis of the etiology and 
histopathological changes associated with RP, this study 
substantiates the efficacy and safety of stem cell therapy 
based on rigorous animal experimentation and clinical 
trials, while also highlighting the existing limitations that 
warrant further investigation.
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INTRODUCTION

R etinitis pigmentosa (RP) is a group of hereditary retinal 
disease characterized by damage to retinal photoreceptor 

cells and retinal pigment epithelial (RPE) cells. Clinically, it is 
characterized by night blindness, progressive reduced visual 
field, pigmentary retinopathy, and poor photoreceptor function. 
The disease usually occurs in both eyes, and in rare cases, it 
occurs in one eye. The prevalence of RP ranges from 1/7000 
to 1/3000 worldwide and about 1/4000 in China[1]. It usually 
begins before the age of 30, most commonly in childhood or 
adolescence, and becomes worse in adolescence until middle 
age or old age due to macular involvement and severe visual 
impairment and blindness. One of the most well-known 
treatments for this disease is tissue therapy. However, with the 
development of medicine, various therapeutic methods such 
as gene therapy, retinal prosthesis, optogenetic therapy, drug 
therapy, complication therapy, and stem cell therapy have been 
proposed.
PATHOGENESIS OF RETINITIS PIGMENTOSA
A genetic abnormality is currently considered to be the main 
cause of RP. Abnormal genes affect retinal photoreceptor 
or RPE cells, weakening intracellular material transport, 
molecular movement, and light conduction between 
photoreceptor and RPE cells, ultimately leading to visual 
impairment[2]. The genetic basis and mutations that cause RP 
are complex and highly heterogeneous. More than 70 genes 
have been identified as associated with RP, typically each 
with a different disease-causing mutation[3-4]. According to the 
latest findings, there are three types of autosomal recessive, 
dominant, and X-linked recessive inheritance, with autosomal 
recessive inheritance being the most common. Numerous 
studies have shown that mutations in seven known splicing 
factors are associated with autosomal dominant RP, including 
pre-mRNA processing factor 3 (PRPF3), PRPF4, PRPF6, 
PRPF8, PRPF31, small nuclear ribonucleoprotein particle 200 
(SNRNP200), and pre-mRNA 9 (RP9; Table 1)[5-15]. Mutations 
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in PRPF31, are the most common among these, accounting 
for 6%-11.1% of autosomal dominant RP[10]. PRPF31 is a 
highly conserved gene. Studies have found that homozygous 
PRPF31 knockout mice and zebrafish are embryonically 
lethal, indicating the importance of PRPF31. The present 
studies reveal that PRPF31-RP demonstrates incomplete 
exodominance due to haploinsufficiency, wherein the disease 
is attributed to reduced gene expression levels of the mutated 
allele[11]. Xi et al[12] found that carriers of the PRPF31 
heterozygous mutation may be asymptomatic if the wild-type 
(WT) allele produces enough PRPF31 to maintain normal 
retinal function or may progress to blindness if the remaining 
PRPF31 level falls below a critical threshold.
HISTOPATHOLOGICAL FEATURES
The most important changes in RP visible under the light 
microscope are the progressive degeneration of the upper 
cortex of the retinal nerve, especially the rod cells[16]. Early 
studies showed that the lesions spread from the outer retinal 
layer inward, extending from the equator to the macula, 
eventually penetrating the nerve cell layer and leading to 
atrophy of the entire retina. In the early stage of the disease, 
the rods and pigment epithelial cells in the equatorial region, 

as well as the photoreceptor cells, simultaneously underwent 
degeneration and proliferation, and the proliferative epithelial 
cells and macrophages migrated to the vascular layer in the 
retina and near the veins. Degeneration and hyperplasia occur 
in the pigment epithelium, as the loss or accumulation of 
pigment that migrates to the inner retina[17].
Proliferative epithelial cells, macrophages, and free pigment 
particles accumulated around the retinal blood vessels, and 
the outer membrane of the retinal blood vessels experienced 
hyaloid degeneration and thickening; the tube diameter was 
significantly reduced; and the lumen was narrow or even 
completely blocked. The choroidal blood vessels can then 
be sclerotized to varying degrees, and the late choroidal 
capillaries disappear completely or partially. Occlusion of 
the central artery of the optic nerve can result in optic nerve 
atrophy and often gliosis, where a membranous mass forms 
that is connected to the glial membrane in the retina 
(Figure 1). Recent studies have shown that the proliferating 
glia cells are mainly derived from Müller cells (MC), which 
have the properties of neural stem cells. After retinal injury, 
MC can proliferate and differentiate into retinal neurons to 
promote retinal repair[18].

