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Abstract
● AIM: To study functional brain abnormalities in patients 
with eye trauma (ET) and to discuss the pathophysiological 
mechanisms of ET.
● METHODS: Totally 31 ET patients and 31 healthy 
controls (HCs) were recruited. The age, gender, and 
educational background characteristics of the two groups 
were similar. After functional magnetic resonance imaging 
(fMRI) scanning, the subjects’ spontaneous brain activity 
was evaluated with the functional connectivity (FC) method. 

Receiver operating characteristic (ROC) curve analysis was 
used to classify the data. Pearson’s correlation analysis was used 
to explore the relationship between FC values in specific 
brain regions and clinical behaviors in patients with ET.
● RESULTS: Significantly increased FC between several 
regions was identified including the medial prefrontal cortex 
(MPFC) and left hippocampus formations (HF), the MPFC 
and left inferior parietal lobule (IPL), the left IPL and left medial 
temporal lobe (MTL), the left IPL and right MTL, and the right 
IPL and left MTL. No decreased region-to-region connectivity 
was detected in default mode network (DMN) sub-regions in 
patients with ET. Compared with HCs, ET patients exhibited 
significantly increased FC between several paired DMN 
regions, as follows: posterior cingulate cortex (PCC) and 
right HF (HF.R, t=2.196, P=0.032), right inferior parietal 
cortices (IPC.R) and left MTL (MTL.L, t=2.243, P=0.029), 
and right MTL (MTL.R) and HF.R (t=2.236, P=0.029).
● CONCLUSION: FC values in multiple brain regions of ET 
patients are abnormal, suggesting that these brain regions 
in ET patients may be dysfunctional, which may help to 
reveal the pathophysiological mechanisms of ET.
● KEYWORDS: eye trauma; functional connectivity; brain 
region
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INTRODUCTION

E ye trauma (ET) is one of the most common factors 
causing blindness. Epidemiological studies indicate 

that the incidence of ET in North China is 1.6%±0.2%[1], and 
it accounts for 16%–35% of ophthalmic inpatients[2]. Eye 
injuries are often accompanied by multiple types of ocular 
tissue damage, such as suprachoroidal hemorrhage, retinal 
detachment, traumatic cataract, and lens dislocation, among 
others[3-6]. In addition, most patients with ET also have damage 
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to the extraocular muscles, and symptoms such as pain, 
blindness, or loss of vision, and eye movement disorders[7]. 
At present, patients with ET are generally treated using 
surgery[8-9]; however, due to damage to nerves, muscles, and 
other structures, caused by ocular trauma, the effects of ET 
on various regions of the brain are challenging to assess, and 
the therapeutic effects following surgical treatment difficult to 
determine. Changes in various brain regions can be determined 
by resting-state functional magnetic resonance imaging (rs-
fMRI) and quantified using various algorithms, to analyze the 
possible effects of disease states on the brain.
The default mode network (DMN) is an organized functional 
network that spans several anatomic brain regions, including 
the medial temporal lobe (MTL), posterior cingulate cortex 
(PCC), medial prefrontal cortex (MPFC), bilateral inferior 
parietal cortices (IPC), and precuneus[10-11]. When the brain 
activity was first measured in individuals with undirected 
mental states, researchers made interesting discoveries relating 
to the DMN. Subsequently, researchers have compared activity 
in the DMN during tasks when the brain is quiet or active, 
using positron emission tomography[12]. With more in-depth 
understanding of the DMN and the brain, and more frequent 
use of fMRI, study of changes in cerebral cortex DMN features 
associated with disease has become a hot research topic.
Given the unique tracking and positioning ability of rs-fMRI 
and its flexibility, this method is often used to explore neuron 
activity in the brain, with the aim of understanding disease 
pathophysiology[13]. Assessment of functional connectivity 
(FC), is an rs-fMRI technique that allows unbiased analysis[14]. 
There has been some research exploring the changes in specific 
brain areas in patients who have experienced ocular trauma; for 
example, blindness caused by ET is associated with increased 
homogeneity in the cerebral occipital region[15]. Further, 
another study showed that patients with blindness caused by 
ET had significant changes in the primary somatosensory 
area and the primary visual cortex[16]. Other research on the 
DMN is ongoing, including in heroin users, individuals with 
schizophrenia, and people experiencing sleep deprivation, 
social phobia, sensorineural hearing loss, aging and dementia, 
cognitive impairment, and subthreshold depression, among 
other conditions[17-23]; however, few studies have focused on 
patients with eye diseases. Researchers have also reported that 
visual distractors caused larger pre-responsive interference 
with auditory processing, and vice versa, demonstrating 
visual dominance at the pre-responsive level. Nevertheless, 
the correlation of specific regional pathological changes in 
the cerebral cortex DMN features of ET patients has not 
been evaluated. In this study, we explored alterations in brain 
function following ET by evaluating changes in region-to-
region seed-based FC.

