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Abstract
● Owing to the rapid development of modern computer 
technologies, artificial intelligence (AI) has emerged as 
an essential instrument for intelligent analysis across a 
range of fields. AI has been proven to be highly effective in 
ophthalmology, where it is frequently used for identifying, 
diagnosing, and typing retinal diseases. An increasing 
number of researchers have begun to comprehensively 
map patients’ retinal diseases using AI, which has made 
individualized clinical prediction and treatment possible. 
These include prognostic improvement, risk prediction, 
progression assessment, and interventional therapies for 
retinal diseases. Researchers have used a range of input 
data methods to increase the accuracy and dependability 
of the results, including the use of tabular, textual, or 
image-based input data. They also combined the analyses 
of multiple types of input data. To give ophthalmologists 
access to precise, individualized, and high-quality treatment 
strategies that will further optimize treatment outcomes, 
this review summarizes the latest findings in AI research 
related to the prediction and guidance of clinical diagnosis 
and treatment of retinal diseases.
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INTRODUCTION

A rtificial Intelligence Concepts  Artificial intelligence 
(AI) constitutes a pivotal domain within computer 

science. Tremendous advances in computer technology for data 
collection, storage, and processing have led to the application 
of AI in medical diagnosis, bioinformatics, and many other 
fields. Machine learning (ML), a subfield of AI, focuses on 
devising algorithms that extract general principles of data 
to model the relationship between a set of input and output 
values and make predictions about new data[1]. Traditional 
ML includes support vector machines (SVMs), random 
forests (RFs), and other algorithms. Depending on whether 
the data samples used are labeled, ML can be classified into 
supervised or unsupervised learning[2]. Deep learning (DL), 
a subset of ML, is a novel ML technique based on artificial 
neural networks that has brought about a new technological 
revolution in ML (Figure 1). DL can automatically extract 
high-order abstract feature representations from raw inputs 
using multi-layer artificial neural networks. Compared to 
traditional ML, DL can handle more complex and broader 
datasets, has decision-making capabilities, and contains more 
hidden layers with scalability and hierarchical feature learning 
capabilities, this makes DL capable of exploring more complex 
non-linear patterns in the data and automatically identifying 
the correct labels from the new features. DL algorithms such 
as convolutional neural networks (CNNs), recursive neural 
networks, deep belief networks, and deep neural networks have 
been used to achieve remarkable success in image recognition, 
semantic understanding, and speech recognition (Figure 2)[3-4].
Advantages of Artificial Intelligence in Ophthalmology 
Practice  AI has shown significant promise in medicine, 
particularly in ophthalmology, owing to enhanced mathematical 
models, upgraded graphics processing units (GPUs), and the 
widespread use of Hadoop[5]. First imaging tests play a major 
role in the diagnosis and treatment of ocular diseases. High-
resolution images from techniques such as spectral-domain 
optical coherence tomography (SD-OCT), fundus fluorescence 
angiography, and ultra-wide-field fundus imaging, which have 
become more sophisticated in ocular imaging technology, offer 
rich and comprehensive information on retinal morphology. 
These high-precision imaging techniques provide invaluable 
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clinical data for the development and training of AI models, 
which are the key drivers for their widespread application 
in ophthalmology[6-7]. The availability of equipment for 
ocular examination is another important factor. Second, the 
convenience of using ocular examination tools makes it 
possible to conduct widespread population screening. The 
volume and consistency of this data-gathering process ensure 
the availability of a strong database for iterations during AI 
model optimization. Thus, AI models continually improve 
and learn to assist clinicians in diagnosing patients with high 
precision. AI can also learn from and summarize a vast number 
of previous cases. Feature patterns can be identified in large 
datasets to automatically diagnose disease activity in ocular 
image data. This automated and standardized assessment 
process provides a strong basis for accurate and individualized 
clinical diagnosis and treatment, enabling the individualized 
prediction of ocular disease progression, treatment response, 
ideal retreatment intervals, and prognosis. The following 
research has been conducted over the last several years and 
serves as the basis for this investigation[8-9].
In 2019, the World Health Organization published its 
World Vision Report, which identified several significant 
causes of moderate-to-severe visual impairment and even 
blindness, including age-related macular degeneration 
(AMD), diabetic retinopathy (DR), retinal vein occlusion 
(RVO), and other ocular fundus disorders[10]. The etiologies of 