Table 1 Causes of RP from different splicing factors

Types of splicing factors Causes of RP References
PRPF3 Altered PRPF3 amino acids are highly conserved in all known PRPF3 orthologues [5]
PRPF4 Haploinsufficiency and dominant-negative effects [6]
PRPF6 Abnormal localization of endogenous PRPF6 within the nucleus [7]
PRPF8 C-terminus exhibit a high degree of conservation [8]
PRPF31 Incomplete penetrance; reduced levels of gene expression from the mutated allele [9-12]
PR9 Proliferation and migration were decreased; FSCN2 and BBS2 were down-regulated in the 

mutated cells; pre-mRNA splicing of the FSCN2 gene was markedly affected
[13-14]

SNRNP200 A defect in hBrr2-dependent RNA unwinding and a consequent defect in spliceosome activation [15]

PRPF3: Pre-mRNA processing factor 3; PR9: Pre-mRNA 9; SNRNP200: Small nuclear ribonucleoprotein particle 200; FSCN2: Fascin actin-bunding 

protein 2; BBS2: Bardet-biedl syndrome 2; RP: Retinitis pigmentosa.

Figure 1 Process of pathological change  A: The rod cells, retinal pigment epithelial cells, and photoreceptors undergo denaturation and 

proliferation; B: The proliferating retinal pigment epithelial cells and macrophages migrate towards the vascular layer within the retina, in close 

proximity to the veins; C: The optic vessel’s outer membrane exhibited hyalinoid degeneration and thickening; D: Choroidal vascular sclerosis of 

different degrees; E: Occlusion of the central artery of the optic nerve can result in optic neuropathy.

Retinitis pigmentosa and stem cell therapy
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STEM CELL THERAPY OF RETINITIS PIGMENTOSA 
Photoreceptor and Retinal Pigment Epithelium Cells  The 
retina is responsible for the conversion of light signals into 
electrical signals. Visual signals originate in photoreceptor 
cells, which mainly express photosensitive proteins in the outer 
segments. The human retina has two types of light-sensitive 
cells, rods and cones, which are responsible for dim vision 
and daylight vision (including color), respectively[19]. The 
differentiation and proper functioning of photoreceptor cells 
and RPE cells are mutually dependent. During development, 
the neuroepithelial cells consist of two layers, which will give 
rise to the RPE cells and the neuronal retina[20]. The absence 
of synaptic input and nutritional factors has been observed 
to inevitably result in transneuronal degeneration of retinal 
neurons due to photoreceptor death. However, even in cases 
of severe RP, approximately 30% of ganglion cells and around 
80% of inner layer neurons remain unaffected[21]. As a result, 
treatments for transplanting photoreceptors into the subretinal 
space and integrating them into the host retina by establishing 
synapses with the host bipolar cells began to emerge[22].
Stem Cell Therapy  Stem cells are pluripotent cells with the 
ability for targeted differentiation and proliferation. When the 
internal environment of the body changes, the differentiation 
potential of stem cells can be activated through various 
signaling pathways in the body and targeted differentiation 
into different cells and tissues, which is why stem cells are 
called universal cells[23]. Because stem cells have the potential 
to replace damaged or missing retinal cells, they can be 
stimulated to differentiate into functional retinal photoreceptor 
cells and then injected into the retina to replace the damaged 
cells and repair the normal retinal tissue structure. Therefore, 
recent studies have shown that stem cell therapy is more 
commonly used and effective in RP because it can effectively 
promote retinal cell survival and inhibit the inflammatory 
response[24].
The emergence of pluripotent stem cells, from the initial 
embryonic stem cells (ESCs) to the human induced pluripotent 
stem cells (hiPSCs) currently being studied, provides a new 
idea for the treatment of RP[25]. Numerous studies have 
shown that these cells can differentiate into several major 
retinal cell types, including photoreceptor cells[26-28]. The 
emergence of pluripotent stem cells, initially ESCs and 
more recently hiPSCs, has provided a promising alternative 
source for attempting photoreceptor regeneration through 
cell transplantation. In addition, adult retinal pigment 
epithelial stem cells (RPESCs) offer a distinct lineage source 
for deriving RPE cells compared to ESCs and hiPSCs[29]. 
Recent studies have demonstrated the presence of RPESCs 
in RPE cell cultures isolated from deceased human eyes[30]. 
Under appropriate culture conditions, these stem cells can 