PARTICIPANTS AND METHODS
Ethical Approval  All research methods were approved by the 
Ophthalmic Medical Ethics Committee of the First Affiliated 
Hospital of Nanchang University. The purpose, method, and 
potential risks of the study were explained to all subjects, who 
provided signed informed consent.
ET patients (n=31; 24 males and 7 females; mean age, 
45.26±13.62y) were recruited from the Ophthalmology 
Department of our Hospital. Healthy controls (HCs, n=31; 24 
males and 7 females; mean age, 46.07±11.59y), who were age, 
sex, and education status-matched to the ET patients, were 
also recruited. The diagnostic criteria for ET were: 1) history 
of ocular trauma; 2) incomplete orbital wall examination 
by orbital CT or MRI scan; 3) significant changes in vision 
occurring after ocular trauma; 4) decreased intraocular 
pressure; 5) rupture of the cornea and sclera. Inclusion criteria 
for the HC group were: 1) head MRI showed no significant 
changes in brain parenchyma; 2) no history of eye diseases, 
such as strabismus, neuritis, diabetic retinopathy, glaucoma, 
cataract, or dry eye; 3) best corrected visual acuity (BCVA) 
>1.0; 4) no history of mental illness, such as depression; 5) 
able to undergo MRI scans, hence individuals with metal 
implants or cardiac pacemakers were excluded; 6) no systemic 
immune disease, such as systemic lupus erythematosus.
MRI Parameters  MRI scanning was conducted using a 
3-Tesla MR scanner (Trio, Siemens, Erlangen, Germany) to 
collect the following data, using the indicated parameters: 
1) T1-weighted images (n=176): a) a three-dimensional spoiled 
gradient-recalled sequence; b) thickness=1.0 mm; c) repetition 
time=1900ms; d) gap=0.5 mm; e) echo time=2.26ms.
2) 240 functional images: a) gradient-recalled echo-planar 
imaging pulse sequence; b) thickness=4.0 mm; c) repetition 
time=2000ms; d) gap=1.2 mm; e) echo time=30ms.
Data Preprocessing  Data quality filtering was conducted 
using MRIcro software (www.MRIcro.com), as previously 
described[24-32]. The following measures were applied: 1) 
functional images for the first ten time points were discarded; 
2) data with x, y, or z motion rotation with maximum 
translation >1.5 mm were rejected; 3) head-motion effects 
were removed using the Friston six head-motion parameters; 
4) sources of spurious covariates were removed using 
linear regression; 5) head-motion correction; 6) resampling: 
resolution of 3×3×3 mm; 7) data were linearly detrended and 
the time series filtered (bandpass 0.01–0.08 Hz).
Definition of DMN seed regions and FC analysis  The 
eight canonical core DMN regions are: PCC; MPFC; and 
the bilateral hippocampus formations (HF), MTL, and IPC 
(Table 1, Figure 1)[33-35]. By placing spherical seeds (r=6 mm), 
the average time courses for each of the eight regions from 
each subject were defined and extracted. Paired connectivity 
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data points (n=28) were yielded by computing the correlation 
coefficients (r scores) between DMN regions. Fisher’s r-to-Z 
was used to transform and standardize the statistical analysis, 
after conversion of correlation coefficients to Z-values.
Correlation Analysis  To investigate the relationships between 
the clinical measures and region-to-region FC strength within 
the DMN in patients with ET, Z-values of the temporal 
correlation coefficients of the different paired connectivity 
values between the ET and HC groups were analyzed, based 
on data from clinical questionnaires, using Pearson correlation 
analysis. The significance level threshold was set at P<0.05.
Statistical Analysis  For evaluation of clinical data, the 
two-sample Student’s t-test (homoscedasticity) and Mann-
Whitney U-test (heteroscedasticity) were used for analysis 
of continuous data. All calculated P-values were two-tailed. 
P<0.05 was considered statistically significant. All statistical 
analyses were performed using IBM SPSS version 20.0 
statistical software.
RESULTS
Demographic and Clinical Measurements  There were 
no significant differences in age (P=0.978), best-corrected 
visual acuity of the contralateral eye (P=0.921), or intraocular 
pressure (P=0.849) between the ET and HC groups (Table 2).
Functional Connectivity Results  All 28 groups of DMN 
regions exhibited strong connections to one another in both 
the ET and HC groups (Figure 2). Compared with HCs, ET 
patients exhibited significantly increased FC between several 
paired DMN regions, as follows: PCC and right HF (HF.R, 
t=2.196, P=0.032), right IPC (IPC.R) and left MTL (MTL.L, t=2.243, 