retinal disorders are multifaceted, and managing them often 
requires a protracted therapeutic process. Most diagnoses 
and efficacy assessments of these diseases rely on imaging 
examinations, such as ocular fundus photography, OCT, and 
slit lamp microscopy. Consequently, early diagnosis and 
prompt treatment are essential to preserve visual function 
and minimize the damage caused by the disease. AI has had a 
significant impact on the field owing to its unique advantages. 
AI can identify patterns in retinal diseases and correlate 
individual features to build disease prediction models by 
detecting and learning features from a large amount of image 
data, and many multimodal ocular images provide massive 
data for the development of AI models. AI’s application 
not only reduces the treatment expenditures of patients but 
also enhances their quality of life, simultaneously relieving 
physicians of some of the burdens associated with managing 
diseases[11-12]. Therefore, AI is anticipated to advance the field 
of individualized medicine and has a significant potential to 
increase the effectiveness of retinal disease management.
Artificial Intelligence and Age-related Macular Degeneration  
AMD emerges as the principal factor causing irreversible 
blindness among elderly people. Patients with early-stage AMD 
tend to be asymptomatic and often experience a gradual decline 
in visual acuity (VA). As the condition progresses, early-stage 
AMD advances to late-stage AMD, which is classified into 
two primary subtypes: atrophic AMD and neovascular AMD 
(nAMD), characterized by geographic atrophy (GA) and 
choroidal neovascularization (CNV), respectively[13]. Owing 
to variations among individuals, the progression of AMD is 
unpredictable, and not all patients progress to the late stages. 
Early-stage AMD is characterized by focal cellular metabolic 
deposition (drusen) between the retinal pigment epithelium 
(RPE) and the Bruch’s membrane in the macular area[14]. 
Excessive accumulation of drusen can cause RPE damage, 
trigger inflammatory responses, and provoke degenerative 
changes, leading to retinal atrophy, vascular endothelial growth 
factor (VEGF) expression, and neovascularization. In many 
instances, late-stage AMD develops precisely where drusen 
degeneration is prominent. There are still no treatments that 
can effectively halt the progression of mid- to late-stage AMD. 
Therefore, it is imperative to identify pathomorphological 
changes associated with early-stage AMD. The use of AI to 
extract sensitive and specific biomarkers from fundus images 
is promising for predicting the type and timing of AMD 
progression in individual patients. This approach offers the 
potential for the early screening and individualized clinical 
management of high-risk patients (Table 1)[15-22].
Hallak et al[15] performed a retrospective analysis of 686 
fellow eyes with non-neovascular AMD from the HARBOR 
randomized clinical trial. They used ML for automatic feature 

Figure 1 Relationship between artificial intelligence, machine 

learning, and deep learning.

Figure 2 Schematic of deep learning network structure.

AI in the retinal disease management
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extraction from SD-OCT images, refined the feature set via 
least absolute shrinkage and selection operator (LASSO) 
regression, and investigated the association between imaging 
features, genetics, demographic factors, and conversion to 
nAMD using survival analysis and Cox modeling. Eventually, 
the area and reflectivity of drusen were correlated with 
AMD progression. The discovery of OCT biomarkers 
can help predict disease progression in patients with mid-
stage AMD and guide the development of individualized 
interventions. Yim et al[16] introduced an AI system to predict 
the progression of nAMD in the second eye for patients with 
a current diagnosis in one eye. It integrates 3D OCT images 
and corresponding automatic tissue maps to forecast onset 
within 6mo, achieving high sensitivity and specificity. This 
demonstrates AI’s potential in early diagnosis and intervention 
in AMD progression, thus facilitating personalized treatment 
for patients before vision loss.
GA typically occurs in the late stages of AMD, and it is 
characterized by progressive atrophy of the RPE, overlying 
photoreceptors, and underlying choriocapillaris[23]. GA often 
develops outside the central sulcus and gradually expands into 
it, eventually leading to severe vision loss. Given the inter-
individual variations, understanding the rate of GA growth is 
pivotal for devising individual treatment strategies. Liefers et 
al[17] developed a DL model based on an encoder-re-encoder 
structure for segmenting the GA from color fundus images. 
By combining fundus biomarkers at the baseline with GA 
growth rate in a linear regression analysis, nine automatically 
segmented structural markers (e.g., area, filled area, convex 
area) were found to be significantly correlated with GA 
growth rate, notably highlighting that the GA area grows 
quadratically before stabilizing or decreasing once it reaches 
12 mm². Schmidt-Erfurth et al[18] used an ML prediction model 
to predict the development of AMD eyes into GA or CNV 

within two years. They amalgamated the SD-OCT image 
features, genetic, and demographic data with predictions 
using two Cox proportional risk regression models. They 
observed that GA prediction was more accurate and that GA 
and CNV progression exhibited distinctive feature patterns, 
with CNV predictive markers predominantly influenced by 
drusen and GA markers more strongly associated with age and 
neurosensory retina. Specifically, the features most strongly 
linked to GA progression included the outer retinal thickness, 
hyperreflective foci, and drusen areas. Further studies 
have focused on identifying whether OCT exhibits distinct 
morphological patterns in eyes with GA or CNV. Waldstein 
et al[19] used a previously validated segmentation algorithm 
to characterize drusen and hyperreflective foci as biomarkers 
of AMD progression in SD-OCT images, which incorporated 
8529 SD-OCT images from the HARBOR dataset of 1097 
patients over two years and found that eyes that progressed 
to CNV had higher drusen with thicker hyperreflective foci 
overlying it in the macular central concavity, whereas eyes 
that progressed to GA did not show the same distribution 
pattern in the central concavity, suggesting that fewer drusens 
in the central concavity may be the first step in triggering 
photoreception, RPE, and choroidal atrophy. These findings 
suggest that it is possible to personalize the prediction of AMD 
progression using biomarkers on ophthalmic examination 
images such as OCT and color fundus images. By modeling 
disease progression in a predictive and interpretable manner, 
we can improve risk management for patients with early-stage 
AMD and gain deeper insights into the pathophysiological 
mechanisms underlying its progression.
Anti-VEGF therapy is the mainstream treatment for nAMD. 
nAMD patients receiving anti-VEGF therapy can improve 
their best-corrected visual acuity (BCVA) by one to two 
lines after one year of treatment compared with baseline 

Table 1 Prediction models for progression and prognosis of age-related macular degeneration

Author Year Sample size Data type Algorithms Task

Hallak et al[15] 2019 686 Demographic and clinical data/OCT ML Determine the features associated with the conversion 
to nAMD.

Yim et al[16] 2020 3111 OCT DL Predict the progression of nAMD in the second eye.

Liefers et al[17] 2020 238 CFIs DL Extract structural markers of GA that forecast its 
progression velocity.

Schmidt-Erfurth et al[18] 2018 495 Genetic and Demographic data/OCT ML Analyze imaging biomarkers to predict the risk of AMD 
progression.