differentiate into functional RPE cells once again[31-36]. Singh 
et al’s[29] research suggests that adult RPESC-derived RPE 
cells may be a safer option than those derived from ESCs and 
hiPSCs; however, they may present other challenges as well. 
For instance, recent evidence indicates that cadaveric RPE 
cells may retain intracellular phenotypes associated with aging 
and disease, which could potentially limit their effectiveness 
as therapeutic substrates[37]. The latest endeavor in this field 
aims to target the genetic form of RP by utilizing a specific 
type of cell derived from the eye, known as retinal progenitor 
cells (RPCs), which are isolated from fetal human eyes[38-41]. In 
comparison to stem cells derived from bone marrow or neural 
stem cells, RPC transplantation may offer a more targeted 
treatment mechanism for retinal degeneration[29]. Current 
clinical evidence suggests that transplanted RPCs retain the 
potential to differentiate into certain types of retinal cells, 
albeit with limited efficiency[42-44]. Therefore, subretinal RPC 
transplantation has the potential to achieve permanent tissue 
repair through the actual regeneration of photoreceptor cells[29].
Animal Experiment  Animal studies have found that 
pluripotent stem cells, when used in mouse models of RP, 
have the potential not only to survive but also to differentiate 
into and function as photoreceptor cells. For example, the 
study conducted by Zhang et al[45] revealed a significant 
increase in the survival rate of photoreceptors and a notable 
enhancement in visual function following the intravitreal 
injection of mesystimal stem cell (MSCs) in mice. Liang 
et al[46] conducted animal experiments with umbilical cord 
MSCs (UCMSCs) and concluded that intravenous injection of 
UCMSCs could delay retinal degeneration and protect vision 
in rats. Brown et al[47] employed an innovative approach to 
investigate the therapeutic efficacy of original MSCs-derived 
RPCs in rd12 mouse models with retinal degeneration. Their 
findings demonstrated that transplanted RPCs effectively 
attenuated inflammation, provided retinal protection, and 
facilitated neurogenesis, ultimately leading to improvements 
in both retinal structure and physiological function in rd12 
mice. Dezfuly et al[48] established a progressive acute retinal 
injury model by intravitreal injection of sodium iodate in rats 
to compare the therapeutic effects of human adipose-derived 
stem cells (hADSCs) and their secretome on in vivo models of 
sodium iodate-induced retinal neurodegeneration. The results 
demonstrated that hADSCs effectively facilitated photoreceptor 
regeneration and restoration of retinal function. By comparing 
the effects of isogenic bone marrow mononuclear stem 
cell (BM-MNC) transplantation on two animal models 
with different etiologies, namely RCS and P23H-1 rats, 
Di Pierdomenico et al[49] observed that intravitreous and 
subretinal homologous BM-MNC transplantation mitigated 
photoreceptor degeneration and exhibited anti-glioma 
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properties; however, it did not enhance retinal function. 
Furthermore, isogenic BM-MNCs transplantation demonstrated 
superior efficacy compared to xenotransplantation of these 
cells. Given the potential risk of blood vessel obstruction from 
intravenous infusion cells becoming blocked in the lung, Liang 
et al[46] utilized a 10 μm filter to obtain small-cell UCMSCs 
(S-UCMSCs) and found that, compared to UCMSCs, 
intravenous infusion of S-UCMSCs is a safer option. In fact, 
it has been shown to delay retinal degeneration and protect 
visual function in RCS rats, making it a promising treatment 
method for RP. Liu et al[50] investigated various types of 
stem cells, including hADSCs, human amniotic fluid stem 
cells (hAFSCs), human bone marrow stem cells (hBMSCs), 
human dental pulp stem cells (hDPSCs), hiPSCs, and hiPSC-
derived RPE cells, in their study on the protective effects and 
therapeutic potential of subretinal transplantation in rats with 
RP disease. They discovered that both adult and fetal stem cell 
injections resulted in improved visual function within 4wk, 
primarily attributed to the paracrine activity of multiple growth 
factors secreted by these stem cells.
Clinic Trial  As for clinical trials, a variety of experiments 
have shown that stem cell therapy can alleviate clinical 
symptoms in patients with RP (Table 2)[51-57]. Kahraman 
and Oner[51] conducted a clinical trial in which UCMSCs 
suspension was injected into transplanted fatty tissue between 
the choroid and sclera in 124 eyes of 82 patients during a six-
month follow-up. Suprachoroidal administration of stem cells 
has beneficial effects on best corrected vision acuity (BCVA), 
visual field (VF) testing, and multifocal electroretinogram 
(mfERG) recording measurements. Zhao et al[52] conducted a 