Table 1 The coordinates of the definition of the DMN subregions

Region Abbreviation
MNI

X Y Z
Posterior cingulate cortex PCC 0 -53 26
Medial prefrontal cortex MPFC 0 52 -6
Hippocampal formation HF.L -24 -22 -20

HF.R 24 -20 -22
Inferior parietal cortices IPC.L -47

IPC.R 47 -57 20
Medial temporal lobe MTL.L -29 26 -28

MTL.R 29 26 -28

The coordinate of the eight canonical core regions within the DMN. 

DMN: Default mode network; MNI: Montreal Neurological Institute; 

R: Right; L: Left; PCC: Posterior cingulate cortex; MPFC: Medial 

prefrontal cortex; HF: Hippocampus formations; IPC: Inferior parietal 

cortices; MTL: Medial temporal lobe.

Figure 1 The different functional connectivity of the DMN between the eye trauma and healthy controls group  The different colored dots 

represent different nodes; The eight canonical core DMN regions are: PCC, MPFC, and the bilateral HF, MTL, and IPL. DMN: Default mode 

network; MNI: Montreal neurology Institute; PCC: Posterior cingulate cortex; MPFC: Medial prefrontal cortex; HF: Hippocampus formations; 

IPL: Inferior parietal lobule; MTL: Medial temporal lobe.

Table 2 Demographics and behavioral results of ET and HC groups

Parameters ETs HCs t P

Male/female 24/7 24/7 N/A N/A

Age (y) 45.26±13.62 46.07±11.59 0.964 0.978

Handedness 31 right 31 right N/A N/A

Duration (d) 0.18±0.06 N/A N/A N/A

BCVA-contralateral eye 0.80±0.11 0.92±0.17 0.912 0.921

IOP-contralateral eye 14.90±2.76 16.12±2.88 0.957 0.849

Independent t-tests comparing the two groups (P<0.05 represented 

statistically significant differences). Data shown as mean±standard 

deviation or n. ET: Eye trauma; HC: Healthy control; N/A: Not 

applicable; BCVA: Best-corrected visual acuity; IOP: Intraocular 

pressure.
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P=0.029), and right MTL (MTL.R) and HF.R (t=2.236, 
P=0.029, Figure 3). 
ROC Curve Analysis  The mean FC values of the distinct 
paired cerebrum areas were analyzed using the ROC curve 
method to determine whether they could be used to distinguish 
between the ET and HC groups. The individual area under the 
curve (AUC) values for analyses of FC between the paired 
regions exhibiting significant differences were as follows: 
PCC-HF.R, 0.634 (P=0.070); IPC.R-MTL.L, 0.661 (P=0.030); 
MTL.R-HF.R, 0.636 (P=0.066; Figure 4).
DISCUSSION
To investigate the differences in FC between DMN subregions 
in patients with ET, we conducted the first study using the 
region-to-region FC method, with the aim of improving 
understanding of the neural mechanisms underlying ET. We 
identified significantly increased FC between several regions 