Waldstein et al[19] 2020 1097 OCT ML Characterizes drusen and hyperreflective foci in AMD 
patients.

Riedl et al[20] 2020 185 OCT DL Quantitatively assess photoreceptor morphology and 
its correlation with disease morphology and function.

Schmidt-Erfurth et al[21] 2018 614 OCT RF Investigate the prognostic significance of current 
imaging biomarkers in nAMD.

Yeh et al[22] 2022 698 Demographic data/OCT CNN Predict visual acuity 12mo after anti-VEGF treatment in 
nAMD.

OCT: Optical coherence tomography; ML: Machine learning; CFIs: Color fundus images; DL: Deep learning; RF: Random forest; nAMD: 

Neovascular age-related macular degeneration; GA: Geographic atrophy; CNN: Convolutional neural networks.
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VA[24]. However, it is clinically difficult to predict the 
efficacy of anti-VEGF therapy in nAMD patients owing 
to individual differences in patient responses to therapy. 
Presently, the identified biomarkers of VA are mainly based 
on OCT features, such as intraretinal fluid (IRF), degree 
of photoreceptor loss, and features based on fluorescence 
angiography fundus images, such as CNV area[25-26]. Riedl et 
al[20] quantitatively assessed the morphological integrity of 
photoreceptors during the anti-VEGF treatment of nAMD, 
and they analyzed the association between these features, 
disease morphology, and their functions. They manually 
quantified the ellipsoid zone (EZ) integrity of SD-OCT 
images obtained from 185 patients at three follow-up visits 
spanning 12mo, and they automatically segmented the IRF, 
subretinal fluid (SRF), and pigment epithelial detachment 
(PED) using DL models. Using spatiotemporal correlation 
and bivariate analyses, they found that the enhancement 
of EZ integrity was predominantly observed in the central 
concave region. Moreover, they observed a protective effect of 
SRF on photoreceptor integrity, with photoreceptor integrity 
correlating with BCVA. Schmidt-Erfurth et al[21] harnessed a 
DL algorithm based on graph theory and a CNN to execute 
spatially resolved 3D segmentation of the retinal layers, SRF, 
IRF, and PED from an impressive dataset of 41 840 SD-OCT 
scans derived from 1817 patients. Their study utilized an RF 
algorithm to correlate SD-OCT image parameters extracted 
within the initial 3mo with BCVA measurements to predict 
VA status after 12mo of standardized anti-VEGF treatment. 
They observed that the predictive accuracy of their model 
increased with the duration of the initial phase, reaching a 
value of 0.70, and the horizontal extension of the IRF in the 
central concave region was identified as the foremost predictor 
of BCVA. Collectively, these studies offer compelling 
evidence that changes in SD-OCT images coupled with 
concomitant nAMD features can be used to predict the visual 
functional outcomes of patients. This can aid the development 
of individualized anti-VEGF treatment regimens tailored 
for individual nAMD patients. Yeh et al[22] proposed the 

Heterogeneous Data Fusion Net that integrated pre-treatment 
OCT images and demographic data to predict VA outcomes 
12mo after anti-VEGF treatment in nAMD, demonstrating 
high accuracy, sensitivity, and specificity. This approach 
underscores the potential of DL in leveraging diverse clinical 
data for personalized treatment strategies in nAMD.
Artificial Intelligence and Diabetic Retinopathy  DR, 
emerging as the predominant cause of visual loss in the 
global working-age population, represents the most frequent 
microvascular complication associated with diabetes. 
Approximately one-third of individuals diagnosed with 
diabetes are affected by this condition. The pathogenic 
transformations in DR are mainly retinal capillary endothelial 
damage, including selective pericyte loss, basement membrane 
thickening, capillary occlusion, and leakage of plasma 
components owing to endothelial barrier dysfunction[27]. DR is 
classified into non-proliferative DR (NPDR) and proliferative 
DR (PDR) based on lesion severity. Regular screening is 
recommended for NPDR patients, and early diagnosis and 
treatment with lasers or intravitreal anti-VEGF injections are 
required to maintain residual vision[28].
Numerous studies have extensively explored the risk factors 
of DR[29-30], but no definitive conclusions have been reached. 
DR’s complexity is attributable to the fact that diabetes 
mellitus and the development of DR are the result of a 
multifactorial combination of factors, such as postprandial 
glucose, the duration of diabetes mellitus, hemoglobin A1c 
(HbA1c), and hypertension[31]. Risk assessment of DR should 
integrate the combination of factors. The application of AI 
in DR risk prediction has attracted widespread attention 
(Table 2)[32-39]. Tsao et al[32] used several ML algorithms, 
including decision trees, SVMs, logistic regression (LR), and 
artificial neural networks, to develop a prediction model for 
DR in type 2 diabetes mellitus patients. The study showed that 
SVMs performed better than other ML algorithms in terms of 
prediction performance, and the sensitivity of the algorithm 
using a percentage split (i.e., the dataset was divided into 80% 
for training and 20% for testing) reached 79.5%. In particular, 

Table 2 Prediction models of diabetic retinopathy
Author Year Sample size Data type Algorithms AUC Sensitivity (%) Specificity (%) Task

Tsao et al[32] 2018 536 Clinical data SVM 0.839 93.3 72.4 Predict the risk of DR
Li et al[33] 2021 32452 Clinical data XGBoost 0.9 70 90

Zhao et al[34] 2022 7943 Demographic and clinical data XGBoost 0.803 74.0 81.1

Cao et al[35] 2020 258 Clinical data RF 0.84 92.3 75

Arcadu et al[36] 2019 645 CFIs DCNN 0.79 91 65 Predict the progression of DR
Dai et al[37] 2024 179327 CFIs DL - - -

Cao et al[38] 2021 712 OCT RF 0.923 90.0 85.1 Predict the therapeutic 
response in DRZhang et al[39] 2022 281 Clinical data/OCT ML - - -

AUC: Area under the curve; SVM: Support vector machine; XGBoost: Extreme gradient boosting; RF: Random forest; DR: Diabetic retinopathy OCT: 

Optical coherence tomography; ML: Machine learning; CFIs: Color fundus images; DCNN: Deep convolutional neural networks; DL: Deep learning.