comparative study to assess the safety and efficacy of modified 
subtenon capsule injection of triamcinolone alone (TA) and 
intravenous infusion of UCMSCs in the treatment of RP 
combined with macular edema (ME) (RP-ME). No serious 
adverse reactions were observed in all patients, indicating that 
both the modified sub-Tenon capsule injection of TA and the 
intravenous infusion of UCMSCs are safe for RP-ME patients. 
In terms of effectiveness, TA injections demonstrated superior 
short-term outcomes in alleviating ME and improving visual 
function, while the effect of intravenous UCMSC on ME 
relief was slower but sustained over a longer period, leading 
to improved visual function[52]. The Mer tyrosine kinase 
(MERTK) gene encodes the Tyro3/Axl/Mer family of receptors, 
which are implicated in RP. Tagawa et al[53] successfully 
generated hiPSCs from RP patients and healthy individuals 
carrying homozygous or complex heterozygous mutations 
in MERTK. These hiPSCs were then differentiated into RPE 
cells. Although there were no significant morphological 
differences observed between diseased and normal RPE cells, 
cytoskeletal staining indicated potential minor interference 
with cell polarity. Notably, the internalization of photoreceptor 
outer segments was significantly reduced in diseased hiPSC-
RPE cells compared to normal hiPSC-RPE cells. This in 
vitro disease model holds promise for elucidating disease 
progression mechanisms and screening potential treatments. 
In 2009, a kind of original stem cell, a Wharton’s Jelly-
derived MSC (WJ-MSC), was extracted and cultured from the 
umbilical cord Wharton’s Jelly of the fetus after birth. Özmert 
and Arslan[54] injected its suspension into the subtendon 
space of each patient’s eye. The research results showed that 

Table 2 Advantages and disadvantages of different stem cell therapies

Types of stem cells Methods Advantages Disadvantages References

UCMSCs Mesenchymal stem cell suspension was 
injected into transplanted fatty tissue 

between the choroid and sclera

Beneficial effects on BCVA, VF, 
and mfERG

Follow-up time was short; results do 
not apply to patients with early-stage 

disease

[51]

UCMSCs Subtenon capsule injection of TA and 
intravenous infusion of UCMSCs

TA injections demonstrated 
superior short-term outcomes in 

improving visual function

The effect of intravenous UCMSC on 
ME relief was slower but sustained 

over a longer period

[52]

iPSCs Differentiated iPSCs carrying 
homozygous or complex heterozygous 

mutations of MERTK into RPE

The internalization of 
photoreceptor outer segments 

was significantly reduced

Minor interference with cell polarity [53]

WJ-MSC Injected its suspension into the 
subtendon space of each patient’s eye

An effective and safe option to 
slow or stop the progression of 

the disease

Intracellular mutant protein deposits 
could be detected by FAF; changes in 
deposits; FAF-field and visual field are 

not correlated in some cases

[54,57]