including: the MPFC and the left HF, the MPFC and the left 
inferior parietal lobule (IPL), the left IPL and the left MTL, the 
left IPL and the right MTL, and the right IPL and the left MTL 
(Figure 5). No decreased region-to-region connectivity was 
detected in DMN sub-regions in patients with ET.
It has been known since the late 19th century that mental 
activity modulates local blood flow[36-38]. Recently, it was 
determined that the metabolism remains constant when 
individuals performed an activity[39], indicating that the brain 
exhibits persistent activity in the resting state[10]. The DMN is 
part of the brain that exhibits metabolic properties unlike those 
of other brain systems[40-41]. Studies have shown that DMN 
functions allow flexible mental exploration (i.e., simulations), 
before an activity occurs, facilitating preparation for upcoming, 
self-relevant events[42]. Brown pointed out that brain functions 
are intrinsic, and involve the acquisition and maintenance 

Figure 2 The correlation matrix of subregions of the mean time series of DMN  A: The correlation matrix of the subregions in the mean time 

series of the ET group; B: The correlation matrix of the subregions in the mean time series of the HC group. The photo represents DMN as the 

result of the subregions’ FC. Different colors represent different connection coefficients. HC: Healthy control; FC: Functional connectivity; ET: 

Eye trauma; HC: Healthy control; DMN: Default mode network; PCC: Posterior cingulate cortex; MPFC: Medial prefrontal cortex; L: Left; R: Right; 

HF: Hippocampus formations; IPL: Inferior parietal lobule; MTL: Medial temporal lobe.

Figure 3 The different functional connectivity of the DMN between the ET and HC group  There were significant differences between ET 

and HC subjects. The different colored dots represent different nodes; the red lines denote stronger correlations in ET group at the threshold. 

P<0.05. ET: Eye trauma; HC: Healthy control; DMN: Default mode network; PCC: Posterior cingulate cortex; MPFC: Medial prefrontal cortex; HF: 

Hippocampus formations; IPL: Inferior parietal lobule; MTL: Medial temporal lobe.
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of information[43-44]; therefore, in cognitive neuroscience, 
particularly attention has been paid to the resting-state 
networks of the DMN[41,43].
Using rs-fMRI studies to investigate DMN activity can 
diagnose the early stages of Alzheimer’s disease, where 

specific regional reductions in the coherence of low-frequency 
signal fluctuations in the precuneus have been discovered. By 
evaluating the coherence of low-frequency signal fluctuations 
using rs-fMRI to study DMN activity, Rektorova et al[44] 
identified regionally specific reductions in the precuneus. 
Subsequently, studies of Parkinson’s disease (PD), which 
involves saccadic eye movement, showed that, functional 
resting-state connectivity was altered between the mid-
line regions of the DMN. Further, at different stages of PD, 
the DMN connectivity patterns relating to visual processes 
exhibited specific changes localized to the PCC and MTL. In 
particular, the functional resting-state connectivity of the DMN 
in the vertical direction is involved in PD-associated saccadic 
hypometria[34].
Although the DMN has been studied in the context of mental 
and neurological disorders, little is known about changes in 
the characteristics of the DMN in patients with ocular diseases. 
Limited studies have shown that physiological activities of 
the eyes, such as blinking, fixation, and movement, can lead 
to characteristic physiological changes in the cerebral cortex. 
Using resting-state fMRI, Ramot et al[45] detected electro-
ocular activity when subjects closed their eyes. Further, 
Nakano et al[46] found that brain activity in the DMN increased 
following spontaneous involuntary eye blinks; however, when 
ET occurs, the physiological activity of the eye is certain to 
be severely affected, thereby changing the characteristics of 
the cerebral cortex. One study discovered that the frontal eye 
field, supplementary eye field, intraparietal sulcus, precuneus, 
and the anterior and posterior cingulate cortices were activated 
during changes in physiological eye activities[47]. Subsequently, 
Fransson employed resting-state functional magnetic imaging 
to study the relationship between physiological eye and brain 
activities, and showed that the eyes physiological activities 
led to changes in the bilateral occipitotemporal cortex, 
supplementary motor cortex, and frontal eye fields. These 
findings indicate that ocular trauma damages physiological 
activities relevant to the eye, causing changes in midline 
cortical brain regions, located in the posteromedial parietal 
cortex and MPFC[48]. Intriguingly, brain structures in the DMN 
include the posteromedial parietal cortex and the MPFC, which 
are key nodes[42]. Given the visual impairment of patients 
with ocular trauma, our results may indicate that the MPFC 
and IPL undergo significant quantitative changes in response 
to visual impairment. When eye injury also causes damage 
to the patient’s eye-related tissue, it can influence the normal 
physiological activities of eye-related structures, representing 
pathological changes that are reflected in variations in the 
relevant brain regions.
ET is also associated with pain, extraocular muscle injury, 
and dysfunction, as well as neurological abnormalities[49]. 