AI in the retinal disease management
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their study identified the use of insulin and the duration of 
diabetes as new predictive features. This suggests that clinical 
features combined with appropriate ML algorithms can be 
effective in predicting DR to identify high-risk populations 
to provide individualized treatment plans, thereby improving 
the rationality of medical resource allocation. The sample 
size of this study was small and included only 10 clinical 
indicators; however, the complexity of DR risk factors requires 
larger sample sizes to study and build predictive models. 
When analyzing larger sample sizes and datasets, the extreme 
gradient boosting (XGBoost) algorithm performed better than 
LR. Li et al[33] compared four learning algorithm models, 
LR, SVM, RF, and XGBoost, based on 32 452 samples and 
found that the XGBoost model achieved the highest area 
under the curve (AUC) value in predicting the risk of DR on 
the internal validation set. In addition, the combined effects 
of several indicators, including blood glucose, renal function, 
liver function, and coagulation function, were analyzed using 
ML algorithms. The results showed that the elevated levels 
of HbA1c, the presence of nephropathy, serum creatinine 
concentrations, insulin therapy, and peripheral arterial 
disease in diabetic patients were positively correlated with 
the heightened risk of developing DR. In contrast, increasing 
age was inversely associated with this risk. However, this 
study was a single-center study relied on internal validation; 
therefore, future multicenter studies will require extra work. 
Zhao et al[34] collected the electronic health record data of 
7943 inpatients with type 2 diabetes mellitus and developed 
five risk prediction ML models for the future development 
of DR. Notably, the XGboost model, known for its high 
runtime speed and good scalability, showed the best predictive 
performance, evidenced by an AUC of 0.803, accuracy of 
88.9%, sensitivity of 74.0%, and specificity of 81.1%. In 
addition to diabetes duration, HbA1c, fasting blood glucose, 
and age, which are classical risk factors for DR, low-density 
lipoprotein cholesterol, serum uric acid, estimated glomerular 
filtration rate, total cholesterol, and triglyceride were first 
considered important factors for DR prediction. Data analysis 
from multiple time points showed that the XGBoost model 
could pre-diagnose DR in the absence of fundus images. The 
application of this model can help clinicians to accurately 
identify high-risk groups for DR and develop individualized 
health management strategies for patients, thereby reducing the 
incidence and progression of DR.
In addition, there is growing evidence that the development 
of DR is greatly affected by various cytokines found in retinal 
tissues, including VEGF, matrix metalloproteinases, and 
tissue inhibitors of metalloproteinases, through angiogenic, 
inflammatory, and fibrotic reactions[40-41]. Cao et al[35] 
investigated the association between plasma cytokines and 

NPDR and developed an ML classifier to predict NPDR in 
type 2 diabetes mellitus patients. Their study demonstrates 
that angiopoietin-1, platelet-derived growth factor-BB, and 
VEGF receptor 2 are associated with NPDR. An RF algorithm 
based on the concentrations of these three cytokines in plasma 
had the best performance in discriminating NPDR, with a 
sensitivity of 92.3% and an AUC of 0.84 in the test set.
Early diagnosis and treatment of DR can significantly 
reduce the risk of blindness, and international organizations 
recommend regular DR screening for all diabetics[42]. 
Given the vast differences in DR progression risk among 
individuals, developing personalized risk models and accurate 
prediction of the progression of the disease is crucial. AI 
demonstrates significant potential in this area, with the hope of 
providing individualized screening plans and timely medical 
interventions for high-risk individuals, optimizing resource 
allocation, and improving personalized treatment and disease 
management. Arcadu et al[36] developed deep CNNs based 
on 7-field color fundus images, enabling the prediction of 
significant DR progression at an individual level over 2y 
following the baseline visit. One of these algorithms (forecast 
at monthly twelve) achieved an AUC of 0.79, which indicated 
that using color fundus images obtained from a patient in a 
single visit can predict future DR progression. Dai et al[37] 