BMSCs Conduct suprachoroidal implantation of 
MSCs in RP patients with relatively good 

vision

Effective in preventing apoptosis 
and promoting retinal tissue 

healing

Small sample size and short duration 
of follow-up; genetic factors and 

response to treatment were ignored

[55]

Allogeneic iPSCs Performed allogeneic iPSC-derived 
retinal organoid transplantation in two 

patients with advanced RP

Visual function deterioration was 
observed to progress at a slower 

rate

Further investigation is required 
to assess its safety and efficacy in 

treating visual function

[56]

UCMSCs: Umbilical cord mesenchymal stem cells; BCVA: Best corrected visual acuity; VF: Visual field; mfERG: Multifocal electroretinogram; FAF: 

Fundus autofluorescence; TA: Triamcinolone alone; ME: Macular edema; iPSCs: Induced pluripotent stem cells; MERTK: Mer tyrosine kinase; 

RPE: Retinal pigment epithelium; BMSCs: Bone mesenchymal stem cells; WJ-MSC: Wharton’s Jelly-derived mesenchymal stem cells.
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this transplant method can be considered an effective and 
safe option to slow or stop the progression of the disease, 
regardless of the gene mutation. By conducting suprachoroidal 
implantation of bone MSCs (BMSCs) in patients, Özkan et 
al[55] observed that the implementation of spherical MSCs as 
a stem cell therapy in RP patients with relatively good vision 
led to improvements in BCVA, 10-2 and 30-2 VF examination, 
and mfERG records during the follow-up period. This suggests 
that utilizing globular MSCs with enhanced effects may be 
more effective in preventing apoptosis and promoting retinal 
tissue healing in RP patients. Hirami et al[56] conducted a 
study where they performed allogeneic hiPSC-derived retinal 
organoid transplantation in two patients with advanced RP. The 
results showed that the grafts remained viable for 2y, leading 
to increased retinal thickness at the graft site and no occurrence 
of serious adverse events in either patient. Moreover, during 
follow-up, visual function deterioration was observed to 
progress at a slower rate compared to untreated eyes. These 
findings highlight the potential therapeutic value of allogeneic 
hiPSC-derived retinal organoid transplantation; however, 
further investigation is required to assess its safety and efficacy 
in treating visual function[56]. The study conducted by Ozmert 
and Arslan[57] demonstrated that the combination therapy of 
WJ-MSC and Magnovision can effectively decelerate the 
progression of RP in patients for a duration of up to 3y.
These results suggest that stem cell therapy can significantly 
improve visual impairment in patients with RP and its safety 
has been confirmed by a variety of experiments. Therefore, 
stem cell therapy is widely used in clinical practice.
CONCLUSIONS
The treatment of RP primarily focuses on symptomatic 
management and retarding the degeneration of retinal cells. 
This includes drug therapy, nutritional support therapy, and 
the application of nerve growth factors. With advancements in 
medicine, gene therapy, tissue therapy, stem cell therapy, and 
other approaches have been proposed. Unfortunately, gene 
therapy can only target a single gene and is effective for a 
limited number of patients. Tissue therapy may lead to immune 
rejection and potential tumorigenic risks. 
Due to their self-renewal ability and multiple differentiation 
potentials, stem cells offer hope for curing RP. Extensive 
innovative animal and clinical studies provide a strong foundation 
for the feasibility and safety of stem cell therapy in RP patients, 
thus making it one of the most effective treatment options 
available[58]. Stem cells can fully regenerate RPE cells to 
replace those that have lost function. Furthermore, stem cell 
transplantation offers several advantages, such as protecting 
retinal blood vessels, promoting the repair of damaged nerve 
cells, nourishing nerves, inhibiting inflammatory responses, etc.

However, it should be noted that stem cell therapy also has 
certain limitations, including variability in animal models and 
human mutations, immature gene transfer techniques, surgical 
complications, and local or systemic immunosuppression 
complications. Additionally, its long-term efficacy remains 
uncertain. At present, placental MSCs show broad prospects 
in the treatment of RP, but they are still poorly understood and 
need further research[59].
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