Figure 4 ROC curve analysis of the FC values in each paired 

cerebrum areas  The area under the ROC curve for PCC-HF.R was 

0.634 (P=0.070); IPC.R-MTL.L, 0.661 (P=0.030); MTL.R-HF.R, 0.636 

(P=0.066). ROC: Receiver operating characteristic; AUC: Area under 

the curve; FC: Functional connectivity; PCC: Posterior cingulate 

cortex; MPFC: Medial prefrontal cortex; L: Left; R: Right; IPC: Inferior 

parietal cortices; HF: Hippocampus formations; MTL: Medial 

temporal lobe.

Figure 5 FC results of DMN in the eye trauma group  Compared with 

the HC group, the FC was increased to various extents: the MPFC and 

the left HF, the MPFC and the left IPL, the left IPL and the left MTL, 

the left IPL and the right MTL, and the right IPL and the left MTL in 

eye trauma patients. The sizes of the spots represent the degree 

of quantitative changes. FC: Functional connectivity; DMN: Default 

mode network; HC: Healthy control; HF: Hippocampus formations; 

MPFC: Medial prefrontal cortex; IPL: Inferior parietal lobule; MTL: 

Medial temporal lobe.
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Further, ET also inevitably causes damage to various structural 
eye tissues, seriously affecting the physiological functions of 
the eye, including movement, vision, and feeling. Damage 
to various eye structures can result in changes in the DMN 
region, and patients with ET may also exhibit DMN-specific 
alterations[50]. Previous studies have linked changes in eye 
function to alterations in neuronal connections[51], and impacts 
on eye function can affect the binocular properties of neurons 
in the primary visual fields; however, relevant research on 
characteristic cerebral cortex DMN pathological changes 
in patients with ET are lacking. Our study is the first to 
evaluate FC between paired DMN subregions with the aim of 
determining the abnormal changes in the cerebral cortex motor 
area in patients with ET. 
The BA17 area is part of the primary visual cortex, which is 
the first region to receive visual information in this part of the 
brain[52-53]. Further, the advanced visual cortex can mediate 
conscious intuition, after synthesizing visual information; 
however, in our study, we did not detect any decrease in 
region-to-region connectivity in DMN sub-regions in patients 
with ET. Hence, there is no reduction of information or 
enhanced stimulation to the senior cortex in patients with ET, 
which does not appear to impair the function of various DMN 
subregions. This abnormal connectivity may underline the 
decline in emotional or cognitive ability observed in patients 
with ET. Further, we did not detect any significant correlations 
of abnormal FC between paired DMN subregions with clinical 
parameters. Nevertheless, our results reveal alterations in FC 
between intrinsic DMN subregions, which will assist analysis 
of the mechanisms underlying ET. Integrative comparisons 
of the types and degree of ET would provide additional 
information regarding how ET, particularly extraocular 
muscle injury caused by ocular trauma, can affect FC in DMN 
subregions.
This study has some limitations. First, the number of samples 
used to study DMN in patients with ET was relatively small. 
Second, we have not excluded the influence of psychological 
or physiological abnormalities due to ocular trauma on inter-
regional FC. Third, the changes in the cerebral cortex motor 
area in patients with ET are likely to be related to different 
types of ocular trauma, as well as the course and severity of the 

condition, which were not considered in our analyses. Future 
research should conduct a more comprehensive analysis of the 
DMN with regards to the afore mentioned issues.
In conclusion, changes in the FC between brain areas, 
including the DMN, can be evaluated using rs-fMRI, and 
reflect the relationships between various eye diseases and 
related brain regions, which have been evaluated in other studies 
(Table 3[34,44,46,52,54-55]). ET damages the normal physiological 
activit1y of the eye, thereby disrupting FC within DMN 
subregions.
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