employed 717 308 fundus images from 179 327 diabetic 
individuals to pre-train the DeepDR Plus system to predict 
personalized risk and time to DR progression. The subsequent 
real-world study indicated that the mean screening interval 
might be extended to nearly 3y with less delayed detection of 
DR progression when this system had been integrated into the 
clinical workflow of patients, which demonstrated the potential 
of the system to enhance patient-specific risk assessment and 
offer further personalized care for DR management. 
Diabetic macular edema (DME) represents the primary 
etiology of vision loss in association with DR, attributable 
to the accumulation of fluid in the central retina and macular 
thickening owing to blood-retinal barrier dysfunction. Laser 
photocoagulation was once recommended as the standard 
treatment option for DME; however, its effectiveness in 
improving the VA has been limited. Therapeutic interventions 
targeting VEGF can alleviate macular edema and prevent 
further retinal damage[43-44]. Nevertheless, a proportion of 
patients exhibit either partial or no response to anti-VEGF 
treatments, which suggests the need for a prompt transition to 
other viable treatment options at an early stage. Therefore, the 
early prediction of responsiveness to anti-VEGF therapy in 
DME patients is essential to determine the optimal therapeutic 
regimen. Cao et al[38] classified 712 DME patients into poor and 
good responders according to the decrease in central macular 
thickness after three months of anti-VEGF therapy, and then 
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developed ML models based on relevant features automatically 
extracted from OCT images using DL algorithms to predict 
the anti-VEGF therapy response. The RF model outperformed 
other predictive models, with a sensitivity of 0.900, a 
specificity of 0.851, and an impressive AUC of 0.923. This 
study helps predict treatment needs in advance and provides 
DME patients with the best individualized management. 
Similarly, Zhang et al[39] carried out a retrospective analysis 
on a cohort consisting of 281 eyes affected by DME, which 
had been treated with intravitreal injections of anti-VEGF 
therapies. The prediction of VA outcomes following treatment 
was conducted using six different ML algorithms, which 
analyzed 18 features derived from electronic health records and 
OCT. The integrated algorithm combining linear regression 
with an RF regressor demonstrated efficacy in accurately 
predicting VA and VA variance at a one-month follow-up. This 
has significant clinical value for customizing patient-specific 
treatments and establishing realistic expectations for outcomes. 
Nevertheless, the study’s limited sample size indicates a need for a 
larger dataset to enhance the predictive accuracy of the algorithm.
ARTIFICIAL INTELLIGENCE AND RETINAL VEIN 
OCCLUSION
The second leading cause of blindness after DR is RVO, 
which is a degenerative retinal disease. The primary cause 
of its pathogenesis is the obstruction of retinal circulation, 
which can be caused by several factors, including changes in 
blood rheology and hemodynamics, endothelial damage to the 
vessel wall, intraocular pressure, and local ocular compression, 
which can result in hemorrhage, exudation, and edema in large 
areas of the ocular fundus[45]. Depending on the location of the 
venous obstruction, RVO can be classified as either branch 
retinal vein occlusion (BRVO) or central RVO. Currently, anti-
VEGF therapy is effective in improving the visual outcomes 
in individuals with RVO[46]. Nonetheless, there is considerable 
variation in the treatment requirements and modalities among 
patients; thus, it is critical to establish individualized treatment 
plans for each patient (Table 3)[47-52].

The two most popular treatment approaches are pro re nata 
and the treat-and-extend regime (TER)[53], both of which 
rely on OCT of the central retinal region to track the course 
of the disease and the effectiveness of the therapy. It will be 
possible to create treatment plans based on various prognostic 
predictions and optimize treatment regimens for specific 
patients by predicting the responsiveness of patients to treatment 
regimens at the beginning of the treatment process. Gallardo 
et al[47] employed 333 eyes diagnosed with DME or RVO that 
underwent anti-VEGF therapy adhering to a predefined TER 
and classified them into low, moderate, and high therapeutic 
demands. They subsequently trained two RF models to predict 
the demand for treatment and analyzed both the performance 
of the models and the consistency of the features they used 
with those utilized by clinicians. This ML classifier can predict 
the long-term need for anti-VEGF therapy in RVO patients 
and may help improve individualized therapeutic regimens 
for patients. However, the study cohort consisted primarily of 
elderly patients; therefore, the applicability of the algorithm to 
younger patients is questionable.
Vitreomacular adhesion (VMA) has been identified as a 
prognostic biomarker in cases of RVO subject to anti-VEGF 
therapy, with research indicating a beneficial effect of VMA 
presence on VA outcomes following anti-VEGF treatment[54]. 
Waldstein et al[48] designed and evaluated a fully automated 
segmentation algorithm that combined ML and graph cutting 
for the posterior vitreous boundary. The algorithm analyzed 
the SD-OCT graphs of 391 patients suffering from RVO. All 
patients were treated with standardized ranibizumab over 
periods of either six or twelve months. This algorithm used 
the developed method combined with unsupervised clustering 
to distinguish between VMA and non-VMA. Finally, the 
researchers concluded that eyes with VMA had larger BCVA 
gains than those of eyes without. BRVO paired with macular 
edema is a substantial contributor to a decline in prognostic 
BCVA, and EZ integrity may be related to VA and visual 
prognosis outcomes in RVO patients with macular edema. 

Table 3 Prediction models for prognosis of RVO

Author Year Sample size Data type Algorithms Task

Gallardo et al[47] 2021 333 Demographic data/OCT RF Predict low and high treatment demand in RVO

Waldstein et al[48] 2017 391 OCT ML Evaluate the impact of VMA on anti-VEGF therapy for RVO

Etheridge et al[49] 2021 362 OCT ML Evaluate the association between EZ and VALS in RVO

Michl et al[50] 2022 66 Clinical data/OCT SVM Determine the prognosis of the BCVA during the continuous anti-
VEGF treatment in RVO

Arepalli et al[51] 2023 26 OCT ML Evaluate the association between cytokine expression, specific OCT 
features, and treatment response in RVO

Muste et al[52] 2022 92 OCT DL Evaluate the impact of persistent IRF or SRF on BCVA in RVO

RF: Random forest; OCT: Optical coherence tomography; ML: Machine learning; DL: Deep learning; RVO: Retinal vein occlusion; VMA: 

Vitreomacular adhesion; EZ: Ellipsoid zone; VALS: Visual acuity letter score; SVM: Support vector machine; BCVA: Best-corrected visual acuity; 

IRF: Intraretinal fluid; SRF: Subretinal fluid; VEGF: Vascular endothelial growth factor.
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Etheridge et al[49] evaluated the correlation between the VA 
letter score (VALS) and EZ on SD-OCT in eyes with macular 
edema secondary to RVO using ML. The results showed that 
the mean VALS was better in eyes without EZ defects than in 
eyes with EZ defects and that the EZ defects at month one were 
related to poorer VALS at the subsequent follow-up. Therefore, 
the integrity of the EZ obtained from SD-OCT is a biomarker 
for estimating the prognosis of VA and it can play a significant 
role in determining the efficacy of therapeutic interventions, 
enhance disease monitoring, and aid the establishment of 
individual therapeutic regimens for RVO patients. When 
treating BRVO patients and macular edema, clinicians need to 
consider the extent and recurrence of macular edema as well as 
changes in BCVA throughout the first year of treatment. Michl 
et al[50] developed an SVM classifier that achieved an accuracy 
of 0.806 and predicted the prognosis of individual patients 
over time during the continued anti-VEGF monotherapy phase. 
This provides a convincing reference index for establishing 
patient-specific treatment plans. The expression of cytokines 
in the aqueous humor may also influence the efficacy of 
anti-VEGF therapy against RVO[55]. Arepalli et al[51] used an 
advanced retinal segmentation and feature extraction platform 
to correlate cytokine expression profiles with OCT image 
features. It was observed that the levels of VEGF were directly 
correlated with the volume of IRF, whereas the levels of 
angiogenin were inversely related to fluid indices. Additionally, 
individuals who showed positive responses to treatment had 
higher baseline VEGF levels than those who did not respond, 
suggesting that cytokine expression is associated with specific 
OCT features and treatment responses in RVO. In addition, 
Muste et al[52] used a DL model to quantify the volume of IRF 
and SRF, and a linear mixed-effect regression model to assess 
the impact of IRF and SRF on BCVA in RVO patients. These 
results suggest the prognostic significance of IRF for BCVA in 
RVO patients.
In addition to directly recognizing image information, AI 
can be used in conjunction with bioinformatics to analyze 
the potential applications of biomarkers in clinical decision-
making. Pur et al[56] carried out a systematic review of the 
application of bioinformatics and AI for the analysis of biofluid 
biomarkers in RVO. Their study highlights the possibility 
of integrating bioinformatics and AI to develop precision 
medicine for RVO. For instance, it was discovered that the 
levels of interleukin (IL)-6, intercellular adhesion molecule-1, 
VEGF, and IL-8 in the vitreous humor were linked to the 
pathogenesis of BRVO with macular edema. Additionally, 
IL-6 and VEGF may be used to predict VA after intravitreal 
injections or vitrectomy, respectively. Bioinformatics analyses 
using metabolomics and proteomics in conjunction with 
AI analyses have the potential to advance the discovery of 

biomarkers for RVO, provide predictions for the complications 
and prognosis of RVO, and guide individualized therapeutic 
strategies by mapping treatment responses. While the 
application of AI and bioinformatics in RVO is on the rise, 
the field remains nascent. Related studies still have certain 
limitations, such as the lack of healthy control groups and the 
reliance on small sample sizes, which require further validation 
and integration of data obtained from multiple sources.
The abovementioned studies offer ophthalmologists new 
insights into the prognostic treatment of RVO patients and 
help improve precision medicine and individualized treatment 
decisions. Although the methods used in these studies have a 
high predictive value for RVO prognosis, most studies included 
limited sample sizes and required a longer time to collect the 
required samples to complete the training and parameter tuning 
of the models. 
ARTIFICIAL INTELLIGENCE AND CENTRAL 
SEROUS CHORIORETINOPATHY
Central serous chorioretinopathy (CSC) is an idiopathic 
macular disease characterized by the retinal detachment 
(RD) of the neurosensory layer caused by SRF accumulation. 
Prolonged SRF accumulation poses a significant threat to 
the retinal photoreceptors, potentially leading to irreparable 
vision loss[57]. Recent studies have shown that photodynamic 
therapy (PDT) outperforms other treatment modalities in 
managing CSC, including micropulse laser therapy, oral saline 
corticosteroid antagonist therapy, and anti-VEGF therapy[58]. 
However, PDT is an invasive treatment method that requires 
the injection of expensive photosensitizers with unpredictable 
outcomes. ML or DL models are currently being applied in 
several studies to identify color fundus images, OCT, or OCT 
angiography to accurately diagnose or assess CSC[59-61]. However, 
research into the development of predictive models to assess 
the efficacy of PDT in CSC management remains limited.
Jee et al[62] conducted a multicenter retrospective cohort study 
to evaluate the performance of a DL model in predicting CSC 
prognosis. They used multiple sets of OCT images from 832 
CSC patients, including detailed data from different retinal and 
choroidal layers, and used the ResNet50 architecture for model 
training and validation to optimize prediction performance. 
They observed that the strategic integration of image sets 
considerably enhanced the predictive capabilities of DL 
models. More specifically, predictive models based on OCT 
B-scans, retinal thickness, and EZ en-face images exhibited 
remarkable predictive prowess. Pfau et al[63] used a CNN to 
execute precise segmentation of SD-OCT image data from 57 
eyes of 57 CSC patients and matched them with fundus visual 
field data. This meticulous segmentation was then juxtaposed 
with the fundus visual field data and integrated using an ML 
regression model. This innovative approach allowed for the 
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extrapolation of retinal function from the retinal structure, 
subsequently predicting retinal sensitivity seven to eight 
months post-treatment based on baseline patient data. The 
model had a reasonable prediction accuracy, with an average 
absolute error of merely 3.38 dB. Yoo et al[64] innovatively 
combined ResNet50 and the XGBoost framework to develop 
a novel two-stage DL model for predicting the uptake of SRF 
in CSCs after PDT. The intricate process of developing the 
model involved pre-training a ResNet50-based CNN using 
normal fundus photographs for CSC detection. Subsequently, 
we used transfer learning to predict the treatability of CSCs 
with complete SRF uptake. Finally, it seamlessly integrated 
clinical variables with the deep features of fundus photographs 
using XGBoost, thereby bolstering prediction accuracy. 
The exceptional performance of the model, with an AUC of 
0.917, underscores the immense value of transfer learning 
and multimodal linkage strategies in overcoming the clinical 
prediction challenges often posed by limited data. 
Future research should concentrate on developing additional 
DL models to detect other clinically pertinent prognostic 
indicators of CSC. These may encompass the final VA, the 
duration required for complete SRF resorption, and the risk of 
SRF recurrence. By doing so, we can pave the way for more 
individualized diagnostic and treatment strategies for CSC, 
thereby heralding a new era in precision ophthalmology.
ARTIFICIAL INTELLIGENCE AND RETINAL 
DETACHMENT
RD is one of the most substantial etiologies that leads to 
vision loss, and surgical intervention is widely acknowledged 
as the most effective therapeutic method for addressing this 
vision-impairing condition[65]. To ensure positive surgical 
outcomes and patient prognosis, it is critical to accurately 
predict the anatomical outcomes of RD procedures, which 
form the basis for providing optimal surgical care. Currently, 
clinicians predominantly rely on preoperative clinical data to 
ascertain and forecast surgical anatomic outcomes[66-67]. As 
AI technology evolves, applied modeling has emerged as a 
pioneering approach for predicting surgical outcomes with 
greater accuracy (Table 4)[68-73].
Fung et al[68] applied a DL approach based on the Inception-v3 
CNN architecture to predict anatomical outcomes after RD 

surgery. They used 6661 vitrectomy RD fundus images from 
the BEAVRS dataset and categorized the images into surgical 
success and failure cohorts based on surgical outcomes. To 
solve the data imbalance problem, the research team used 
the Synthetic Minority Over-sampling Technique for data 
augmentation and divided the dataset into training, validation, 
and testing subsets. Through a transfer learning process, the 
study bolstered classification proficiency by substituting and 
training the topmost layer of the Inception-v3 framework with 
a class layer tailored to the BEAVRS dataset. Testing revealed 
excellent performance, with an AUC of 0.94, sensitivity of 
73.3%, and specificity of 96.0%. Li et al[69] further developed 
a cascade DL system based on fundus images, encompassing 
two models tasked with identifying and discriminating RD 
above and below the macula. The system not only accurately 
recognizes RD, but also extends preoperative postural guidance 
to patients by assessing macular status, informing them of the 
optimal timing of surgery and possible postoperative visual 
prognosis. This innovative system is expected to reduce 
the progression of RD and significantly reduce the degree 
of visual impairment caused by RD. Integrating these DL 
models portends to enhance the capabilities of clinicians in 
rendering individualized consultation and surgical decision-
making for RD patients, further advancing the precision and 
personalization of ophthalmic care.
ARTIFICIAL INTELLIGENCE AND MACULAR HOLE
Macular hole (MH), a complete tissue deficit affecting the 
neuroepithelial layer of the retina, specifically in the macular 
region, is a significant etiology of central vision loss among 
young individuals[74]. Despite advancements in surgical 
methodologies over the past decade that have positively 
impacted the prognosis of MH, a degree of ambiguity remains 
in terms of both the prognostic evaluation and outcomes 
achieved through surgical intervention.
Zgolli et al[70] developed an ML-based medical decision 
support system model for predicting MH closure status after 
surgery for idiopathic MH. The study trained the model by 
measuring quantitative parameters, such as different macular 
diameters, heights, and angles, in SD-OCT images within a 
9-month follow-up period after idiopathic MH and obtained 
excellent predictive performance with an AUC of 0.967. 

Table 4 Prediction models for prognosis of retinal detachment and macular hole
Author Year Sample size Data type Algorithms AUC Sensitivity (%) Specificity (%)
Fung et al[68] 2023 6661 Digital images DL 0.94 73.3 96
Li et al[69] 2020 11087 Ultra-widefield fundus images DL 0.975 90.9 93.8
Zgolli et al[70] 2022 120 OCT ML 0.967 - -
Xiao et al[71] 2023 330 Clinical data/OCT DL 0.947 97.9 81.5
Obata et al[72] 2022 259 OCT DL - - -
Lachance et al[73] 2022 121 Clinical data/OCT CNN 0.819 67.8 91.3

AUC: Area under the curve; OCT: Optical coherence tomography; ML: Machine learning; CNN: Convolutional neural network.

AI in the retinal disease management
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Xiao et al[71] constructed a multimodal deep fusion network 
(MDFN) that integrates preoperative OCT images with 
other clinical data to predict the postoperative MH status. 
Compared with the unimodal DL model, the MDFN model 
has a significant advantage in terms of prediction performance, 
highlighting the importance of a multimodal approach in 
enhancing predictive accuracy. Obata et al[72] investigated 259 
eyes with MH that were treated with vitrectomy and trained 
a DL model using OCT images to visualize the VA status of 
the MH after vitrectomy. They used preoperative OCT images 
and postoperative VA to train a DL model and performed 
regression analysis based on the model output. They observed 
that combining preoperative VA and MH size can improve the 
prediction of postoperative MH and VA with a high degree of 
accuracy, emphasizing the potential utility of AI in enhancing 
surgical outcomes. Furthermore, Lachance et al[73] used a 
model, combining DL and clinical features, to forecast VA 
improvement six months after MH surgery. They used 242 
HD-OCT B-scan images of 121 MH cases to train a CNN 
model and combined it with an LR model of preoperative 
clinical features for prediction. The results showed that both 
the clinical features and the high-definition OCT (HD-OCT) 
model exhibited strong predictive capabilities, effectively 
forecasting vision improvement outcomes after MH surgery. 
Collectively, these studies offer compelling evidence of the 
immense potential of AI in fundus image analysis and surgical 
treatment outcome prediction. By extracting RD preoperative 
metrics, AI models are capable of accurately predicting the 
postoperative treatment outcomes and prognosis, which are 
expected to provide ophthalmologists with more accurate and 
individualized surgical decision support.
CONCLUSION
Since its inception, ophthalmology, as a branch of clinical 
medicine, has evolved from empirical medicine to evidence-
based medicine, and translational medicine to precision 
medicine. The process of continuous digital representation 
and intelligent analysis of life is fundamental to its evolution. 
In recent years, the research and application of AI in 
ophthalmology has grown exponentially, and ophthalmology 
treatment is gradually moving towards an intelligent medical 
model. AI may be used to identify unique biomarker traits 
of various ocular fundus disorders and predict the course of 
ocular diseases based on biomarker characteristics, allowing 
for individualized treatment. The “ocular image data+AI” 
model has shown great clinical potential in the diagnosis and 
treatment of blinding retinal diseases, including AMD, DR, and 
RVO. In these cases, the efficacy approached or surpassed that 
of experts in the field. By examining ocular fundus images, AI 
can not only identify and diagnose fundus disorders, but it can 
also identify and diagnose associated non-ophthalmic systemic 

diseases. Consequently, investigating the connection between 
systemic diseases and ocular fundus imaging features, as well 
as developing AI-based diagnostic systems, has emerged as 
an increasingly popular area of research. AI can act as an 
“intelligent assistant” to physicians, assisting them in making 
faster decisions, identifying anomalies, and offering diagnosis 
and treatment services by analyzing vast amounts of clinical 
data. With the continuous improvement of AI algorithms and 
the expansion of databases, AI may evolve into a medical 
element with independent thinking and command capabilities, 
thus providing better healthcare services.
However, if certain obstacles are not overcome, the clinical 
use of AI in ophthalmological diagnosis and treatment will 
be severely restricted. These obstacles include the following: 
1) Owing to the significant differences between actual and 
research environments, many AI models that have shown 
superior performance in externally validated datasets may have 
several issues in actual clinical applications. In the absence of 
a rigorous prospective evaluation, the safety and effectiveness 
of AI in actual clinical scenarios cannot be verified. The 
availability of high-quality evaluation guidelines is essential 
to guarantee the validity and reliability of clinical ophthalmic 
AI research as it progresses in actual clinical settings[75]. 2) The 
sample size of data and image quality are not at the same level, 
and the accuracy of the AI model is correlated with both; the 
more data and image quality, the higher the accuracy of the AI 
model. However, the accuracy of the AI model varies across 
different medical institutions and regions owing to variations 
in ophthalmic examination equipment, image quality, and 
patient volume, which limits the accuracy and universality of 
AI. 3) Patient heterogeneity: While the majority of research 
on AI models to date has used population-based data from 
a certain region, AI models may be affected by varying 
patient populations and variations in the previous groupings 
of patients, such as ethnicity and geographic location. 4) 
Professional hurdles to AI: As a subfield of computer science, 
AI is not well understood by most physicians, and this limits 
the application and updating of AI in clinical work. 5) Lack 
of patient trust: Despite the potential of AI in outstanding 
performance, many patients may not be confident in the 
outcomes of AI-assisted diagnosis and may prefer to visit the 
hospital for face-to-face consultation with an ophthalmologist. 
6) Ophthalmologists are unduly reliant on AI for diagnosis 
and treatment, which can result in the loss of their diagnostic 
abilities. These possible drawbacks emphasize the necessity of 
ongoing AI development in the future[76-78].
In recent years, significant academic progress has been made 
in the application of AI in ophthalmology. The in-depth 
development and widespread application of AI technology 
are poised to profoundly transform ophthalmic diagnosis and 
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treatment processes, primary health care services for the blind, 
telemedicine practice models, and integrated management 
systems for chronic and common blinding eye diseases. By 
accurately analyzing ocular images and multimodal medical 
data, AI can predict disease trajectories, tailor treatment 
strategies, and optimize outcomes and patient satisfaction. 
Additionally, AI can track and evaluate patients’ treatment 
responses in real time, ensuring timely adjustments and 
optimizations to treatment plans for optimal clinical results 
and patient satisfaction. Notably, the organic integration of AI 
with telemedicine technology has demonstrated tremendous 
application potential and societal value. This innovative model 
can overcome geographical limitations, enable remote and 
precise diagnosis and treatment of eye diseases, effectively 
reduce patients’ medical burdens, and provide new solutions to the 
global challenge of uneven distribution of medical resources.
Looking ahead, the application of AI in ophthalmology is 
expected to become even more widespread and profound. Its 
integration with cutting-edge technologies such as genetic 
sequencing and biomarker detection may unlock new frontiers 
in precision medicine, driving the development of personalized 
therapeutic approaches. Expanding and enhancing the role of 
AI in ophthalmic prevention, healthcare, and rehabilitation 
services will provide more comprehensive, efficient, and 
intelligent support for improving people’s ocular health 
and quality of life. The application and development of 
this transformative technology will bring unprecedented 
opportunities and challenges to the global ophthalmic field, 
potentially ushering in a new era of ophthalmic development.
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